

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	68030
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	25MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
JSB	-
/oltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	132-BCQFP
Supplier Device Package	132-CQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68ec030fe25c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

information. The instruction pipe and other individual control sections provide the secondary decode of instructions and generate the actual control signals that result in the decoding and interpretation of nanoROM and microROM information.

The instruction and data cache blocks operate independently from the rest of the machine, storing information read by the bus controller for future use with very fast access time. Each cache resides on its own address bus and data bus, allowing simultaneous access to both. The data and instruction caches are organized as a total of 64 long-word entries (256 bytes) with a line size of four long words. The data cache uses a write-through policy with programmable write allocation for cache misses.

The ACU contains two access control registers that are used to define memory segments ranging in size from 16 Mbytes to 2 Gbytes each. Each segment is definable in terms of address, read/write access, and function code. Each segment can be marked as cacheable or non cacheable to control cache accesses to that memory space.

PROGRAMMING MODEL

As shown in the programming models (see Figures 3 and 4), the MC68EC030 has 16 32-bit general-purpose registers, a 32-bit program counter, two 32-bit supervisor stack pointers, a 16-bit status register, a 32-bit vector base register, two 3-bit alternate function code registers, two 32-bit cache handling (address and control) registers, and two 32-bit transparent translation registers. Registers D0–D7 are used as data registers for bit and bit field (1 to 32 bit), byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64 bit) operations. Registers A0–A6 and the user, interrupt, and master stack pointers are address registers that may be used as software stack pointers or base address registers. In addition, the address registers may be used for word and long-word operations. All 16 general-purpose registers (D0–D7, A0–A7) can be used as index registers.

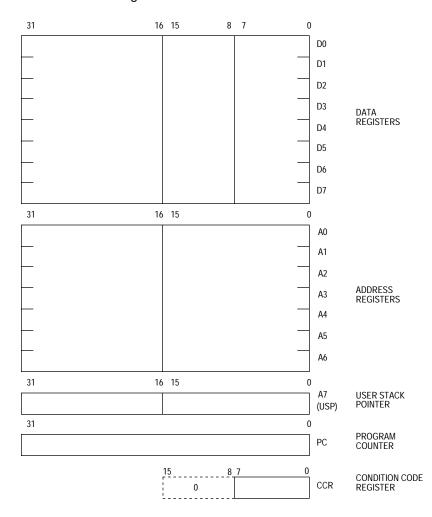


Figure 3. User Programming Model

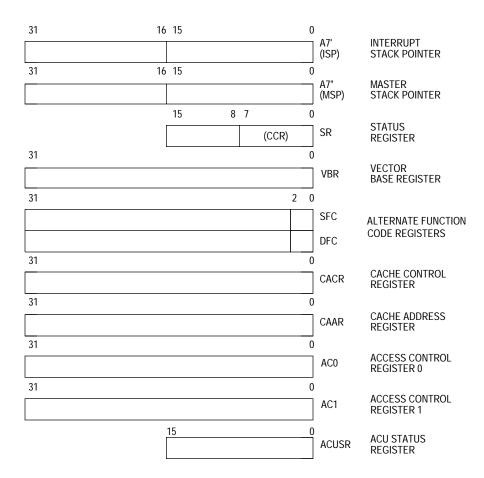


Figure 4. Supervisor Programming Model Supplement

The status register (see Figure 5) contains the interrupt priority mask (three bits) as well as the following condition codes: extend (X), negate (N), zero (Z), overflow (V), and carry (C). Additional control bits indicate that the controller is in the trace mode (T1 or T0), supervisor/user state (S), and master/interrupt state (M).

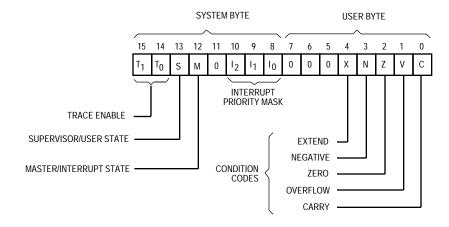


Figure 5. Status Register

In addition, operations on other data types, such as memory addresses, status word data, etc., are provided in the instruction set. The coprocessor mechanism allows direct support of floating-point data types with the MC68881/MC68882 floating-point coprocessors as well as specialized user-defined data types and functions. The 18 addressing modes, listed in Table 1, include nine basic types:

- Register Direct
- Register Indirect
- Register Indirect with Index
- Memory Indirect
- Program Counter Indirect with Displacement
- Program Counter Indirect with Index
- Program Counter Memory Indirect
- Absolute
- Immediate

The register indirect addressing modes support postincrement, predecrement, offset, and indexing. These capabilities are particularly useful for handling advanced data structures common to sophisticated applications and high-level languages. The program counter relative mode also has index and offset capabilities; this addressing mode is generally required to support position- independent software. In addition to these addressing modes, the MC68EC030 provides data operand sizing and scaling; these features provide performance enhancements to the programmer.

