

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	166.67MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	50
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5208cvm166j

3 Signal Descriptions

The following table lists all the MCF5208 pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Mechanicals and Pinouts" for package diagrams. For a more detailed discussion of the MCF5208 signals, consult the *MCF5208 Reference Manual* (MCF5208RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., A23), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO default to their GPIO functionality.

Table 3. MCF5207/8 Signal Information and Muxing

Signal Name	GPIO	Alternate 1	Alternate 2	Dir.1	Voltage Domain	MCF5207 144 LQFP	MCF5207 144 MAPBGA	MCF5208 160 QFP	MCF5208 196 MAPBGA				
				Rese	et								
RESET ²													
RSTOUT	_	_	_	0	EVDD	74	M12	82	N14				
				Cloc	k								
EXTAL	_	_	_	I	EVDD	78	K12	86	L14				
XTAL	_	_	_	0	EVDD	80	J12	88	K14				
FB_CLK	_	_	_	0	SDVDD	34	L1	40	N1				
			Mod	le Sel	ection								
RCON ²	_	_	_	I	EVDD	144	C4	160	C3				
DRAMSEL	_	_	_	I	EVDD	79	H10	87	K11				
			ı	FlexB	us								
A[23:22]	_	FB_CS[5:4]	_	0	SDVDD	118, 117	B9, A10	126, 125	B11, A11				
A[21:16]	_	_	_	0	SDVDD	116–114, 112, 108, 107	C9, A11, B10, A12, C11, B11	124, 123, 122, 120, 116, 115	B12, A12, A13, B13, B14, C13				
A[15:14]	_	SD_BA[1:0] ³	_	0	SDVDD	106, 105	B12, C12	114, 113	C14, D12				
A[13:11]	_	SD_A[13:11] ³	_	0	SDVDD	104–102	D11, E10, D12	112, 111, 110	D13, D14, E11				
A10		_		0	SDVDD	101	C10	109	E12				

Signal Descriptions

Table 3. MCF5207/8 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Dir.¹	Voltage Domain	MCF5207 144 LQFP	MCF5207 144 MAPBGA	MCF5208 160 QFP	MCF5208 196 MAPBGA
				QSP	I				
QSPI_CS2	PQSPI3	DACK0	U2RTS	0	EVDD	126	A8	132	D10
QSPI_CLK	PQSPI0	I2C_SCL ²	_	0	EVDD	127	C7	133	A9
QSPI_DOUT	PQSPI1	I2C_SDA ²	_	0	EVDD	128	A7	134	В9
QSPI_DIN	PQSPI2	DREQ0 ²	U2CTS	I	EVDD	129	B7	135	C9

Note: The QSPI_CS1 and QSPI_CS0 signals are available on the U1CTS, U1RTS, U0CTS, or U0RTS pins for the 196 and 160-pin packages.

	UARTS										
U1CTS	PUARTL7	DT1IN	QSPI_CS1	I	EVDD	_	_	136	D9		
U1RTS	PUARTL6	DT1OUT	QSPI_CS1	0	EVDD	_	_	137	C8		
U1TXD	PUARTL5	_	_	0	EVDD	131	A6	139	A8		
U1RXD	PUARTL4	_	_	I	EVDD	130	D6	138	B8		
U0CTS	PUARTL3	DT0IN	QSPI_CS0	I	EVDD	_	_	76	N12		
U0RTS	PUARTL2	DT0OUT	QSPI_CS0	0	EVDD	_	_	77	P12		
U0TXD	PUARTL1	1	_	0	EVDD	71	L10	79	P13		
U0RXD	PUARTL0	_	_	ı	EVDD	70	M10	78	N13		

Note: The UART2 signals are multiplexed on the DMA Timers, QSPI, FEC, and I2C pins. For the MCF5207 devices, the UART0 and UART1 control signals are multiplexed internally on the FEC signals.

