

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

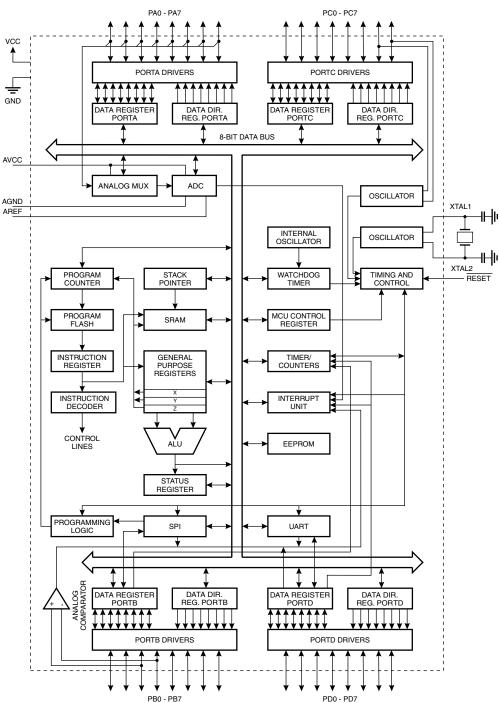
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90ls8535-4mc

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

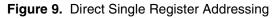
Description

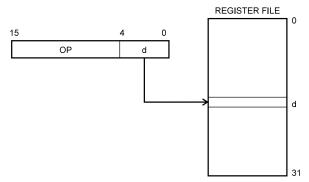
The AT90S8535 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S8535 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 1. The AT90S8535 Block Diagram

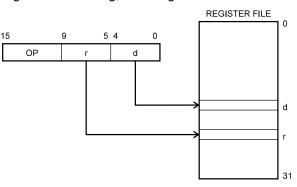
	current if the pull-up resistors are activated. Two Port C pins can alternatively be used as oscillator for Timer/Counter2.
	The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D (PD7PD0)	Port D is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated.
	Port D also serves the functions of various special features of the AT90S8535 as listed on page 86.
	The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
RESET	Reset input. An external reset is generated by a low level on the $\overrightarrow{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2	Output from the inverting oscillator amplifier.
AVCC	AVCC is the supply voltage pin for Port A and the A/D Converter. If the ADC is not used, this pin must be connected to VCC. If the ADC is used, this pin must be connected to VCC via a low-pass filter. See page 68 for details on operation of the ADC.
AREF	AREF is the analog reference input for the A/D Converter. For ADC operations, a voltage in the range 2V to AV_{CC} must be applied to this pin.
AGND	Analog ground. If the board has a separate analog ground plane, this pin should be con- nected to this ground plane. Otherwise, connect to GND.



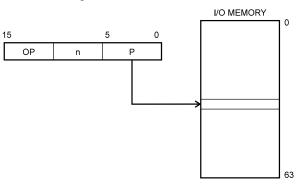

AIMEL

Program and Data Addressing Modes

The AT90S8535 AVR RISC microcontroller supports powerful and efficient addressing modes for access to the program memory (Flash) and data memory (SRAM, register file and I/O memory). This section describes the different addressing modes supported by the AVR architecture. In the figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.


Register Direct, Single Register Rd

The operand is contained in register d (Rd).


Register Direct, Two Registers Figure 10. Direct Register Addressing, Two Registers Rd And Rr

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

I/O Direct

Figure 11. I/O Direct Addressing

Operand address is contained in six bits of the instruction word. n is the destination or source register address.

I/O Memory

The I/O space definition of the AT90S8535 is shown in Table 1.