Table 1. MC68EC030 Addressing Modes

Addressing Modes	Syntax
Register Direct Addressing Data Register Direct Address Register Direct	Dn An
Register Indirect Address Register Indirect Address Register Indirect with Postincrement Address Register Indirect with Predecrement Address Register Indirect with Displacement	(An) (An);pl -(An) (d ₁₆ ,An)
Register Indirect with Index Address Register Indirect with Index (8-Bit Displacement) Address Register Indirect with Index (Base Displacement)	(dg,An,Xn) (bd,An,Xn)
Memory Indirect Memory Indirect Postindexed Memory Indirect Preindexed	([bd,An],Xn,od) ([bd,An,Xn],od)
Program Counter Indirect with Displacement	(d ₁₆ ,PC)
Program Counter Indirect with Index PC Indirect with Index (8-Bit Displacement) PC Indirect with Index (Base Displacement)	(dg,PC,Xn) (bd,PC,Xn)
Program Counter Memory Indirect PC Memory Indirect Postindexed PC Memory Indirect Preindexed	([bd,PC],Xn,od) ([bd,PC,Xn],od)
Absolute Data Addressing Absolute Short Absolute Long	xxx.W xxx.L
Immediate	# <data></data>

NOTES:

Dn Data Register, D0-D7 Address Register, A0-A7 An

 $d_{8}, d_{16} =$ A twos-complement or sign-extended displacement; added as part of

the effective address calculation; size is 8 (d₈) or 16 (d₁₆) bits;

when omitted, assemblers use a value of zero.

Xn Address or data register used as an index register; form is Xn.SIZE*SCALE, where SIZE is .W or .L (indicates index register size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by

SCALE); use of SIZE and/or SCALE is optional.

bd A twos-complement base displacement; when present, size can be

od Outer displacement added as part of effective address calculation after any memory indirection; use is optional with a size of 16 or 32

Program Counter PC

<data> = Immediate value of 8, 16, or 32 bits

Effective Address

() Used as indirect address to long-word address.

INSTRUCTION SET OVERVIEW

The MC68EC030 instruction set is listed in Table 2. Each instruction, with few exceptions, operates on bytes, words, and long words, and most instructions can use any of the 18 addressing modes. The MC68EC030 is upward source- and object-level code compatible with the M68000 Family because it supports all instructions of previous family members.

Table 2. Instruction Set

Mnemonic	Description
ABCD	Add Decimal with Extend
ADD	Add
ADDA	Add Address
ADDI	Add Immediate
ADDQ	Add Quick
ADDX	Add with Extend
AND	Logical AND
ANDI	Logical AND Immediate
ASL,ASR	Arithmetic Shift Left and Right
Bcc	Branch Conditionally
BCHG	Test Bit and Change
BCLR	Test Bit and Clear
BFCHG	Test Bit Field and Change
BFCLR	Test Bit Field and Clear
BFEXTS	Signed Bit Field Extract
BEFXTU	Unsigned Bit Field Extract
BFFFO	Bit Field Find First One
BFINS	Bit Field Insert
BFSET	Test Bit Field and Set
BFTST	Test Bit Field
BKPT	Breakpoint
BRA	Branch
BSET	Test Bit and Set
BSR	Branch to Subroutine
BTST	Test Bit
CAS	Compare and Swap Operands
CAS2	Compare and Swap Dual Operands
CHK CHK2	Check Register Against Bound Check Register Against Upper and Lower
CHKZ	Bounds
CLR	Clear
CMP	Compare
CMPA	Compare Address
CMPI	Compare Immediate
CMPM	Compare Memory to Memory
CMP2	Compare Register Against Upper and
J	Lower Bounds
DBcc	Test Condition, Decrement and Branch
DIVS,DIVSL	Signed Divide
DIVU, DIVUL	Unsigned Divide
EOR	Logical Exclusive OR
EORI	Logical Exclusive OR Immediate
EXG	Exchange Registers
EXT, EXTB	Sign Extend
ILLEGAL	Take Illegal Instruction Trap
JMP	Jump
JSR	Jump to Subroutine
LEA	Load Effective Address
LINK	Link and Allocate
LSL, LSR	Link and Allocate Logical Shift Left and Right
LOL, LOR	Logical Shift Left and Right