			DN	//A Tin	ners				
DT3IN	PTIMER3	DT3OUT	U2CTS	I	EVDD	135	B5	143	B7
DT2IN	PTIMER2	DT2OUT	U2RTS	I	EVDD	136	C5	144	A7
DT1IN	PTIMER1	DT1OUT	U2RXD	I	EVDD	137	A4	145	A6
DT0IN	PTIMER0	DT0OUT	U2TXD	I	EVDD	138	А3	146	В6
			ВІ	OM/JT	AG ⁶				
JTAG_EN ⁷	_	_	_	I	EVDD	83	J11	91	J13
DSCLK	_	TRST ²	_	I	EVDD	76	K11	84	L12
PSTCLK	_	TCLK ²	_	0	EVDD	64	M7	70	P9
BKPT	_	TMS ²	_	I	EVDD	75	L12	83	M14
DSI	_	TDI ²	_	I	EVDD	77	H9	85	K12
DSO	_	TDO	_	0	EVDD	69	M9	75	M12
DDATA[3:0]	_	_	_	0	EVDD	_	K9, L9, M11, M8	_	P11, N11, M11, P10
PST[3:0]	_	_	_	0	EVDD	_	L11, L8, K10, K8	_	N10, M10, L10, L9

MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3

4.2 Package Dimensions—144 LQFP

Figure 2 and Figure 3 show MCF5207CAB166 package dimensions.

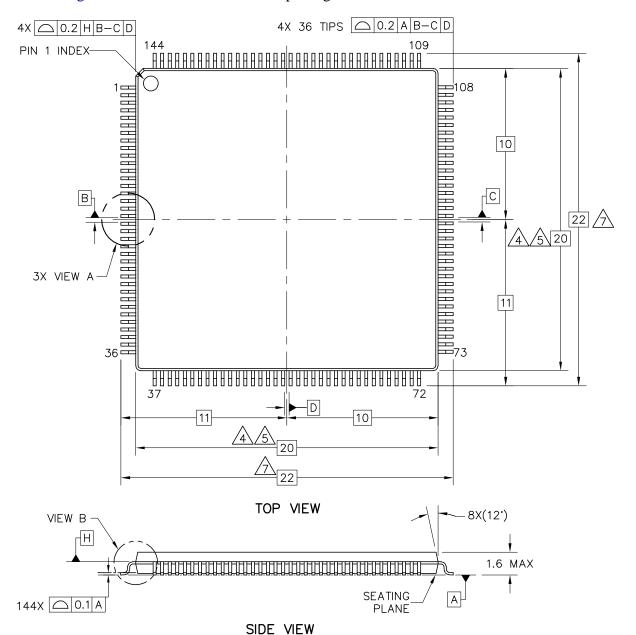


Figure 2. MCF5207CAB166 Package Dimensions (Sheet 1 of 2)

4.3 Pinout—144 MAPBGA

The pinout of the MCF5207CVM166 device is shown below.

_	1	2	3	4	5	6	7	8	9	10	11	12	_
Α	SD_CS	U1RTS	DT0IN	DT1IN	ĪRQ7	U1TXD	QSPI_ DOUT	QSPI_CS2	FB_CS2	A22	A20	A18	Α
В	D14	D15	TS	U1CTS	DT3IN	ĪRQ1	QSPI_ DIN	FB_CS0	A23	A19	A16	A15	В
С	D12	D13	SD_CKE	RCON	DT2IN	ĪRQ4	QSPI_ CLK	FB_CS1	A21	A10	A17	A14	С
D	D10	D11	SD_WE	IVDD	UORTS	U1RXD	FB_CS3	IVDD	A8	VSS	A13	A11	D
E	D8	D9	BE/BWE1	U0CTS	EVDD	EVDD	SD_VDD	SD_VDD	A4	A12	А9	A7	E
F	D31	D30	SD_DQS3	BE/BWE3	EVDD	VSS	VSS	SD_VDD	A0	A6	A5	А3	F
G	D29	D28	D26	D27	SD_VDD	VSS	VSS	EVDD	EVDD	A2	TA	A1	G
н	D25	D24	SD_SDR_ DQS	IVDD	SD_VDD	SD_VDD	EVDD	EVDD	TDI/DSI	DRAM SEL	IVDD	PLL_VDD	Н
J	SD_CLK	SD_RAS	SD_VDD	D18	BE/BWE0	D4	D2	ŌĒ	IVDD	RESET	JTAG_EN	XTAL	J
к	SD_CLK	D20	D23	D16	D6	R/W	D0	PST0	DDATA3	PST1	TRST/ DSCLK	EXTAL	K
L	FB_CLK	D22	D21	BE/BWE2	D7	D5	D1	PST2	DDATA2	U0TXD	PST3	TMS/ BKPT	L
М	SD_A10	SD_CAS	D19	D17	SD_DQS2	D3	TCLK/ PSTCLK	DDATA0	TDO/DSO	U0RXD	DDATA1	RSTOUT	М
	1	2	3	4	5	6	7	8	9	10	11	12	•