Table 1. AT90S8535 I/O Space

I/O Address (SRAM Address)	Name	Function
\$3F (\$5F)	SREG	Status REGister
\$3E (\$5E)	SPH	Stack Pointer High
\$3D (\$5D)	SPL	Stack Pointer Low
\$3B (\$5B)	GIMSK	General Interrupt MaSK register
\$3A (\$5A)	GIFR	General Interrupt Flag Register
\$39 (\$59)	TIMSK	Timer/Counter Interrupt MaSK register
\$38 (\$58)	TIFR	Timer/Counter Interrupt Flag register
\$35 (\$55)	MCUCR	MCU general Control Register
\$34 (\$45)	MCUSR	MCU general Status Register
\$33 (\$53)	TCCR0	Timer/Counter0 Control Register
\$32 (\$52)	TCNT0	Timer/Counter0 (8-bit)
\$2F (\$4F)	TCCR1A	Timer/Counter1 Control Register A
\$2E (\$4E)	TCCR1B	Timer/Counter1 Control Register B
\$2D (\$4D)	TCNT1H	Timer/Counter1 High Byte
\$2C (\$4C)	TCNT1L	Timer/Counter1 Low Byte
\$2B (\$4B)	OCR1AH	Timer/Counter1 Output Compare Register A High Byte
\$2A (\$4A)	OCR1AL	Timer/Counter1 Output Compare Register A Low Byte
\$29 (\$49)	OCR1BH	Timer/Counter1 Output Compare Register B High Byte
\$28 (\$48)	OCR1BL	Timer/Counter1 Output Compare Register B Low Byte
\$27 (\$47)	ICR1H	T/C 1 Input Capture Register High Byte
\$26 (\$46)	ICR1L	T/C 1 Input Capture Register Low Byte
\$25 (\$45)	TCCR2	Timer/Counter2 Control Register
\$24 (\$44)	TCNT2	Timer/Counter2 (8-bit)
\$23 (\$43)	OCR2	Timer/Counter2 Output Compare Register
\$22 (\$42)	ASSR	Asynchronous Mode Status Register
\$21 (\$41)	WDTCR	Watchdog Timer Control Register
\$1F (\$3E)	EEARH	EEPROM Address Register High Byte
\$1E (\$3E)	EEARL	EEPROM Address Register Low Byte
\$1D (\$3D)	EEDR	EEPROM Data Register
\$1C (\$3C)	EECR	EEPROM Control Register
\$1B (\$3B)	PORTA	Data Register, Port A
\$1A (\$3A)	DDRA	Data Direction Register, Port A
\$19 (\$39)	PINA	Input Pins, Port A
\$18 (\$38)	PORTB	Data Register, Port B

I/O Address (SRAM Address)	Name	Function
\$17 (\$37)	DDRB	Data Direction Register, Port B
\$16 (\$36)	PINB	Input Pins, Port B
\$15 (\$35)	PORTC	Data Register, Port C
\$14 (\$34)	DDRC	Data Direction Register, Port C
\$13 (\$33)	PINC	Input Pins, Port C
\$12 (\$32)	PORTD	Data Register, Port D
\$11 (\$31)	DDRD	Data Direction Register, Port D
\$10 (\$30)	PIND	Input Pins, Port D
\$0F (\$2F)	SPDR	SPI I/O Data Register
\$0E (\$2E)	SPSR	SPI Status Register
\$0D (\$2D)	SPCR	SPI Control Register
\$0C (\$2C)	UDR	UART I/O Data Register
\$0B (\$2B)	USR	UART Status Register
\$0A (\$2A)	UCR	UART Control Register
\$09 (\$29)	UBRR	UART Baud Rate Register
\$08 (\$28)	ACSR	Analog Comparator Control and Status Register
\$07 (\$27)	ADMUX	ADC Multiplexer Select Register
\$06 (\$26)	ADCSR	ADC Control and Status Register
\$05 (\$25)	ADCH	ADC Data Register High
\$04 (\$24)	ADCL	ADC Data Register Low

Table 1. AT90S8535 I/O Space (Continued)

Note: Reserved and unused locations are not shown in the table.

All AT90S8535 I/Os and peripherals are placed in the I/O space. The I/O locations are accessed by the IN and OUT instructions transferring data between the 32 general-purpose working registers and the I/O space. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more details. When using the I/O specific commands IN and OUT, the I/O addresses \$00 - \$3F must be used. When addressing I/O registers as SRAM, \$20 must be added to these addresses. All I/O register addresses throughout this document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The I/O and peripherals control registers are explained in the following sections.

• Bit 5 – TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Input Capture Event Interrupt is enabled. The corresponding interrupt (at vector \$005) is executed if a capture-triggering event occurs on pin 20, PD6 (ICP) (i.e., when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register [TIFR]).

• Bit 4 – OCIE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at vector \$006) is executed if a CompareA match in Timer/Counter1 occurs (i.e., when the OCF1A bit is set in the Timer/Counter Interrupt Flag Register [TIFR]).

• Bit 3 – OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt (at vector \$007) is executed if a CompareB match in Timer/Counter1 occurs (i.e., when the OCF1B bit is set in the Timer/Counter Interrupt Flag Register [TIFR]).

• Bit 2 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Overflow Interrupt is enabled. The corresponding interrupt (at vector \$008) is executed if an overflow in Timer/Counter1 occurs (i.e., when the TOV1 bit is set in the Timer/Counter Interrupt Flag Register [TIFR]).

• Bit 1 - Res: Reserved Bit

This bit is a reserved bit in the AT90S8535 and always reads zero.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow Interrupt is enabled. The corresponding interrupt (at vector \$009) is executed if an overflow in Timer/Counter0 occurs (i.e., when the TOV0 bit is set in the Timer/Counter Interrupt Flag Register [TIFR]).