Mnemonic	Description
MOVE	Move
MOVEA	Move Address
MOVE CCR	Move Condition Code Register
MOVE SR	Move Status Register
MOVE USP	Move User Stack Pointer
MOVEC	Move Control Register
MOVEM	Move Multiple Registers
MOVEP	Move Peripheral
MOVEQ	Move Quick
MOVES	Move Alternate Address Space
MULS	Signed Multiply
MULU	Unsigned Multiply
NBCD	Negate Decimal with Extend
NEG	Negate
NEGX	Negate with Extend
NOP	No Operation
NOT	Logical Complement
OR	Logical Inclusive OR
ORI	Logical Inclusive OR Immediate
PACK	Pack BCD
PEA	Push Effective Address
PFLUSH	No Effect
PLOAD	No Effect
PMOVE	Move to/from ACx Registers
PTEST	Test Address in ACx Registers
RESET	Reset External Devices
ROL, ROR	Rotate Left and Right
ROXL, ROXR	Rotate with Extend Left and Right
RTD	Return and Deallocate
RTE	Return from Exception
RTR	Return and Restore Codes
RTS	Return from Subroutine
SBCD	Subtract Decimal with Extend
Scc	Set Conditionally
STOP	Stop
SUB	Subtract
SUBA	Subtract Address
SUBI	Subtract Immediate
SUBQ	Subtract Quick
SUBX	Subtract With Extend
SWAP	Swap Register Words
TAS	Test Operand and Set
TRAP	Trap
TRAPcc	Trap Conditionally
TRAPV	Trap on Overflow
TST	Test Operand
UNLK	Unlink
UNPK	Unpack BCD

Coprocessor Instructions

cpBCC	Branch Conditionally		cpRESTORE	Restore Internal State of Coprocessor
cpDBcc	Test Coprocessor Condition,	on, cpSAVE Save Internal State of Coprocess		
·	Decrement and Branch		cpScc	Set Conditionally
cpGEN	Coprocessor General Instruction		cpTRAPcc	Trap Conditionally

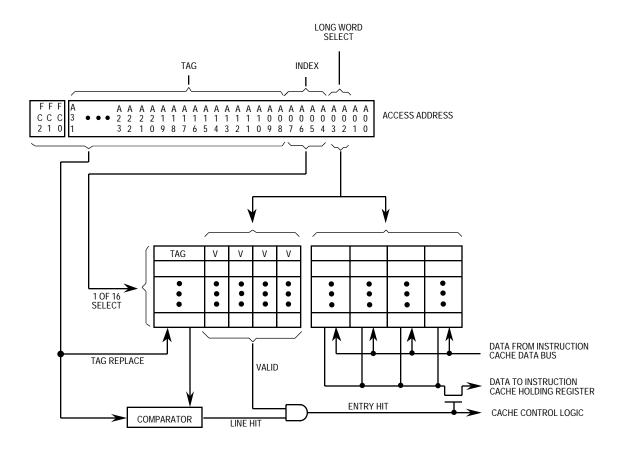
Included in the MC68EC030 set are the bit field operations, binary-coded decimal support, bounds checking, additional trap conditions, and additional multiprocessing support (CAS and CAS2 instructions) offered by the MC68020, MC68030, and MC68040. In addition, object code written for the MC68EC030 can be used on the MC68040 for even more performance. The memory management unit (MMU) instructions of the MC68030, and MC68040 are not supported by the MC68EC030.

INSTRUCTION AND DATA CACHES

Studies have shown that typical programs spend most of their execution time in a few main routines or tight loops. This phenomenon, known as locality of reference, has an impact on program performance. The MC68010 takes limited advantage of this phenomenon with the loop mode of operation that can be used with the DBcc instruction. The MC68EC030 takes further advantage of cache technology to provide the system with two on-chip caches, one for instructions and one for data.

MC68EC030 CACHE GOALS

Similar to the MC68020 and MC68030, there were two primary design goals for the MC68EC030 embedded controller caches. The first design goal was to reduce the external bus activity of the CPU even more than was accomplished with the MC68020. The second design goal was to increase effective CPU throughput as larger memory sizes or slower memories increased average access time. By placing a high-speed cache between the controller and the rest of the memory system, the effective memory access time becomes:


where t_{acc} is the effective system access time, t_{cache} is the cache access time, t_{ext} is the access time of the rest of the system, and R_h is the hit ratio or the percentage of time that the data is found in the cache. Thus, for a given system design, the two MC68EC030 on-chip caches provide an even more substantial CPU performance increase over that obtainable with the MC68020 instruction cache. Alternately, slower and less expensive memories can be used for the same controller performance.

