

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	100
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 42x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk21fx512avlq12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Three analog comparators (CMP)
- Voltage reference

Ordering Information¹

Part Number	Mer	Maximum number of I\O's	
	Flash (KB)	SRAM (KB)	
MK21FX512VLQ12	512 KB	128	104
MK21FN1M0VLQ12	1 MB	128	104
MK21FX512VMD12	512 KB	128	104
MK21FN1M0VMD12	1 MB	128	104

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	K20PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K21P144M50SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	K21P144M50SF5 ¹
Package drawing	Package dimensions are provided in package drawings.	 LQFP 144-pin: 98ASS23177W¹ MAPBGA 144-pin: 98ASA00222D¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

2

1 Ratings

1.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

1.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

5

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	185	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB0_DP}	USB0_DP input voltage	-0.3	3.63	V
V _{USB0_DM}	USB0_DM input voltage	-0.3	3.63	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have C_L=30pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	1.21	—	mA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	1.88	—	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	—	0.80	—	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	 @ -40 to 25°C 	—	0.528	2.25	mA	
	• @ 70°C	—	1.6	8	mA	
	• @ 105°C	—	5.2	20	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	 @ -40 to 25°C 	—	78	700	μA	
	• @ 70°C	—	498	2400	μA	
	• @ 105°C	_	1300	3600	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					
	 @ -40 to 25°C 	_	5.1	15	μA	
	• @ 70°C	_	28	80	μA	
	• @ 105°C	_	124	300	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	 @ -40 to 25°C 	—	3.1	7.5	μA	
	• @ 70°C	_	14.5	45	μA	
	• @ 105°C	_	63.5	195	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	 @ -40 to 25°C 	_	2.0	5	μA	
	• @ 70°C	_	6.9	32	μA	
	• @ 105°C	_	30	112	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	_	1.25	2.1	μA	
	• @ 70°C	_	6.5	18.5	μA	
	• @ 105°C	_	37	108	μA	
IDD_VLLS0	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	 ● -40 to 25°C 	_	0.745	1.65	μΑ	
	• @ 70°C	_	6.03	18	μΑ	
	• @ 105°C	—	37	108	μA	

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

Figure 3. Run mode supply current vs. core frequency

application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 96 MHz, f_{BUS} = 48MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes	
	Normal run mode	Э				
f _{SYS}	System and core clock	—	120	MHz		
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	—	MHz		
f _{BUS}	Bus clock	—	60	MHz		
FB_CLK	FlexBus clock	—	50	MHz		
f _{FLASH}	Flash clock	—	25	MHz		
f _{LPTMR}	LPTMR clock	—	25	MHz		
	VLPR mode ¹					
f _{SYS}	System and core clock	_	4	MHz		
f _{BUS}	Bus clock		4	MHz		

Table continues on the next page ...

16

Symbol	Description	Min.	Max.	Unit	Notes
FB_CLK	FlexBus clock	—	4	MHz	
f _{FLASH}	Flash clock	_	0.8	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock	_	8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock		4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2.3.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	

Table 10. General switching specifications

Table continues on the next page ...

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

3.3.3 32 kHz oscillator electrical characteristics

3.3.3.1 32 kHz oscillator DC electrical specifications

Table 18.	32kHz oscillator DC elec	trical specifications
-----------	--------------------------	-----------------------

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	—	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	—	1000	_	ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT}.

3.4 Memories and memory interfaces

3.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	3.5	7.5	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	—	cycles	2
	Data Flas	sh				-
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	—	cycles	2
	FlexRAM as El	EPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	—	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K	—	cycles	2
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	70 K	175 K	—	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	630 K	1.6 M	_	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	2.5 M	6.4 M	—	writes	
n _{nvmwree2k}	EEPROM backup to FlexRAM ratio = 2,048	10 M	25 M		writes	
n _{nvmwree4k}	 EEPROM backup to FlexRAM ratio = 4,096 	20 M	50 M		writes	

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.
- Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

Figure 11. EEPROM backup writes to FlexRAM

3.4.2 EzPort switching specifications

Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	—	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	—	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	_	18	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	—	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

Figure 13. FlexBus read timing diagram

Figure 14. FlexBus write timing diagram

3.5 Security and integrity modules

3.5.1 Drylce Tamper Electrical Specifications

Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local Freescale sales representative.

Figure 21. Offset at half scale vs. temperature

3.6.4 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	—
T _A	Temperature	Operating temperature range of the device		°C	—
CL	Output load capacitance	100		nF	1, 2

2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

^{1.} C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

3.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

NOTE

The MCGFLLCLK does not meet the USB jitter specifications for certification.