Figure 4. MCF5207CVM166 Pinout Top View (144 MAPBGA)

Mechanicals and Pinouts

4.7 Pinout—196 MAPBGA

Figure 9 shows a pinout of the MCF5208CVM166 device.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	_
Α	VSS	FEC_ TXEN	FEC_ TXER	FEC_ RXDV	FEC_ RXD3	DT1IN	DT2IN	U1TXD	QSPI_ CLK	FB_CS2	A22	A20	A19	VSS	Α
В	FEC_ TXD0	FEC_ TXD1	FEC_ TXCLK	FEC_ RXCLK	FEC_ RXD2	DT0IN	DT3IN	U1RXD	QSPI_ DOUT	FB_CS1	A23	A21	A18	A17	В
С	FEC_ TXD3	FEC_ TXD2	RCON	FEC_ RXER	FEC_ RXD1	FEC_ MDIO	ĪRQ7	U1RTS	QSPI_ DIN	FB_CS0	FB_CS3	TEST	A16	A15	С
D	I2C_SDA	FEC_ CRS	FEC_ COL	IVDD	FEC_ RXD0	FEC_ MDC	ĪRQ4	ĪRQ1	Ū1CTS	QSPI_ CS2	IVDD	A14	A13	A12	D
Ε	SD_CKE	SD_WE	TS	I2C_SCL	EVDD	EVDD	EVDD	SD_VDD	SD_VDD	SD_VDD	A11	A10	А9	A8	E
F	D13	D14	D15	SD_CS	EVDD	EVDD	VSS	VSS	SD_VDD	SD_VDD	A7	A6	A5	A4	F
G	D9	D10	D11	D12	EVDD	VSS	VSS	VSS	VSS	SD_VDD	А3	A2	A1	AO	G
Н	D8	BE/ BWE3	SD_ DQS3	BE/ BWE1	SD_VDD	VSS	VSS	VSS	VSS	EVDD	IVDD	PLL_ VSS	PLL_ VDD	TA	Н
J	D28	D29	D30	D31	SD_VDD	SD_VDD	VSS	VSS	EVDD	EVDD	NC	IVDD	JTAG_ EN	RESET	J
K	D24	D25	D26	D27	SD_VDD	SD_VDD	SD_VDD	EVDD	EVDD	EVDD	DRAM SEL	TDI/ DSI	EVDD	XTAL	K
L	SD_CLK	SD_VDD	SD_SDR _DQS	IVDD	D18	SD_ DQS2	D5	R/W	PST0	PST1	IVDD	TRST/ DSCLK	VSS	EXTAL	L
М	SD_CLK	VSS	D23	D21	D17	BE/ BWE0	D4	ŌĒ	EVDD	PST2	DDATA1	TDO/ DSO	PLL_ TEST	TMS/ BKPT	М
N	FB_CLK	SD_A10	D22	D20	D16	D7	D3	D1	VSS	PST3	DDATA2	Ū0CTS	U0RXD	RSTOUT	N
Р	VSS	SD_CAS	SD_RAS	D19	BE/ BWE2	D6	D2	D0	TCLK/ PSTCLK	DDATA0	DDATA3	UORTS	U0TXD	VSS	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1

Figure 9. MCF5208CVM166 Pinout Top View (196 MAPBGA)

Table 4. Absolute Maximum Ratings^{1, 2} (continued)

Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T_{stg}	- 55 to 150	°C

NOTES:

- Functional operating conditions are given in Section 5.4, "DC Electrical Specifications". Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.
- This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or EV_{DD}).
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁴ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.
- Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > EV_{DD}) is greater than I_{DD}, the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Ensure external EV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

