

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk21fx512vlq12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL

- and XTAL are analog pins.
 All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

2.2.2 LVD and POR operating requirements

Table 2.	v _{DD} supply	LVD and	РОК оре	rating re	quiremer	115

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	 Level 1 falling (LVWV=00) 	2.62	2.70	2.78	V	
V _{LVW2H}	 Level 2 falling (LVWV=01) 	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range		80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	 Level 1 falling (LVWV=00) 	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	 Level 3 falling (LVWV=10) 	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range		60	_	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising threshold is the sum of falling threshold and hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

8

Symbol	Description	Min.	Тур	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -8mA	$V_{DD} - 0.5$	—	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} - 0.5	—	_	V	
	Output high voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -0.6mA	V _{DD} – 0.5	—	_	V	
I _{OHT}	Output high current total for all ports	_		100	mA	
V _{OH_Tamper}	Output high voltage — high drive strength	$V_{BAT} - 0.5$			V	
	• 2.7 V \leq V _{BAT} \leq 3.6 V, I _{OH} = -10mA	V _{BAT} – 0.5	—	—	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OH} = -3mA		—	_		
	Output high voltage — low drive strength	V _{BAT} – 0.5			V	
	• 2.7 V \leq V _{BAT} \leq 3.6 V, I _{OH} = -2mA	V _{BAT} – 0.5	—	_	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OH} = -0.6mA		—	_		
I _{OH_Tamper}	Output high current total for Tamper pins	—		100	mA	
V _{OL}	Output low voltage — high drive strength					1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	—	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA	_	—	0.5	V	
	Output low voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 0.6mA	_	—	0.5	V	
I _{OLT}	Output low current total for all ports			100	mA	
V _{OL_Tamper}	Output low voltage — high drive strength			0.5	V	
	• 2.7 V \leq V _{BAT} \leq 3.6 V, I _{OL} = 10mA	_	—	0.5	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OL} = 3mA	_	—			
	Output low voltage — low drive strength			0.5	V	
	• 2.7 V \leq V _{BAT} \leq 3.6 V, I _{OL} = 2mA	_		0.5	V	
	• $1.71 \text{ V} \le \text{V}_{BAT} \le 2.7 \text{ V}, \text{ I}_{OL} = 0.6 \text{mA}$	-	—			
I _{OL_Tamper}	Output low current total for Tamper pins	—		100	mA	
I _{IND}	Input leakage current, digital pins • V _{SS} ≤ V _{IN} ≤ V _{IL}					² , 3
	All digital pins	_	0.002	0.5	μA	

2.2.3 Voltage and current operating behaviors

Table 4. Voltage and current operating behaviors

Table continues on the next page...

9

- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

Figure 3. Run mode supply current vs. core frequency

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — nominal VDD and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25		39.0625	kHz	
I _{ints}	Internal reference	(slow clock) current	_	20	—	μA	
$\Delta_{fdco_res_t}$	Resolution of trimi frequency at fixed using SCTRIM an	med average DCO output voltage and temperature — d SCFTRIM		± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimi frequency at fixed using SCTRIM on	med average DCO output voltage and temperature — ly	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}	Total deviation of frequency over vo	trimmed average DCO output Itage and temperature	—	± 0.5	± 2	%f _{dco}	1,2
Δf_{dco_t}	Total deviation of frequency over fix range of 0–70°C	trimmed average DCO output ed voltage and temperature	_	± 0.3	± 1	%f _{dco}	1
f _{intf_ft}	Internal reference factory trimmed at	frequency (fast clock) — nominal VDD and 25°C	—	4	—	MHz	
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al VDD and 25 °C	3	—	5	MHz	
l _{intf}	Internal reference	(fast clock) current	_	25	—	μA	
f _{loc_low}	Loss of external cl RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}		—	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}		—	kHz	
		FL	L		11		
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × fru rof	40	41.94	50	MHz	
		Mid-high range (DRS=10) $1920 \times f_{fll, ref}$	60	62.91	75	MHz	
		High range (DRS=11) $2560 \times f_{fll ref}$	80	83.89	100	MHz	
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS=00) $732 \times f_{fll ref}$		23.99	-	MHz	5, ⁶
		Mid range (DRS=01)		47.97	-	MHz	
		Mid-high range (DRS=10)	-	71.99		MHz	