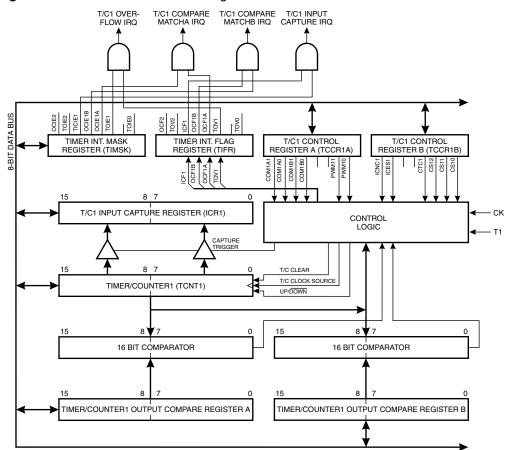
Timer/Counter Interrupt Flag Register – TIFR

Bit	7	6	5	4	3	2	1	0	
\$38 (\$58)	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	-	TOV0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when compare match occurs between the Timer/Counter2 and the data in OCR2 (Output Compare Register2). OCF2 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2 is cleared by writing a logical "1" to the flag. When the I-bit in SREG and OCIE2 (Timer/Counter2 Compare Match Interrupt Enable) and the OCF2 are set (one), the Timer/Counter2 Compare Match Interrupt is executed.

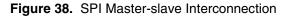
Bit 6 – TOV2: Timer/Counter2 Overflow Flag

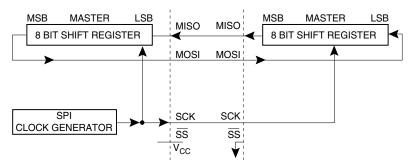

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logical "1" to the flag. When the SREG I-bit and TOIE2 (Timer/Counter2 Overflow Interrupt Enable) and TOV2 are set (one), the Timer/Counter2 Overflow Interrupt is executed. In up/down PWM mode, this bit is set when Timer/Counter1 advances from \$0000.

16-bit Timer/Counter1

Figure 31 shows the block diagram for Timer/Counter1.

Figure 31. Timer/Counter1 Block Diagram


The 16-bit Timer/Counter1 can select clock source from CK, prescaled CK or an external pin. In addition, it can be stopped as described in the specification for the Timer/Counter1 Control Registers (TCCR1A and TCCR1B). The different status flags (Overflow, Compare Match and Capture Event) and control signals are found in the Timer/Counter1 Control Registers (TCCR1A and TCCR1B). The interrupt enable/disable settings for Timer/Counter1 are found in the Timer/Counter Interrupt Mask Register (TIMSK).


When Timer/Counter1 is externally clocked, the external signal is synchronized with the oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum time between two external clock transitions must be at least one internal CPU clock period. The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16-bit Timer/Counter1 features both a high-resolution and a high-accuracy usage with the lower prescaling opportunities. Similarly, the high prescaling opportunities makes the Timer/Counter1 useful for lower speed functions or exact timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output Compare Register 1A and B (OCR1A and OCR1B) as the data sources to be compared to the Timer/Counter1 contents. The Output Compare functions include optional clearing of

The system is single-buffered in the transmit direction and double-buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received byte must be read from the SPI Data Register before the next byte has been completely shifted in. Otherwise, the first byte is lost.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK and \overline{SS} pins is overridden according to Table 22.

Table 22. SPI Pin Overrides

Pin	Direction, Master SPI	Direction, Slave SPI
MOSI	User Defined	Input
MISO	Input	User Defined
SCK	User Defined	Input
SS	User Defined	Input

Note: See "Alternate Functions of Port B" on page 79 for a detailed description of how to define the direction of the user-defined SPI pins.

is selected (the CHR9 bit in the UART Control Register, UCR is set), the TXB8 bit in UCR is transferred to bit 9 in the Transmit shift register.

On the baud rate clock following the transfer operation to the shift register, the start bit is shifted out on the TXD pin. Then follows the data, LSB first. When the stop bit has been shifted out, the shift register is loaded if any new data has been written to the UDR during the transmission. During loading, UDRE is set. If there is no new data in the UDR register to send when the stop bit is shifted out, the UDRE flag will remain set until UDR is written again. When no new data has been written and the stop bit has been present on TXD for one bit length, the TX Complete flag (TXC) in USR is set.

The TXEN bit in UCR enables the UART Transmitter when set (one). When this bit is cleared (zero), the PD1 pin can be used for general I/O. When TXEN is set, the UART Transmitter will be connected to PD1, which is forced to be an output pin regardless of the setting of the DDD1 bit in DDRD.