5.2 Thermal Characteristics

Table 5 lists thermal resistance values

Table 5. Thermal Characteristics

Characteristic		Symbol	196MBGA	144MBGA	160QFP	144LQFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	47 ^{1,2}	47 ^{1,2}	49 ^{1,2}	65 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	43 ^{1,2}	43 ^{1,2}	44 ^{1,2}	58 ^{1,2}	°C/W
Junction to board		θ_{JB}	36 ³	36 ³	40 ³	50 ³	°C/W
Junction to case		$\theta_{\sf JC}$	22 ⁴	22 ⁴	39 ⁴	19 ⁴	°C/W
Junction to top of package		Ψ_{jt}	6 ^{1,5}	6 ^{1,5}	12 ^{1,6}	5 ^{1,7}	°C/W
Maximum operating junction temperature		Tj	105	105	105	105	°C

NOTES:

 $[\]theta_{\text{JMA}}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

- Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \Theta_{JMA})$$
 Eqn. 1

Where:

 T_{Δ} = Ambient Temperature, °C

Q_{TMA} = Package Thermal Resistance, Junction-to-Ambient, xC/W

 P_D = $P_{INT} + P_{I/O}$

 $P_{INT} = I_{DD} \times IV_{DD}$, Watts - Chip Internal Power

 $P_{I/O}$ = Power Dissipation on Input and Output Pins - User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = \frac{K}{(T_{J} + 273^{\circ}C)}$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273 \,^{\circ}C) + Q_{IMA} \times P_D^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 6. ESD Protection Characteristics 1, 2

Characteristics	Symbol	Value	Unit
ESD Target for Human Body Model	HBM	2000	V

NOTES:

MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

A device is defined as a failure if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

Table 7. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	IV _{DD}	1.4	1.6	V
PLL Supply Voltage	PLLV _{DD}	1.4	1.6	V
CMOS Pad Supply Voltage	EV _{DD}	3.0	3.6	V
SDRAM and FlexBus Supply Voltage Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{DD}	1.70 2.25 3.0	1.95 2.75 3.6	V
CMOS Input High Voltage	EV _{IH}	2	EV _{DD} + 0.3	V
CMOS Input Low Voltage	EV _{IL}	V _{SS} - 0.3	0.8	V
CMOS Output High Voltage I _{OH} = -5.0 mA	EV _{OH}	EV _{DD} - 0.4	_	V
CMOS Output Low Voltage I _{OL} = 5.0 mA	EV _{OL}	_	0.4	V
SDRAM and FlexBus Input High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{IH}	1.35 1.7 2	$SDV_{DD} + 0.3$ $SDV_{DD} + 0.3$ $SDV_{DD} + 0.3$	V
SDRAM and FlexBus Input Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{IL}	V _{SS} - 0.3 V _{SS} - 0.3 V _{SS} - 0.3	0.45 0.8 0.8	V
SDRAM and FlexBus Output High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) I _{OH} = -5.0 mA for all modes	SDV _{OH}	SDV _{DD} - 0.35 2.1 2.4	_ _ _	V
SDRAM and FlexBus Output Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) I _{OL} = 5.0 mA for all modes	SDV _{OL}	_ _ _	0.3 0.3 0.5	V
Input Leakage Current V _{in} = IV _{DD} or V _{SS} , Input-only pins	I _{in}	-1.0	1.0	μА

0.4 V during power down or there is an undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is:

- 1. Drop IV_{DD}/PLLV_{DD} to 0 V.
- 2. Drop EV_{DD}/SDV_{DD} supplies.

5.5 Current Consumption

All of the below current consumption data is lab data measured on a single device using an evaluation board. Table 8 shows the typical current consumption in low-power modes at various $f_{sys/2}$ frequencies. Current measurements are taken after executing a STOP instruction.

Table 8. Current Consumption in Low-Power Mode 1,2

Mada	Voltage			Typical ³ (mA))		Peak ⁴ (mA)
Mode	(V)	44 MHz	56 MHz	64 MHz	72 MHz	83.33 MHz	83.33 MHz
	3.3			1.	.33		
Stop Mode 3 (Stop 11) ⁵	2.5			15	.19		
(0.05 11)	1.5			0.5	519		
	3.3			1.	93		
Stop Mode 2 (Stop 10) ⁵	2.5			15	.19		
(3.56 .5)	1.5			1.	25		
	3.3			1.	83		
Stop Mode 1 (Stop 01) ⁵	2.5			15	.23		
(3.54.3.1)	1.5	8.24	10.22	9.55	10.61	12.1	12.1
	3.3	2.23	2.33	2.41	2.5	2.61	2.61
Stop Mode 0 (Stop 00) ⁵	2.5	16.2	16.47	16.62	16.91	17.24	17.24
(= :=	1.5	8.32	10.32	9.66	10.73	12.25	12.25
	3.3	2.23	2.33	2.41	25	2.6	4.07
Wait/Doze	2.5	16.2	16.48	16.62	16.91	17.24	18.77
	1.5	11.53	14.36	14.29	15.92	18.21	35.45
	3.3	6.79	9.02	14.56	19.54	29.12	30.43
Run	2.5	16.17	16.48	16.64	16.89	17.23	18.76
	1.5	16.29	20.36	21.13	23.57	27.0	44.1