3.8.2 USB DCD electrical specifications Table 36. USB0 DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 µA)	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK}	USB_DM sink current	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

3.8.3 USB VREG electrical specifications Table 37. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V		125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	10	μA	
I _{DDoff}	 Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25 °C Across operating voltage and temperature 	_	650 —	4	nA μA	
I _{LOADrun}	Maximum load current — Run mode	—	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode			1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					

Table continues on the next page ...

Figure 23. DSPI classic SPI timing — slave mode

3.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 40. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 27. I²S timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	80	—	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	4.5	—	ns
S14	I2S_FS input hold after I2S_BCLK	2	—	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	—	18	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		21	ns

Table 44. I²S slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

3.8.10.4.5 Small package marking

In an effort to save space, small package devices use special marking on the chip. These markings have the following format:

Q ## C F T PP

This table lists the possible values for each field in the part number for small packages (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
##	Kinetis family	• 2# = K21/K22
С	Speed	• H = 120 MHz
F	Flash memory configuration	 K = 512 KB + Flex 1 = 1 MB
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LL = 100 LQFP MC = 121 MAPBGA LQ = 144 LQFP MD = 144 MAPBGA DC = 121 XFBGA

This tables lists some examples of small package marking along with the original part numbers:

Original part number	Alternate part number				
MK21FN1M0VLQ12	M21H1VLQ				
MK21FX512VMD12	M21HKVMD				

3.8.10.5 Terminology and guidelines

3.8.10.5.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.8.10.5.1.1 Example

This is an example of an operating requirement:

3.8.10.5.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit		
T _A	Ambient temperature	25	Ο°		
V _{DD}	3.3 V supply voltage	3.3	V		

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
144-pin LQFP	98ASS23177W				

Table continues on the next page...

Pinout

144 MAP	144 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA												
H5	31	VDDA	VDDA	VDDA								
G5	32	VREFH	VREFH	VREFH								
G6	33	VREFL	VREFL	VREFL								
H6	34	VSSA	VSSA	VSSA								
K3	35	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22								
J3	36	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21								
M3	-	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
L3	-	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
L4	-	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23								
L5	37	TAMPER0/ RTC_ WAKEUP_B	TAMPER0/ RTC_ WAKEUP_B	TAMPER0/ RTC_ WAKEUP_B								
K5	38	TAMPER1	TAMPER1	TAMPER1								
K4	39	TAMPER2	TAMPER2	TAMPER2								
J4	_	TAMPER3	TAMPER3	TAMPER3								
H4	_	TAMPER4	TAMPER4	TAMPER4								
M4		TAMPER5	TAMPER5	TAMPER5								
M7	40	XTAL32	XTAL32	XTAL32								
M6	41	EXTAL32	EXTAL32	EXTAL32								
L6	42	VBAT	VBAT	VBAT								
_	43	VDD	VDD	VDD								
—	44	VSS	VSS	VSS								
-	45	PTE24	ADC0_SE17	ADC0_SE17	PTE24		UART4_TX			EWM_OUT_ b		
—	46	PTE25	ADC0_SE18	ADC0_SE18	PTE25		UART4_RX			EWM_IN		
-	47	PTE26	DISABLED		PTE26		UART4_ CTS_b			RTC_ CLKOUT	USB_CLKIN	
-	48	PTE27	DISABLED		PTE27		UART4_ RTS_b					
_	49	PTE28	DISABLED		PTE28							

Pinout

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
MAP BGA	LQFP											
A5	127	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b			
D4	128	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b			
C4	129	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX	FTM3_CH2	FB_AD4		I2C0_SCL	
B4	130	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3		I2C0_SDA	
A4	131	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UART0_ RTS_b	FTM0_CH4	FB_AD2	EWM_IN		
A3	132	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_ CTS_b	FTM0_CH5	FB_AD1	EWM_OUT_ b		
A2	133	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
M10	134	VSS	VSS	VSS								
F8	135	VDD	VDD	VDD								
A1	136	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
C9	137	PTD8	DISABLED		PTD8	I2C0_SCL	UART5_RX			FB_A16		
B9	138	PTD9	DISABLED		PTD9	I2C0_SDA	UART5_TX			FB_A17		
B3	139	PTD10	DISABLED		PTD10		UART5_ RTS_b			FB_A18		
B2	140	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_ CTS_b	SDHC0_ CLKIN		FB_A19		
B1	141	PTD12	DISABLED		PTD12	SPI2_SCK	FTM3_FLT0	SDHC0_D4		FB_A20		
C3	142	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5		FB_A21		
C2	143	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
C1	144	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		
M5	_	NC	NC	NC								
A10	_	NC	NC	NC								
B10	_	NC	NC	NC								
C10	_	NC	NC	NC								

5.2 K21 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.