Table 15. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		—	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	—	0.6		V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}		V	

 Table 16.
 Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications

Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_		50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750		ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)		1		ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

3.3.3 32 kHz oscillator electrical characteristics

3.3.3.1 32 kHz oscillator DC electrical specifications

Table 18.	32kHz oscillator DC elec	trical specifications
-----------	--------------------------	-----------------------

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	—	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	—	1000	_	ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT}.

3.4 Memories and memory interfaces

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Swap Control execution time					
t _{swapx01}	control code 0x01	—	200	—	μs	
t _{swapx02}	control code 0x02	—	90	150	μs	
t _{swapx04}	control code 0x04	—	90	150	μs	
t _{swapx08}	control code 0x08	—	—	30	μs	
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	32 KB EEPROM backup	—	70	—	ms	
t _{pgmpart128k}	128 KB EEPROM backup	—	75		ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	—	70	—	μs	
t _{setram32k}	32 KB EEPROM backup	—	0.8	1.2	ms	
t _{setram64k}	64 KB EEPROM backup	—	1.3	1.9	ms	
t _{setram128k}	128 KB EEPROM backup	—	2.4	3.1	ms	
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	—	175	275	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b32k}	32 KB EEPROM backup	—	385	1700	μs	
t _{eewr8b64k}	64 KB EEPROM backup	—	475	2000	μs	
t _{eewr8b128k}	128 KB EEPROM backup	—	650	2350	μs	
t _{eewr16bers}	16-bit write to erased FlexRAM location execution time	—	175	275	μs	
	16-bit write to FlexRAM execution time:					
t _{eewr16b32k}	32 KB EEPROM backup	—	385	1700	μs	
t _{eewr16b64k}	64 KB EEPROM backup	—	475	2000	μs	
t _{eewr16b128k}	128 KB EEPROM backup	—	650	2350	μs	
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	550	μs	
	32-bit write to FlexRAM execution time:					
t _{eewr32b32k}	32 KB EEPROM backup	—	630	2000	μs	
t _{eewr32b64k}	64 KB EEPROM backup	—	810	2250	μs	
t _{eewr32b128k}	• 128 KB EEPROM backup	—	1200	2650	μs	

 Table 21. Flash command timing specifications (continued)

1. Assumes 25MHz or greater flash clock frequency.

- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

3.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	3.5	7.5	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program Fl	lash				
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	—	cycles	2
	Data Flas	sh				-
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycd}	Cycling endurance		50 K	—	cycles	2
	FlexRAM as El	EPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	—	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K	—	cycles	2
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	70 K	175 K	—	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	630 K	1.6 M	_	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	2.5 M	6.4 M	—	writes	
n _{nvmwree2k}	EEPROM backup to FlexRAM ratio = 2,048	10 M	25 M		writes	
n _{nvmwree4k}	 EEPROM backup to FlexRAM ratio = 4,096 	20 M	50 M		writes	

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.
- Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

3.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_subsystem =
$$\frac{EEPROM - 2 \times EEESPLIT \times EEESIZE}{EEESPLIT \times EEESIZE} \times Write_efficiency \times n_{nvmcycee}$$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- $n_{nvmcycee}$ EEPROM-backup cycling endurance

Peripheral operating requirements and behaviors

Figure 12. EzPort Timing Diagram

3.4.3 Flexbus switching specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	FB_CLK	MHz	
FB1	Clock period	20	_	ns	
FB2	Address, data, and control output valid	—	11.5	ns	1
FB3	Address, data, and control output hold	0.5	—	ns	1
FB4	Data and FB_TA input setup	8.5	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