Data Reception Figure 42 shows a block diagram of the UART Receiver.

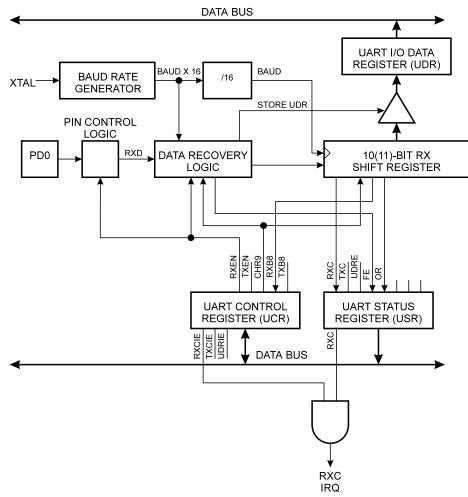
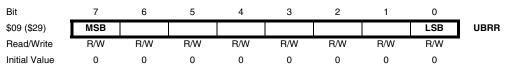



Figure 42. UART Receiver

The receiver front-end logic samples the signal on the RXD pin at a frequency 16 times the baud rate. While the line is idle, one single sample of logical "0" will be interpreted as the falling edge of a start bit and the start bit detection sequence is initiated. Let sample

AT90S/LS8535

UART Baud Rate Register – UBRR

The UBRR register is an 8-bit read/write register that specifies the UART Baud Rate according to the equation on the previous page.

- 2. Enter Idle Mode. The ADC will start a conversion once the CPU has been halted.
- 3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the MCU and execute the ADC Conversion Complete Interrupt routine.

ADC Multiplexer Select Register – ADMUX

Bit	7	6	5	4	3	2	1	0	_
\$07 (\$27)	-	-	-	-	-	MUX2	MUX1	MUX0	ADMUX
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the AT90S8535 and always read as zero.

• Bits 2..0 – MUX2..MUX0: Analog Channel Select Bits 2-0

The value of these three bits selects which analog input ADC7..0 is connected to the ADC. See Table 27 for details.

If these bits are changed during a conversion, the change will not go into effect until this conversion is complete (ADIF in ADCSR is set).

	Table 2	27.	Input	Channel	Selections
--	---------	-----	-------	---------	------------

MUX2.0	Single-ended Input
000	ADC0
001	ADC1
010	ADC2
011	ADC3
100	ADC4
101	ADC5
110	ADC6
111	ADC7

ADC Control and Status Register – ADCSR

Bit	7	6	5	4	3	2	1	0	
\$06 (\$26)	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – ADEN: ADC Enable

Writing a logical "1" to this bit enables the ADC. By clearing this bit to zero, the ADC is turned off. Turning the ADC off while a conversion is in progress will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

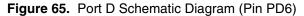
In Single Conversion Mode, a logical "1" must be written to this bit to start each conversion. In Free Running Mode, a logical "1" must be written to this bit to start the first conversion. The first time ADSC has been written after the ADC has been enabled or if ADSC is written at the same time as the ADC is enabled, an extended conversion will precede the initiated conversion. This extended conversion performs initialization of the ADC.

• ADC9..0: ADC Conversion result

These bits represent the result from the conversion. \$000 represents analog ground and \$3FF represents the selected reference voltage minus one LSB.

Scanning Multiple Channels Since change of analog channel always is delayed until a conversion is finished, the Free Running Mode can be used to scan multiple channels without interrupting the converter. Typically, the ADC Conversion Complete interrupt will be used to perform the channel shift. However, the user should take the following fact into consideration: The interrupt triggers once the result is ready to be read. In Free Running Mode, the next conversion will start immediately when the interrupt triggers. If ADMUX is changed after the interrupt triggers, the next conversion has already started and the old setting is used.

ADC Noise Canceling Techniques


Digital circuitry inside and outside the AT90S8535 generates EMI that might affect the accuracy of analog measurements. If conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

- 1. The analog part of the AT90S8535 and all analog components in the application should have a separate analog ground plane on the PCB. This ground plane is connected to the digital ground plane via a single point on the PCB.
- 2. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane and keep them well away from high-speed switching digital tracks.
- 3. The AV_{CC} pin on the AT90S8535 should be connected to the digital V_{CC} supply voltage via an LC network as shown in Figure 50.
- 4. Use the ADC noise canceler function to reduce induced noise from the CPU.
- 5. If some Port A pins are used as digital outputs, it is essential that these do not switch while a conversion is in progress.