NOTES:

All values are measured with a 3.30V EV_{DD}, 2.50V SDV_{DD}, and 1.5V IV_{DD} power supplies. Tests performed at room temperature with pins configured for high drive strength.

Refer to the Power Management chapter in the MCF5208 Reference Manual for more information on low-power modes.

³ All peripheral clocks except UART0, FlexBus, INTC, reset controller, PLL, and Edge Port off before entering low-power mode. All code executed from flash.

⁴ Peak current measured while running a while(1) loop with all modules active.

Table 10. PLL Electrical Characteristics (continued	Table 10). PLL	Electrical	Characteristics	(continued)
---	----------	--------	------------	-----------------	-------------

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}		1.5	pF
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}		1.5	pF
12	Crystal capacitive load	C _L		See crystal spec	
13	Discrete load capacitance for XTAL	C _{L_XTAL}		2*C _L - C _{S_XTAL} - C _{PCB_XTAL} ⁷	pF
14	Discrete load capacitance for EXTAL	C _{L_EXTAL}		2*C _L - C _{S_EXTAL} - C _{PCB_EXTAL} ⁷	pF
17	CLKOUT Period Jitter, ^{3, 4, 7, 8, 9} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}		10 TBD	% f _{sys/2} % f _{sys/2}
18	Frequency Modulation Range Limit ^{3, 10, 11} (f _{sys} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
19	VCO Frequency. f _{vco} = (f _{ref *} PFD)/4	f _{vco}	350	540	MHz

NOTES:

- The maximum allowable input clock frequency when booting with the PLL enabled is 24 MHz. For higher input clock frequencies, the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.
- ² All internal registers retain data at 0 Hz.
- ³ This parameter is guaranteed by characterization before qualification rather than 100% tested.
- Proper PC board layout procedures must be followed to achieve specifications.
- ⁵ This parameter is guaranteed by design rather than 100% tested.
- ⁶ This specification is the PLL lock time only and does not include oscillator start-up time.
- 7 C_{PCB_EXTAL} and C_{PCB_XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- 9 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
- 10 Modulation percentage applies over an interval of $10\mu s$, or equivalently the modulation rate is 100 KHz.
- ¹¹ Modulation range determined by hardware design.

5.7 External Interface Timing Characteristics

Table 11 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.

All other timing relationships can be derived from these values. Timings listed in Table 11 are shown in Figure 14 and Figure 15.

* The timings are also valid for inputs sampled on the negative clock edge.

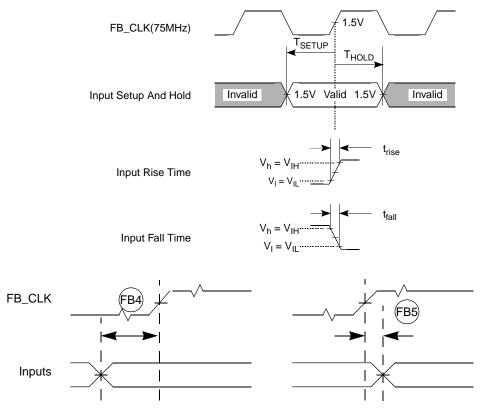


Figure 13. General Input Timing Requirements

5.7.1 FlexBus

FlexBus is a multi-function external bus interface provided to interface to slave-only devices up to a maximum bus frequency of 83.33 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) that can be configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select FB_CS[0] can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.

5.7.1.1 FlexBus AC Timing Characteristics

The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the system clock.