The throughput increase in the MC68EC030 is gained in three ways. First, the MC68EC030 caches are accessed in less time than is required for external accesses, providing improvement in the access time for items residing in the cache. Second, the burst filling of the caches allows instruction and data words to be found in the on-chip caches the first time they are accessed by the micromachine, minimizing the time required to bring those items into the cache. Utilizing burst fill capabilities lowers the average access time for items found in the caches even further. Third, the autonomous nature of the caches allows instruction stream fetches, data fetches, and external bus activity to occur simultaneously with instruction execution. The parallelism designed into the MC68EC030 also allows multiple instructions to execute concurrently so that several internal instructions (those that do not require any external accesses) can execute while the controller is performing an external access for a previous instruction.

INSTRUCTION CACHE

The MC68EC030 instruction cache is a 256-byte direct-mapped cache organized as 16 lines consisting of four long words per line. Each long word is independently accessible, yielding 64 possible entries, with address bit A1 selecting the correct word during an access. Thus, each line has a tag field composed of the upper 24 address bits, the FC2 (supervisor/user) value, four valid bits (one for each long-word entry), and the four long-word entries (see Figure 6). The instruction cache is automatically filled by the MC68EC030 whenever a cache miss occurs; using the burst transfer capability, up to four long words can be filled in one burst operation. The caches cannot be manipulated directly by the programmer except by the use of the CACR, which provides cache clearing and cache entry clearing facilities. The caches can also be enabled/disabled by this register. Finally, the system hardware can disable the on-chip caches at any time by asserting the CDIS signal.

CACHE SIZE = 64 (LONG WORDS) LINE SIZE = 4 (LONG WORDS) SET SIZE = 1

Figure 6. On-Chip Instruction Cache Organization

EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four steps. During the first step, an internal copy is made of the status register. After the copy is made, the special controller state bits in the status register are changed. The S-bit is set, putting the controller into the supervisor state. Also, the T1 and T0 bits are negated, allowing the exception handler to execute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is also updated.

In the second step, the vector number of the exception is determined. For interrupts, the vector number is obtained by a controller read that is classified as an interrupt acknowledge cycle. For coprocessor-detected exceptions, the vector number is included in the coprocessor exception primitive response. For all other exceptions, internal logic provides the vector number. This vector number is then used to generate the address of the exception vector.

The third step is to save the current controller status. The exception stack frame is created and filled on the current supervisor stack. To minimize the amount of machine state that is saved, various stack frame sizes are used to contain the controller state, depending on the type of exception and where it occurred during instruction execution. If the exception is an interrupt and the M-bit is set, the M-bit is then cleared, and the short four-word exception stack frame that is saved on the master stack is also saved on the interrupt stack. If the exception is a reset, the M-bit is simply cleared, and the reset vector is accessed.

The MC68EC030 provides the same extensions to the exception stacking process as the MC68020, MC68030, and MC68040. If the M-bit is set, the master stack pointer (MSP) is used for all task-related exceptions. When a nontask-related exception occurs (i.e., an interrupt), the M bit is cleared, and the interrupt stack pointer (ISP) is used. This feature allows all the task's stack area to be carried within a single controller control block, and new tasks can be initiated by simply reloading the MSP and setting the M-bit.

The fourth and last step of exception processing is the same for all exceptions. The exception vector offset is determined by multiplying the vector number by four. This offset is then added to the contents of the vector base register (VBR) to determine the memory address of the exception vector. The new program counter is fetched from the exception vector. The instruction at the address given in the exception vector is fetched, and normal instruction decoding and execution is started.

STATUS and REFILL

The MC68EC030 provides the STATUS and REFILL signals to identify internal microsequencer activity associated with the processing of data pipelined in the pipeline. Since bus cycles are independently controlled and scheduled by the bus controller, information concerning the processing state of the microsequencer is not available by monitoring bus signals by themselves. The internal activity identified by the STATUS and REFILL signals include instruction boundaries, some exception conditions, when the microsequencer has halted, and instruction pipeline refills. STATUS and REFILL track only the internal microsequencer activity and are not directly related to bus activity.

ACCESS CONTROL

Two access control registers are provided on the MC68EC030 to control cachability of accesses for two independent blocks of memory. Each block can range in size from 16 Mbytes to 2 Gbytes, and is specified in the corresponding ACx register with a base address, a base mask, function code, function code mask, and read/write mask. A typical use for an access control register is to designate a block of memory containing I/O devices as non-cachable.

COPROCESSOR INTERFACE

The coprocessor interface is a mechanism for extending the instruction set of the M68000 Family. The interface provided on the MC68EC030 is the same as that on the MC68020 and MC68030. Examples of these extensions are the addition of specialized data operands for the existing data types or, for the case of floating point, the inclusion of new data types and operations implemented by the MC68881/MC68882 floating-point coprocessors.