Figure 50. ADC Power Connections

AT90S/LS8535

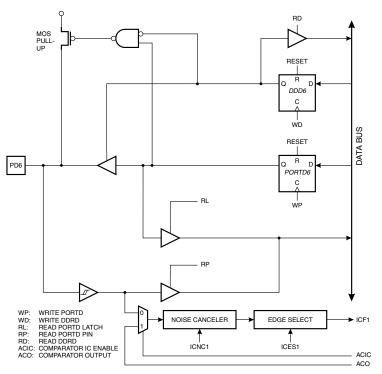
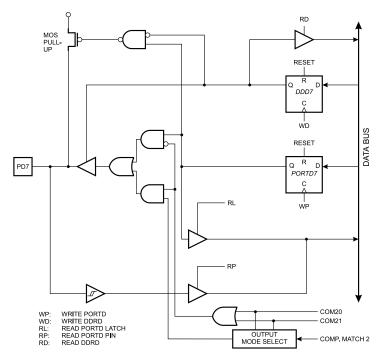



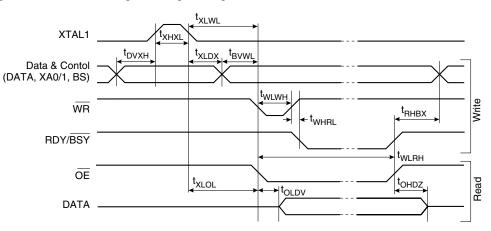
Figure 66. Port D Schematic Diagram (Pin PD7)

Memory Programming

Program and Data Memory Lock Bits

The AT90S8535 MCU provides two Lock bits that can be left unprogrammed ("1") or can be programmed ("0") to obtain the additional features listed in Table 35. The Lock bits can only be erased with the Chip Erase command.

Table 35. Lock Bit Protection Modes


	Memo	ory Lock	Bits				
	Mode	LB1	LB2	Protection Type			
	1	1	1	No memory lock features enabled.			
	2	0	1	Further programming of the Flash and EEPROM is disabled. ⁽¹⁾			
	3	0	0	Same as mode 2 and verify is also disabled.			
	Note:			ode, further programming of the Fuse bits is also disabled. Program the fore programming the Lock bits.			
Fuse Bits	The AT9	0\$853	5 has tv	vo Fuse bits, SPIEN and FSTRT.			
	 When the SPIEN Fuse is programmed ("0"), Serial Program and Data Download is enabled. Default value is programmed ("0"). The SPIEN Fuse is not accessibl Serial Programming Mode. 						
	• When the FSTRT Fuse is programmed ("0"), the short start-up time is selected. Default value is unprogrammed ("1").						
	The stat	us of th	e Fuse	bits is not affected by Chip Erase.			
Signature Bytes	All Atmel microcontrollers have a three-byte signature code that identifies This code can be read in both Serial and Parallel modes. The three bytes separate address space.						
	1. \$000	D: \$1E (indicate	es manufactured by Atmel)			
	2. \$00-	1: \$93 (indicate	es 8K bytes Flash memory)			
	3. \$002	2: \$03 (indicate	es AT90S8535 device when signature byte \$001 is \$93)			
	Note:			ock bits are programmed (lock mode 3), the signature bytes cannot be I Mode. Reading the signature bytes will return: \$00, \$01 and \$02.			
Programming the Flash and EEPROM				fers 8K bytes of in-system reprogrammable Flash program mem- EPROM data memory.			
	The AT90S8535 is shipped with the On-chip Flash program and EEPROM data memory arrays in the erased state (i.e., contents = \$FF) and ready to be programmed. This device supports a high-voltage (12V) Parallel Programming Mode and a low-voltage Serial Programming Mode. The +12V is used for programming enable only and no current of significance is drawn by this pin. The Serial Programming Mode provides a convenient way to download program and data into the AT90S8535 inside the user's system.						
	in either	progra	mming	memory arrays on the AT90S8535 are programmed byte-by-byte mode. For the EEPROM, an auto-erase cycle is provided within truction in the Serial Programming Mode.			
	Duraliza en la						

During programming, the supply voltage must be in accordance with Table 36.