Table 11. FlexBus AC Timing Specifications

Num	Characteristic	Symbol	Min	Max	Unit	Notes
	Frequency of Operation			83.33	Mhz	f _{sys/2}
FB1	Clock Period (FB_CLK)	t _{FBCK}	12		ns	t _{cyc}
FB2	Data, and Control Output Valid (A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)	t _{FBCHDCV}	_	7.0	ns	1
FB3	Data, and Control Output Hold ((A[23:0], D[31:0], FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)	^t FBCHDCI	1	_	ns	1, 2
FB4	Data Input Setup	t _{DVFBCH}	3.5	_	ns	
FB5	Data Input Hold	t _{DIFBCH}	0	_	ns	
FB6	Transfer Acknowledge (TA) Input Setup	t _{CVFBCH}	4	_	ns	
FB7	Transfer Acknowledge (TA) Input Hold	t _{CIFBCH}	0	_	ns	

NOTES:

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and SDRAM controller. At the end of the read and write bus cycles the address signals are indeterminate.

Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.8, "SDRAM Bus" for SD_CS[1:0] timing.

The FlexBus supports programming an extension of the address hold. Please consult the device reference manual for more information.

5.8.1 SDR SDRAM AC Timing Characteristics

The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The SDRAM controller is a DDR controller with an SDR mode. Because it is designed to support DDR, a DQS pulse must remain supplied to the device for each data beat of an SDR read. The ColdFire processor accomplishes this by asserting a signal called SD_SDR_DQS during read cycles. Take care during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS signal and its usage.

Symbol Characteristic Symbol Max Unit **Notes** Min 83.33 Frequency of Operation 60 MHz 2 SD1 Clock Period (tck) 12 16.67 ns t_{SDCK} SD3 Pulse Width High (t_{CKH}) 0.55 SD CLK 0.45 t_{SDCKH} SD4 Pulse Width Low (t_{CKI}) SD_CLK 0.55 0.45 t_{SDCKL} Address, SD CKE, SD CAS, SD RAS, SD WE. SD5 0.5 × SD CLK ns t_{SDCHACV} SD_BA, SD_CS[1:0] - Output Valid (t_{CMV}) + 1.0 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD6 2.0 t_{SDCHACI} SD_BA, SD_CS[1:0] - Output Hold (t_{CMH}) SD_SDR_DQS Output Valid (tDOSOV) SD7 Self timed ns t_{DQSOV} SD8 SD_DQS[3:2] input setup relative to SD_CLK (tDQSIS) $0.25 \times SD_CLK$ $0.40 \times SD_CLK$ 5 t_{DQVSDCH} 6 SD_DQS[3:2] input hold relative to SD_CLK (tDQSIH) Does not apply. 0.5 SD_CLK fixed width. SD9 t_{DQISDCH} Data (D[31:0]) Input Setup relative to SD_CLK **SD10** $0.25 \times SD_CLK$ t_{DVSDCH} (reference only) (t_{DIS}) Data Input Hold relative to SD_CLK (reference only) SD11 1.0 ns t_{DISDCH} SD12 Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output 0.75 × SD CLK t_{SDCHDMV} ns +0.5Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output | t_{SDCHDMI} **SD13** 1.5 ns Hold (t_{DH})

Table 12. SDR Timing Specifications

NOTES:

The device supports the same frequency of operation for FlexBus and SDRAM as that of the internal bus clock. Please see the PLL chapter of the *MCF5208 Reference Manual* for more information on setting the SDRAM clock rate.

² SD_CLK is one SDRAM clock in (ns).

³ Pulse width high plus pulse width low cannot exceed min and max clock period.

⁴ SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.

⁵ SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.

⁶ The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller.

Because a read cycle in SDR mode continues using the DQS circuit within the device, it is most critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec is provided as guidance.