SIGNAL DESCRIPTION

Figure 8 illustrates the functional signal groups, and Table 3 describe the signals and their function.

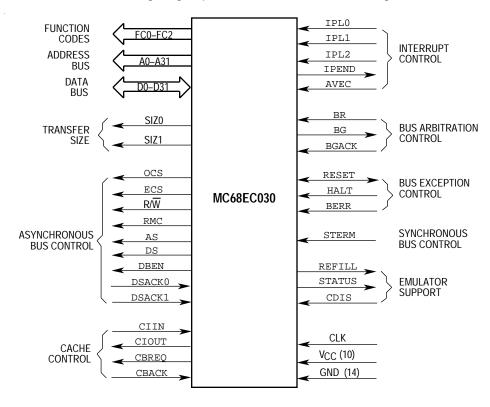
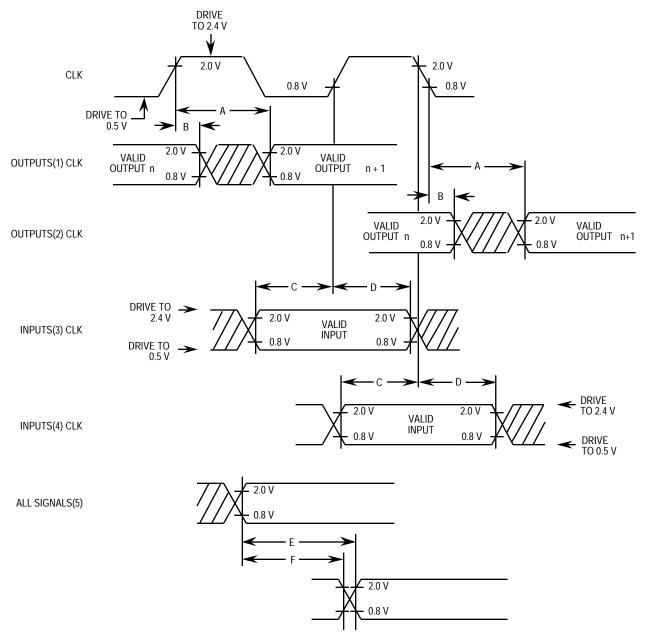


Figure 8. Functional Signal Groups

Table 3. Signal Index

Signal Name	Mnemonic	Function
Function Codes	FC0-FC2	3-bit function code used to identify the address space of each bus cycle.
Address Bus	A0-A31	32-bit address bus.
Data Bus	D0-D31	32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus cycle.
Size	SIZ0-SIZ1	Indicates the number of bytes remaining to be transferred for this cycle. These signals, together with A0 and A1, define the active sections of the data bus.
Operand Cycle Start	OCS	Identical operation to that of ECS except that OCS is asserted only during the first bus cycle of an operand transfer
External Cycle Start	ECS	Provides an indication that a bus cycle is beginning.
Read/Write	R/W	Defines the bus transfer as a controller read or write.
Read-Modify-Write Cycle	RMC	Provides an indicator that the current bus cycle is part of an indivisible read-modify-write operation.
Address Strobe	AS	Indicates that a valid address is on the bus.
Data Strobe	DS	Indicates that valid data is to be placed on the data bus by an external device or has been replaced by the MC68EC030.
Data Buffer Enable	DBEN	Provides an enable signal for external data buffers.
Data Transfer and Size Acknowledge	DSACK0, DSACK1	Bus response signals that indicate the requested data transfer operation has completed. In addition, these two lines indicate the size of the external bus port on a cycle-by-cycle basis and are used for asynchronous transfers.
Synchronous Termination	STERM	Bus response signal that indicates a port size of 32 bits and that data may be latched on the next falling clock edge.
Cache Inhibit In	CIIN	Prevents data from being loaded into the MC68EC030 instruction and data caches.
Cache Inhibit Out	CIOUT	Reflects the CI bit in ACx registers; indicates that external caches should ignore these accesses.
Cache Burst Request	CBREQ	Indicates a burst request for the instruction or data cache.
Cache Burst Acknowledge	CBACK	Indicates that the accessed device can operate in burst mode.
Interrupt Priority Level	IPL0-IPL2	Provides an encoded interrupt level to the controller.
Interrupt Pending	IPEND	Indicates that an interrupt is pending.
Autovector	AVEC	Requests an autovector during an interrupt acknowledge cycle.
Bus Request	BR	Indicates that an external device requires bus mastership.
Bus Grant	BG	Indicates that an external device may assume bus mastership.
Bus Grant Acknowledge	BGACK	Indicates that an external device has assumed bus mastership.
Reset	RESET	System reset.
Halt	HALT	Indicates that the controller should suspended bus activity.
Bus Error	BERR	Indicates that an erroneous bus operation is being attempted.
Cache Disable	CDIS	Dynamically disables the on-chip cache to assist emulator support.
Pipe Refill	REFILL	Indicates when the MC68EC030 is beginning to fill pipeline.
Microsequencer Status	STATUS	Indicates the state of the microsequencer.