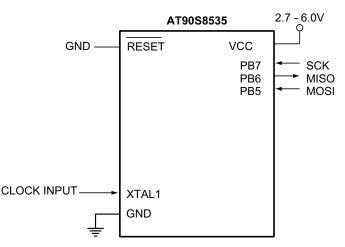
AT90S/LS8535

Parallel Programming Characteristics

Symbol	Parameter	Min	Тур	Max	Units		
V _{PP}	Programming Enable Voltage	11.5		12.5	V		
I _{PP}	Programming Enable Current			250.0	μA		
t _{DVXH}	Data and Control Setup before XTAL1 High	67.0			ns		
t _{xHxL}	XTAL1 Pulse Width High	67.0			ns		
t _{xLDX}	Data and Control Hold after XTAL1 Low	67.0			ns		
t _{XLWL}	XTAL1 Low to WR Low	67.0			ns		
t _{BVWL}	BS Valid to WR Low	67.0			ns		
t _{RHBX}	BS Hold after RDY/BSY High	67.0			ns		
t _{wLWH}	WR Pulse Width Low ⁽¹⁾	67.0			ns		
t _{WHRL}	WR High to RDY/BSY Low ⁽²⁾		20.0		ns		
t _{wLRH}	WR Low to RDY/BSY High ⁽²⁾	0.5	0.7	0.9	ms		
t _{XLOL}	XTAL1 Low to OE Low	67.0			ns		
t _{OLDV}	OE Low to DATA Valid		20.0		ns		
t _{OHDZ}	OE High to DATA Tri-stated			20.0	ns		
t _{WLWH_CE}	WR Pulse Width Low for Chip Erase	5.0	10.0	15.0	ms		
t _{wLWH_PFB}	WR Pulse Width Low for Programming the Fuse Bits	1.0	1.5	1.8	ms		

Notes: 1. Use t_{WLWH CE} for Chip Erase and t_{WLWH PEB} for programming the Fuse bits.

2. If t_{WLWH} is held longer than t_{WLBH}, no RDY/BSY pulse will be seen.


Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output), see Figure 71. After RESET is set low, the Programming Enable instruction needs to be executed first before program/erase operations can be executed.

Figure 71. Serial Programming and Verify

For the EEPROM, an auto-erase cycle is provided within the self-timed write instruction and there is no need to first execute the Chip Erase instruction. The Chip Erase instruction turns the content of every memory location in both the program and EEPROM arrays into \$FF.

The program and EEPROM memory arrays have separate address spaces: \$0000 to \$0FFF for program memory and \$0000 to \$01FF for EEPROM memory.

Either an external clock is supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The minimum low and high periods for the serial clock (SCK) input are defined as follows:

Low: > 2 XTAL1 clock cycles

High: > 2 XTAL1 clock cycles

Serial Programming Algorithm When writing serial data to the AT90S8535, data is clocked on the rising edge of SCK.

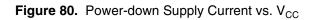
When reading data from the AT90S8535, data is clocked on the falling edge of SCK. See Figure 72, Figure 73 and Table 43 for timing details.

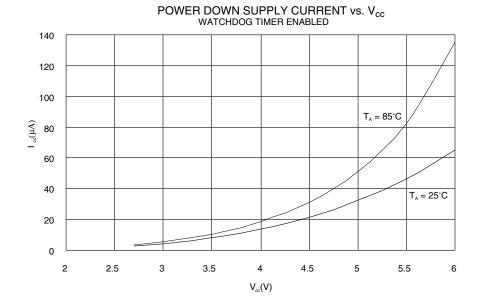
To program and verify the AT90SS8535 in the Serial Programming Mode, the following sequence is recommended (see 4-byte instruction formats in Table 42):

1. Power-up sequence:

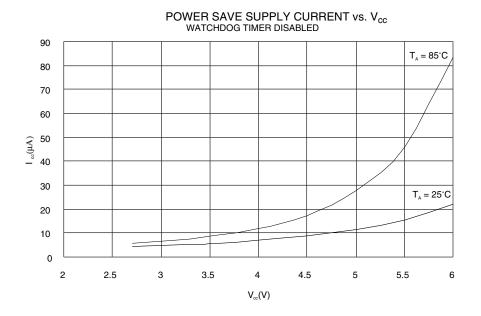
Apply power between V_{CC} and GND while $\overrightarrow{\text{RESET}}$ and SCK are set to "0". If a crystal is not connected across pins XTAL1 and XTAL2, apply a clock signal to the XTAL1 pin. In some systems, the programmer cannot guarantee that SCK is held low during power-up. In this case, $\overrightarrow{\text{RESET}}$ must be given a positive pulse of at least two XTAL1 cycles duration after SCK has been set to "0".

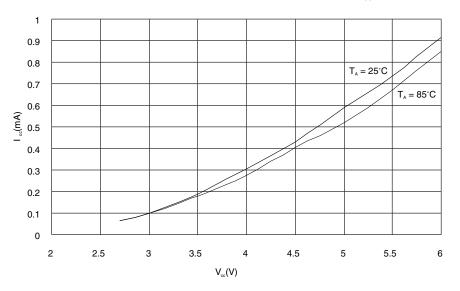
- 2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to the MOSI (PB5) pin.
- 3. The serial programming instructions will not work if the communication is out of synchronization. When in sync, the second byte (\$53) will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the \$53 did not echo back, give SCK a positive pulse and issue a new Programming Enable instruction. If the \$53 is not seen within 32 attempts, there is no functional device connected.