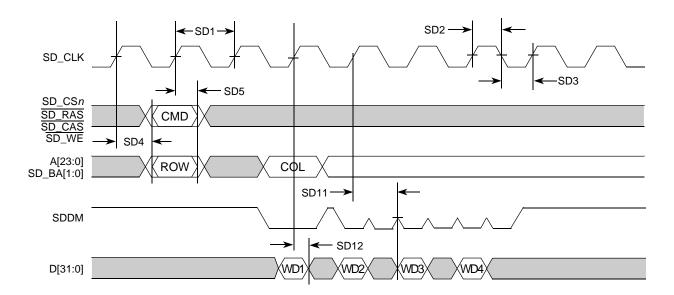


Figure 16. SDR Write Timing

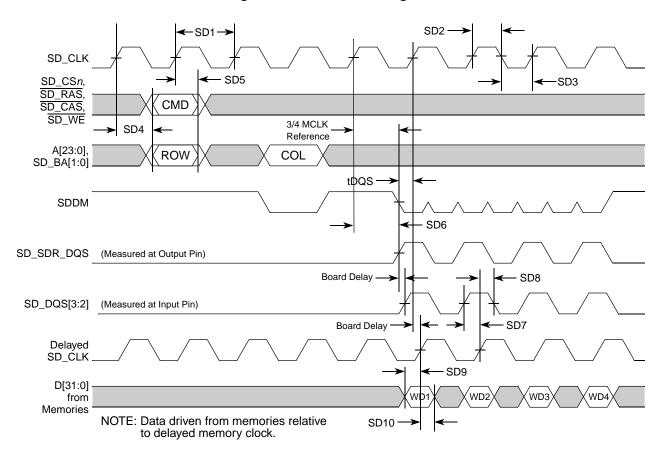


Figure 17. SDR Read Timing

- This specification relates to the required hold time of today's DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
- Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- 9 Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

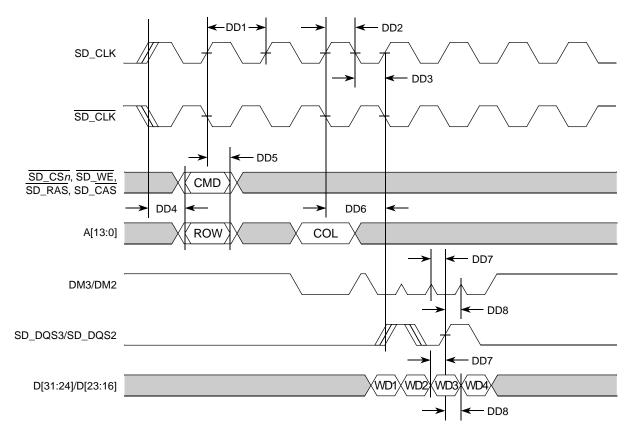


Figure 18. DDR Write Timing

5.13 32-Bit Timer Module AC Timing Specifications

Table 22 lists timer module AC timings.

Table 22. Timer Module AC Timing Specifications

Name	Characteristic				
Name	Gilai acteristic	Min Max		Unit	
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3	_	t _{CYC}	
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1	_	t _{CYC}	

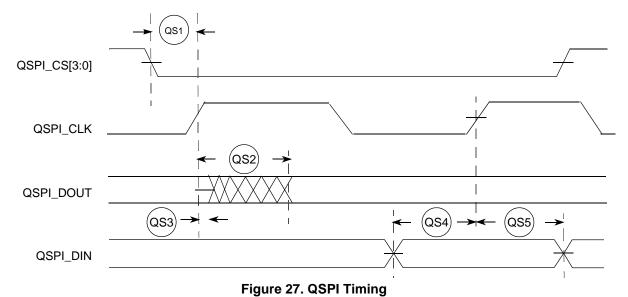

5.14 QSPI Electrical Specifications

Table 23 lists QSPI timings.

Table 23. QSPI Modules AC Timing Specifications

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK		510	tcyc
QS2	QSPI_CLK high to QSPI_DOUT valid.		10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)		_	ns
QS4	QS4 QSPI_DIN to QSPI_CLK (Input setup)		_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)		_	ns

The values in Table 23 correspond to Figure 27.

MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3

5.15 JTAG and Boundary Scan Timing

Table 24. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4	_	t _{CYC}
J3	TCLK Clock Pulse Width	t _{JCW}	26	_	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	_	ns
J6	J6 Boundary Scan Input Data Hold Time after TCLK Rise		26	_	ns
J7	7 TCLK Low to Boundary Scan Output Data Valid		0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise		4	_	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise		10	_	ns
J11	11 TCLK Low to TDO Data Valid		0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	_	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	_	ns

NOTES:

JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

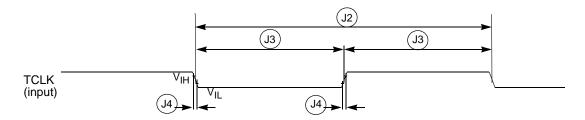


Figure 28. Test Clock Input Timing

5.16 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 32.