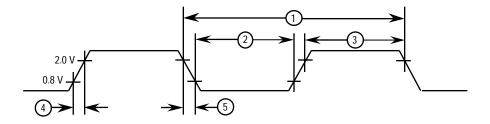


Clock	CLK	Clack input to the controller
Clock	CLK	Clock input to the controller.

Table 3. Signal Index - Continued

Signal Name	Mnemonic	Function
Power Supply	VCC	Power supply.
Ground	GND	Ground connection.
No Connect	NC	Do not connect.

NOTES:


- 1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
- 2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.
- 3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
- 4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
- 5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

LEGEND:

- A. Maximum output delay specification.
- B. Minimum output hold time.
- C. Minimum input setup time specification.
- D. Minimum input hold time specification.
- E. Signal valid to signal valid specification (maximum or minimum).
- F. Signal valid to signal invalid specification (maximum or minimum).

Figure 9. Drive Levels and Test Points for AC Specifications

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 V and a high voltage of 2.0 V, unless otherwise noted. The voltage swing through this range should start outside and pass through the range so that the rise or fall will be linear between 0.8 V and 2.0 V.

Figure 10. Clock Input Timing Diagram

AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

 $(V_{CC}=5.0Vdc \pm 5\%; GND=0 Vdc; temperature in defined ranges; see Figures 11–16)$

Num.	Characterstics		ИHz	40	MHz	Unit
		Min	Max	Min	Max	
6	Clock High to Function Code, Size, RMC, IPEND, CIOUT, Address Valid	0	20	0	14	ns
6A	Clock High to ECS, OCS Asserted	0	15	0	10	ns
6B	Function Code, Size, RMC, IPEND, CIOUT, Address Valid to Negating Edge of ECS	3	_	3	_	ns
7	Clock High to Function Code Size, RMC, CIOUT, Address Data High Impedance	0	40	0	25	ns
8	Clock High to Function Code Size, RMC, IPEND, CIOUT, Address Invalid			0	_	ns
9	Clock Low to AS, DS Asserted, CBREQ Valid	3	18	2	10	ns
9A ¹	AS to DS Assertion Skew (Read)	-10	10	-6	6	ns
9B ¹⁴	AS Asserted to DS Asserted (Write)	27	_	16	_	ns
10	ECS Width Asserted	10	_	5	_	ns
10A	OCS Width Asserted	10	_	5	_	ns
10B ⁷	ECS, OCS Width Negated	5	_	5	_	ns
11	Function Code, Size, RMC, CIOUT, Address Valid to AS Asserted (and DS Asserted, Read)	7		5	_	ns
12	Clock Low to AS, DS, CBREQ Negated	0	18	0	10	ns
12A	Clock Low to ECS/OCS Negated	0	18	0	12	ns
13	AS, DS Negated to Function Code, Size, RMC CIOUT, Address Invalid			3	_	ns
14	AS (and DS Read) Width Asserted (Asynchronous Cycle)	70	_	30	_	ns
14A ¹¹	DS Width Asserted (Write)	30	_	18	_	ns
14B	AS (and DS, Read) Width Asserted (Synchronous Cycle)	30	_	18	_	ns
15	AS, DS Width Negated	30	_	18	_	ns

AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (Continued)