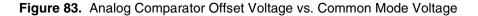

DC Characteristics (Continued)

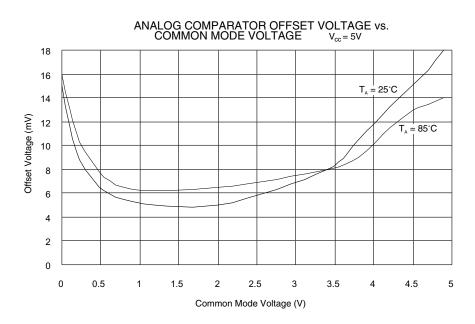

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$			40.0	mV
I _{ACLK}	Analog Comparator Input Leakage A	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50.0		50.0	nA
t _{ACPD}	Analog Comparator Propagation Delay	$V_{CC} = 2.7V$ $V_{CC} = 4.0V$		750.0 500.0		ns
2. 3. 4.	"Max" means the highest value "Min" means the lowest value Although each I/O port can si conditions (non-transient), the PDIP Package: 1] The sum of all I _{OL} , for all po 2] The sum of all I _{OL} , for port A 3] The sum of all I _{OL} , for port A 3] The sum of all I _{OL} , for ports PLCC and TQFP Packages: 1] The sum of all I _{OL} , for all po 2] The sum of all I _{OL} , for ports 3] The sum of all I _{OL} , for ports 3] The sum of all I _{OL} , for ports 5] The sum of all I _{OL} , for ports 6] The sum of all I _{OL} , for ports 6] The sum of all I _{OL} , for ports 7] The sum of all I _{OL} , for ports 8] The sum of all I _{OL} , for ports 8] The sum of all I _{OL} , for ports 8] The sum of all I _{OL} , for ports 8] The sum of all I _{OL} , for ports 1] The sum of all I _{OL} , for ports 1] The sum of all I _{OL} , for ports 1] The sum of all I _{OH} , for port A 3] The sum of all I _{OH} , for port A 3] The sum of all I _{OH} , for ports 3] The sum of all I _{OH} , for ports 3] The sum of all I _{OH} , for ports 3] The sum of all I _{OH} , for ports 3] The sum of all I _{OH} , for ports 3] The sum of all I _{OH} , for ports 3] The sum of all I _{OH} , for ports 5] The sum of all I _{OH} , for ports 6] The sum of all I _{OH} , for ports 6] The sum of all I _{OH} , for ports 6] The sum of all I _{OH} , for ports 6] The sum of all I _{OH} , for ports 7] The sum of all I _{OH} , for ports 8] The sum of all I _{OH} p	where the pin is guaranteed hk more than the test condi- following must be observed rts, should not exceed 200 A0 - A7, should not exceed B0 - B7, C0 - C7, D0 - D7 a rts, should not exceed 400 A0 - A7, should not exceed B0 - B3, should not exceed B0 - B3, should not exceed B4 - B7, should not exceed C0 - C3, should not exceed C0 - C3, should not exceed D0 - D3 and XTAL2, should D4 - D7, should not exceed con, V _{OL} may exceed the rela- urce more than the test con- following must be observed rts, should not exceed 200 A0 - A7, should not exceed B0 - B7, C0 - C7, D0 - D7 a rts, should not exceed 400 A0 - A7, should not exceed B0 - B3, should not exceed C0 - C3, should not exceed C0 - D3 and XTAL2, should D4 - D7, should not exceed D0 - D3 and XTAL2, should D4 - D7, should not exceed tion, V _{OH} may exceed the rdition.	to be read as high (tions (20 mA at V _{CC}) mA. 100 mA. and XTAL2, should no mA. 100 mA. 100 mA. 100 mA. 100 mA. 100 mA. 100 mA. 100 mA. ated specification. Pin ditions (3 mA at V _{CC}) t: mA. 100 mA. and XTAL2, should no mA. 100 mA. 100 mA.	logical "1"). = 5V, 10 mA at ot exceed 100 m ns are not guar = 5V, 1.5 mA a ot exceed 100 m	nA. ranteed to sink t $V_{CC} = 3V$) und mA.	current grea

 $T_A = -40^{\circ}C$ to $85^{\circ}C$, $V_{CC} = 2.7V$ to 6.0V (unless otherwise noted)









ANALOG COMPARATOR CURRENT vs. V_{cc}

Note: Analog comparator offset voltage is measured as absolute offset.