Table 25. Debug AC Timing Specification

Num	Characteristic	Min	Max	Unit
D0	PSTCLK cycle time	1	1	t _{SYS}
D1	PSTCLK rising to PSTDDATA valid	_	3.0	ns
D2	PSTCLK rising to PSTDDATA invalid	1.5	_	ns
D3	DSI-to-DSCLK setup	1	_	PSTCLK
D4 ¹	DSCLK-to-DSO hold	4	_	PSTCLK
D5	DSCLK cycle time	5	_	PSTCLK
D6	BKPT assertion time	1	_	PSTCLK

NOTES:

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

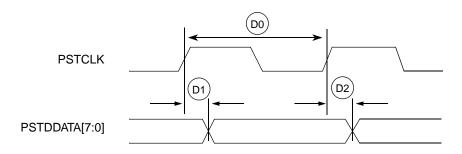


Figure 32. Real-Time Trace AC Timing

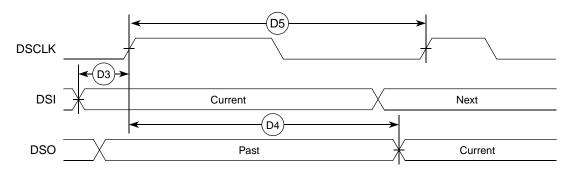


Figure 33. BDM Serial Port AC Timing

6 Revision History

Table 26. Revision History

Revision Number	Date	Substantive Changes
0	5/23/2005	Initial Release
0.1	6/16/2005	 Corrected 144QFP pinout in Figure 1. Pins 139-142 incorrectly showed FEC functionality, which are actually UART 0/1 clear-to-send and request-to-send signals. Changed maximum core frequency in Table 10, spec #2, from 240MHz to 166.67MHz. Also, changed symbols in table: f_{core} -> f_{sys} and f_{sys} -> f_{sys/2} for consistency throughout document and reference manual.
0.2	8/26/2005	 Changed ball M9 from SD_VDD to EVDD in Figure 9. Table 3: Pin 33 for 144 LQFP package should be EVDD instead of SD_VDD. BE/BWE[3:0] for 144 LQFP should be "20, 48, 18, 50" instead of "18, 20, 48, 50" Cleaned up various electrical specifications: Table 4: Added DDR/Memory pad supply voltage spec, changed "clock synthesizer supply voltage" to "PLL supply voltage", changed min PLLVDE from -0.5 to -0.3, changed max VIN from 4.0 to 3.6, changed minimum Tste from -65 to -55, Table 5: Changed TBD values in Tj entry to 105°C. Table 7: Changed minimum core supply voltage from 1.35 to 1.4 and maximum from 1.65 to 1.6, added PLL supply voltage entry, added pad supply entries for mobile-DDR, DDR, and SDR, changed minimum input high voltage from 0.7xEV_{DD} to 2 and maximum from 3.65 to EV_{DD}+0.05, changed minimum input low voltage from VSS-0.3 to -0.05 and maximum from 0.35xEV_{DD}to 0.8, added input high/low voltage entries for DDR and mobile-DDR, removed high impedance leakage current entry, changed minimum output high voltage entries, removed load capacitance and DC injection current entries. Added filtering circuits and voltage sequencing sections: Section 5.4.1, "PLL Power Filtering," and Section 5.4.2, "Supply Voltage Sequencing and Separation Cautions." Removed "Operating Conditions" table from Section 5.6, "Oscillator and PLL Electrical Characteristics," because it is redundant with Table 7. Table 11: Changed minimum core frequency to TBD, removed external reference and on-chip PLL frequency specs to have only a CLKOUT frequency spec of TBD to 83.33MHz, removed loss of reference frequency and self-clocked mode frequency entries, in EXTAL input high/low voltage entries changed "All other modes (Dual controller (1:1), Bypass, External)" to "All other modes (External, Limp)", removed XTAL output high/low voltage entries, frequency un-lock range, frequency lock range, CLKOUT period jitter, frequency modulation range limit, and ICO frequency
0.3	9/07/2005	 Corrected DRAMSEL footnote #3 in Table 3. Updated Table 3 with 144MAPBGA pin locations. Added 144MAPBGA ballmap to Section 4.3, "Pinout—144 MAPBGA." Changed J12 from PLL_VDD to IVDD in Figure 9.

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2009. All rights reserved.

MCF5208EC Rev. 3 9/2009