Num.	Characterstics	251	ИHz	40	MHz	Unit
		Min	Max	Min	Max	
15A ⁸	DS Negated to AS Asserted	25	_	16	_	ns
16	Clock High to AS, DS, R/W, DBEN, CBREQ High Impedance	_	40	_	25	ns
17	AS, DS Negated to R/W Invalid	7	_	3	_	ns
18	Clock High to R/W High	0	20	0	14	ns
20	Clock High to R/W Low	0	20	0	14	ns
21	R/W High to AS Asserted	7	_	5	_	ns
22	R/W Low to DS Asserted (Write)	47	_	24	_	ns
23	Clock High to Data-Out Valid	_	20	_	14	ns
24	Data-Out Valid to Negating Edge of AS	5	_	3	_	ns
25 ¹¹	AS, DS Negated to Data-Out Invalid	7	_	3	_	ns
25A ^{9,11}	DS Negated to DBEN Negated (Write)	7	_	3	_	ns
26 ¹¹	Data-Out Valid to DS Asserted (Write)	7	_	3	_	ns
27	Data-In Valid to Clock Low (Setup)	2	_	1	_	ns
27A	Late BERR/HALT Asserted to Clock Low (Setup)	5	_	3	_	ns
28 ¹²	AS, DS Negated to DSACKx, BERR, HALT, AVEC Negated (Asynchronous Hold)	0	40	0	20	ns
28A ¹²	Clock Low to DSACKx, BERR, HALT, AVEC Negated (Synchronous Hold)	8	70	6	40	ns
29 ¹²	AS, DS Negated to Data-In Invalid (Asynchronous Hold)	0	_	0	_	ns
29A ¹²	AS, DS Negated to Data-In High Impedance	_	40	_	25	ns
30 ¹²	Clock Low to Data-In Invalid (Synchronous Hold)	8	_	6	_	ns
30A ¹²	Clock Low to Data-In High Impedance (Read followed by Write)	_	60	_	30	ns
31 ²	DSACKx Asserted to Data-In Valid (Asynchronous Data Setup)	_	28	_	14	ns
31A ³	DSACKx Asserted to DSACKx Valid (Skew)	_	7	_	3	ns
32	RESET Input Transition Time	_	1.5	_	1.5	Clks
33	Clock Low to BG Asserted	0	20	0	14	ns
34	Clock Low to BG Negated	0	20	0	14	Clks
35	BR Asserted to BG Asserted (RMC Not Asserted)	1.5	3.5	1.5	3.5	Clks
37	BGACK Asserted to BG Negated	1.5	3.5	1.5	3.5	Clks
37A ⁶	BGACK Asserted to BR Negated	0	1.5	0	1.5	ns
39	BG Width Negated	60	_	30	_	ns
39A	BG Width Asserted	60	_	30	_	ns
40	Clock High to DBEN Asserted (Read)	0	20	0	16	ns
41	Clock Low to DBEN Negated (Read)	0	20	0	16	ns
42	Clock Low to DBEN Asserted (Write)	0	20	0	16	ns
43	Clock High to DBEN Negated (Write)	0	20	0	16	ns

AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (Concluded)

Num.	Characterstics		25	MHz	40	MHz	Unit
			Min	Max	Min	Max	
44	R/W Low to DBEN Asserted (Write)		7	_	5	_	ns
45 ⁵	DBEN Width Asserted	Asynchronous Read Asynchronous Write	40 80	_	22 45	_	ns
45A ⁹	DBEN Width Asserted	Synchronous Read Synchronous Write	5 40	_	5 22	_	ns
46	R/W Width Asserted (Asynchronous Wr	rite or Read)	100	_	50	_	ns
46A	R/W Width Asserted (Synchronous Writ	e or Read)	60	_	30	_	ns
47A	Asynchronous Input Setup Time to Cloc	ck Low	2	_	2	_	ns
47B	Asynchronous Input Hold Time from Clo	ock Low	8	_	6	_	ns
48 ⁴	DSACKx Asserted to BERR, HALT As	sserted	_	25	_	14	ns
53	Data-Out Hold from Clock High		3	_	2	_	ns
55	R/W Asserted to Data Bus Impedance (Change	20	_	11	_	ns
56	RESET Pulse Width (Reset Instruction)		512	_	512	_	Clks
57	BERR Negated to HALT Negated (Reru	ın)	0	_	0	_	ns
58 ¹⁰	BGACK Negated to Bus Driven		1	_	1	_	Clks
59 ¹⁰	BG Negated to Bus Driven		1	_	1	_	Clks
60 ¹³	Synchronous Input Valid to Clock High (Setup Time)		2	_	2	_	ns
61 ¹³	Clock High to Synchronous Input Invalid	d (Hold Time)	8	_	6	_	ns
62	Clock Low to STATUS, REFILL Asserted		0	20	0	15	ns
63	Clock Low to STATUS, REFILL Negate	ed	0	20	0	15	ns