 Table 25. Flexbus limited voltage range switching specifications

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

	1	1	•	.	,		
Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V_{DD} ($V_{DD} - V_{DDA}$)	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL		VREFH		
C _{ADIN}	Input	16-bit mode	—	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	
R _{AS}	Analog source	13-bit / 12-bit modes					3
	resistance (external)	f _{ADCK} < 4 MHz	_		5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	—	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	Ksps	

3.6.1.1 16-bit ADC operating conditions Table 27, 16-bit ADC operating conditions

Table continues on the next page...

Peripheral operating requirements and behaviors

Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 30. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	—	100	pF	2
١L	Output load current	_	1	mA	

1. The DAC reference can be selected to be V_{DDA} or V_{REFH}

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

NOTE

The MCGFLLCLK does not meet the USB jitter specifications for certification.

3.8.2 USB DCD electrical specifications Table 36. USB0 DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 µA)	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK}	USB_DM sink current	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

3.8.3 USB VREG electrical specifications Table 37. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V		125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	10	μA	
I _{DDoff}	 Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25 °C Across operating voltage and temperature 	_	650 —	4	nA μA	
I _{LOADrun}	Maximum load current — Run mode	—	—	120	mA	
I _{LOADstby}	Maximum load current — Standby mode			1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					

Table continues on the next page ...

Figure 27. I²S timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	80	—	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	4.5	—	ns
S14	I2S_FS input hold after I2S_BCLK	2	—	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	—	18	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		21	ns

Table 44. I²S slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 31. I2S/SAI timing — master modes

Table 48. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic		Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK		—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—		ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK		—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 32. I2S/SAI timing — slave modes

3.8.10.3 Ordering parts

3.8.10.3.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK21 and MK21

3.8.10.4 Part identification

3.8.10.4.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

3.8.10.4.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

3.8.10.4.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Kinetis K21F Sub-Family Data Sheet, Rev4, 11/2014.

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K21
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 16 = 168 MHz 18 = 180 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

3.8.10.4.4 Example

This is an example part number:

MK21FN1M0VMD10

3.8.10.5.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.8.10.5.5 Result of exceeding a rating

3.8.10.5.6 Relationship between ratings and operating requirements

3.8.10.5.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

• Never exceed any of the chip's ratings.

3.8.10.5.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	D°
V _{DD}	3.3 V supply voltage	3.3	V

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
144-pin LQFP	98ASS23177W				

Table continues on the next page...

Pinout

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
MAP BGA	LQFP											
A5	127	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b			
D4	128	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b			
C4	129	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX	FTM3_CH2	FB_AD4		I2C0_SCL	
B4	130	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3		I2C0_SDA	
A4	131	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UART0_ RTS_b	FTM0_CH4	FB_AD2	EWM_IN		
A3	132	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_ CTS_b	FTM0_CH5	FB_AD1	EWM_OUT_ b		
A2	133	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
M10	134	VSS	VSS	VSS								
F8	135	VDD	VDD	VDD								
A1	136	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
C9	137	PTD8	DISABLED		PTD8	I2C0_SCL	UART5_RX			FB_A16		
B9	138	PTD9	DISABLED		PTD9	I2C0_SDA	UART5_TX			FB_A17		
B3	139	PTD10	DISABLED		PTD10		UART5_ RTS_b			FB_A18		
B2	140	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_ CTS_b	SDHC0_ CLKIN		FB_A19		
B1	141	PTD12	DISABLED		PTD12	SPI2_SCK	FTM3_FLT0	SDHC0_D4		FB_A20		
C3	142	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5		FB_A21		
C2	143	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
C1	144	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		
M5	_	NC	NC	NC								
A10	_	NC	NC	NC								
B10	—	NC	NC	NC								
C10	_	NC	NC	NC								

5.2 K21 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.