AIMEL

Register Summary

Address \$3F (\$5F) \$3E (\$5E) \$3D (\$5D) \$3C (\$5C) \$3B (\$5B) \$3A (\$5A)	Name SREG SPH SPL	Bit 7	Bit 6	Bit 5	Bit 4 S	Bit 3 V	Bit 2	Bit 1 z	Bit 0 C	Page page 19
\$3E (\$5E) \$3D (\$5D) \$3C (\$5C) \$3B (\$5B)	SPH	-		н	S	V	N	Z	С	page 19
\$3D (\$5D) \$3C (\$5C) \$3B (\$5B)		-	-							
\$3C (\$5C) \$3B (\$5B)	SPL			-	-	-	-	SP9	SP8	page 20
\$3B (\$5B)		SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 20
. ,	Reserved									
\$3A (\$5A)	GIMSK	INT1	INT0	-	-	-	-	-	-	page 25
	GIFR	INTF1	INTF0							page 26
\$39 (\$59)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	-	TOIE0	page 26
\$38 (\$58)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	-	TOV0	page 27
\$37 (\$57)	Reserved									
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	-	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00	page 29
\$34 (\$54)	MCUSR	-	-	-	-	-	-	EXTRF	PORF	page 24
\$33 (\$53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 34
\$32 (\$52)	TCNT0				Timer/Cou	unter0 (8 Bits)				page 34
\$31 (\$51)	Reserved									
\$30 (\$50)	Reserved									
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	PWM11	PWM10	page 36
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	CS12	CS11	CS10	page 37
\$2D (\$4D)	TCNT1H	Timer/Counter	r1 – Counter Reg	ister High Byte						page 38
\$2C (\$4C)	TCNT1L	Timer/Counter	r1 – Counter Reg	ister Low Byte						page 38
\$2B (\$4B)	OCR1AH	Timer/Counter	r1 – Output Com	oare Register A H	igh Byte					page 39
\$2A (\$4A)	OCR1AL			pare Register A L						page 39
\$29 (\$49)	OCR1BH			pare Register B H						page 39
\$28 (\$48)	OCR1BL			oare Register B L						page 39
\$27 (\$47)	ICR1H	Timer/Counter	r1 – Input Captur	e Register High B	yte					page 40
\$26 (\$46)	ICR1L			e Register Low B						page 40
\$25 (\$45)	TCCR2	-	PWM2	COM21	COM20	CTC2	CS22	CS21	CS20	page 43
\$24 (\$44)	TCNT2	Timer/Counter	r2 (8 Bits)			1				page 44
\$23 (\$43)	OCR2		r2 Output Compa	re Register						page 44
\$22 (\$42)	ASSR	-	-	-	-	AS2	TCN2UB	OCR2UB	TCR2UB	page 46
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 49
\$20 (\$40)	Reserved									P=9+ ++
\$1F (\$3F)	EEARH								EEAR8	page 51
\$1E (\$3E)	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	page 51
\$1D (\$3D)	EEDR	EEPROM Da		22, 110	22,000	22,410	22,012	22,011	22, 110	page 51
\$1C (\$3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 51
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	page 76
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	page 76
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	page 76
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 78
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 78
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 78
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTCO	page 84
\$13 (\$33) \$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	page 84
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	page 84
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTDO	page 84 page 87
\$12 (\$32) \$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 87 page 87
. ,	SPDR		PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 SPI Data Register							
\$0F (\$2F) \$0E (\$2E)	SPDR	SPI Data Reg	WCOL	-	-			-	-	page 58 page 58
\$0E (\$2E) \$0D (\$2D)	SPSR	SPIE	SPE	- DORD	- MSTR	- CPOL	- CPHA	- SPR1	- SPR0	
. ,		UART I/O Da		UNU	WIGTH	OFUL	UFITA	JENI		page 57
\$0C (\$2C)	UDR	RXC	Ŭ		FE					page 62
\$0B (\$2B)	USR		TXC			OR TXEN	-	- DVB9		page 62
\$0A (\$2A)	UCR	RXCIE	TXCIE	UDRIE	RXEN	IAEN	CHR9	RXB8	TXB8	page 63
\$09 (\$29)	UBRR	UART Baud F	hate Register	400	4.01		4010	40104	4.0100	page 65
\$08 (\$28)	ACSR	ACD	-	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	page 66
\$07 (\$27)	ADMUX	-	-	-	-	-	MUX2	MUX1	MUX0	page 72
\$06 (\$26)	ADCSR	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 72
\$05 (\$25)	ADCH	-	-	-	-	-	-	ADC9	ADC8	page 73
\$04 (\$24)	ADCL	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	page 73
	Reserved									
\$03 (\$20)	-									
\$03 (\$20) \$02 (\$22) \$01 (\$21)	Reserved Reserved									