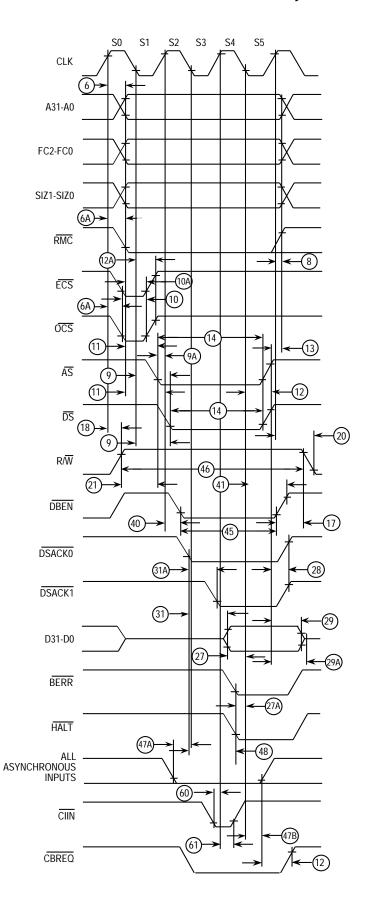


Figure 11. Asynchronous Read Cycle Timing Diagram

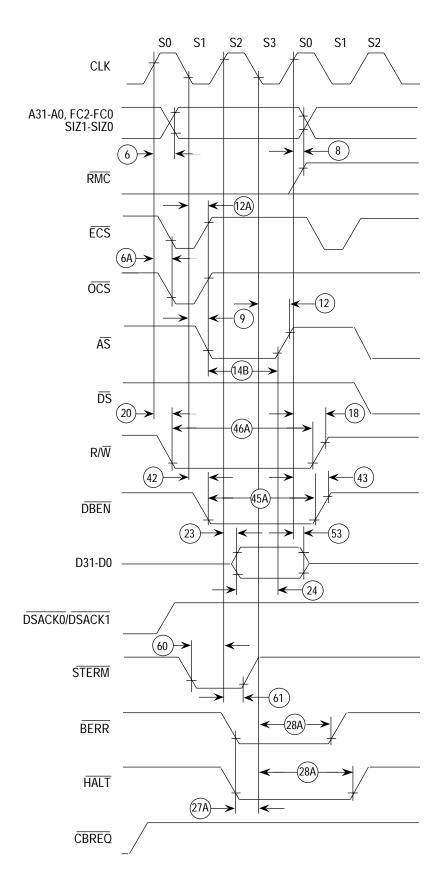
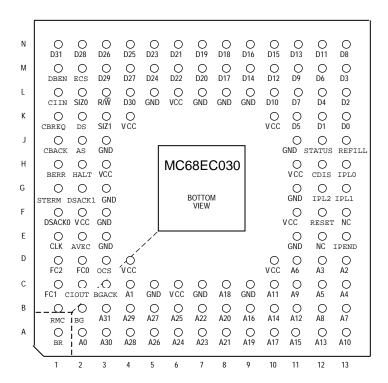
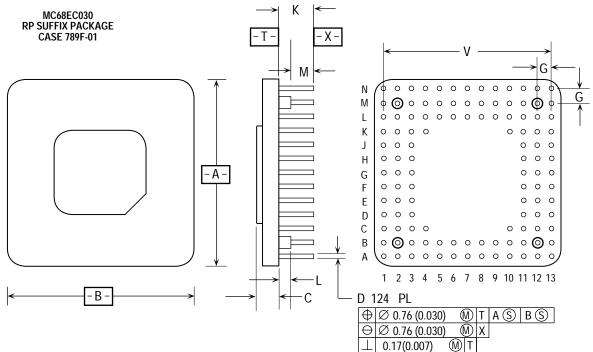



Figure 14. Synchronous Write Cycle Timing Diagram

MECHANICAL DATA

PIN ASSIGNMENTS — PIN GRID ARRAY (RC SUFFIX)

NOTE


The MC68030 has four additional guide pins not present on the MC68EC030. Therefore, an MC68EC030 fits in a socket designed for the MC68030, but the MC68030 does not necessary fit in a socket intended for the MC68EC030.

The Vcc and GND pins are separated into three groups to provide individual power supply connections for the address bus buffers, data bus buffers, and all other output buffers and internal logic

Pin Group	VCC	GND
Address Bus	C6, D10	C5, C7, C9, E11
Data Bus	L6, K10	J11, L9, L7, L5
ECS, SIZx, DS, AS, DBEN, CBREQ, R/W	K4	Ј3
FC0–FC2, RMS, OCS, CIOUT, BG	D4	E3
Internal Logic, RESET, STATUS, REFILL, Misc	H3, F2, F11, H11	L8, G3, F3, G11

PACKAGE DIMENSIONS

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	34.04	35.05	1.340	1.380
В	34.04	35.05	1.340	1.380
С	2.92	3.18	0.115	0.135
D	0.44	0.55	0.017	0.022
G	2.54 BSC		0.100 BSC	
K	4.32	4.95	0.170	0.195
L	1.02	1.52	0.040	0.060
М	2.79	3.81	0.110	0.150
V	30.48 BSC		1.200 BSC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION D INCLUDES LEAD FINISH.