

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI, UART/USART
Peripherals	LVD, POR, PWM
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pl16ctj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering information

The following table summarizes the part numbers of the devices covered by this document.

Part Number	MC9S08PL16C LC	MC9S08PL16C TJ	MC9S08PL16C TG	MC9S08PL8CL C	MC9S08PL8CT J	MC9S08PL8CT G
Max. frequency (MHz)	20	20	20	20	20	20
Flash memory (KB)	16	16	16	8	8	8
RAM (KB)	2	2	2	2	2	2
EEPROM (bytes)	256	256	256	256	256	256
10-bit ADC	12ch	10ch	6ch	12ch	10ch	6ch
16-bit FlexTimer	6ch + 2ch	6ch + 2ch	2ch + 2ch	6ch + 2ch	6ch + 2ch	2ch + 2ch
8-bit Modulo timer	1	1	1	1	1	1
RTC	Yes	Yes	Yes	Yes	Yes	Yes
SCI (LIN Capable)	2	1	1	2	1	1
Watchdog	Yes	Yes	Yes	Yes	Yes	Yes
CRC	Yes	Yes	Yes	Yes	Yes	Yes
KBI pins	8	8	8	8	8	8
GPIO	30	18	14	30	18	14
Package	32-LQFP	20-TSSOP	16-TSSOP	32-LQFP	20-TSSOP	16-TSSOP

Table 1. Ordering information

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PL AA B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	• MC = fully qualified, general market flow
9	Memory	• 9 = flash based
S08	Core	• S08 = 8-bit CPU
PL	Device family	• PL
AA	Approximate flash size in KB	 16 = 16 KB 8 = 8 KB
В	Operating temperature range (°C)	• C = -40 to 85
СС	Package designator	 LC = 32-LQFP TJ = 20-TSSOP TG = 16-TSSOP

2.4 Example

This is an example part number:

MC9S08PL16CLC

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 2. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free		260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

 Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 85°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	—	120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. All digital I/O pins, except open-drain pin , are internally clamped to V_{SS} and V_{DD} . is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
—	_	Oper	ating voltage	_	2.7	—	5.5	V
V _{OH}	С	Output high voltage	All I/O pins, standard- drive strength	5 V, I _{load} = -5 mA	V _{DD} - 0.8	—	-	V
	С			3 V, I _{load} = -2.5 mA	V _{DD} - 0.8	_	-	V
I _{OHT}	D	Output high	Max total I _{OH} for all	5 V	—	_	-100	mA
		current	ports	3 V	_	_	-50	
V _{OL}	С	Output low voltage	All I/O pins, standard- drive strength	5 V, I _{load} = 5 mA		—	0.8	V
	С			3 V, I _{load} = 2.5 mA		—	0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	—	_	100	mA
		current	ports	3 V	_		50	
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$		—	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$		—	
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_		$0.30 \times V_{DD}$	V
	С	voltage	ltage		_	_	$0.35 \times V_{DD}$	
V _{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	—	-	mV
{In}	Р	Input leakage current	All input only pins (per pin)	$V{IN} = V_{DD}$ or V_{SS}		0.1	1	μA
ll _{oz} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}		0.1	1	μΑ
II _{OZTOT} I	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μΑ

Table 3. DC characteristics

Table continues on the next page...

Symbol	С		Descriptions		Min	Typical ¹	Мах	Unit
R _{PU}	Ρ	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ²	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0		60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{\rm IN} < V_{\rm SS},$	-0.2	—	2	mA
		current ^{3, 4, 5}	Total MCU limit, includes sum of all stressed pins	V _{IN} > V _{DD}	-5	_	25	
C _{In}	С	Input capacitance, all pins			—	—	7	pF
V _{RAM}	С	RAM re	etention voltage		2.0	—		V

1. Typical values are measured at 25 °C. Characterized, not tested.

- 2. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 3. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 4. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 5. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Symbol	С	Descr	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-arm	n voltage ^{1, 2}	1.5	1.75	2.0	V
V _{LVDH}	С	threshold - higl	Falling low-voltage detect threshold - high range (LVDV = 1) ³		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	nigh range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	Falling low-venture for the shold - low	•	2.56	2.61	2.66	V

Table 4. LVD and POR Specification

Table continues on the next page ...

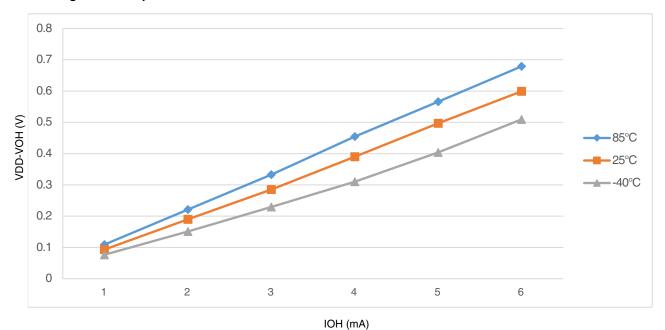


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

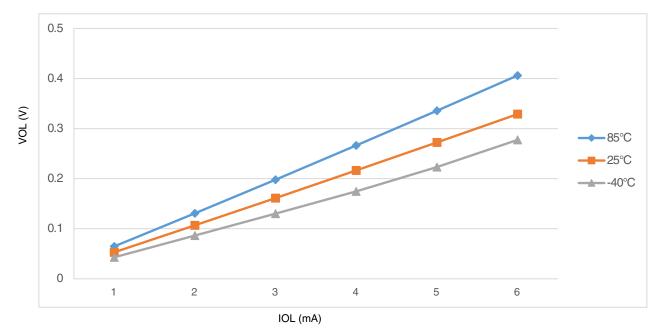


Figure 3. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 5 V)

5.2 Switching specifications

5.2.1 Control timing

Num	С	Rating	I	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	DC		20	MHz	
2	С	Internal low power oscillato	r frequency	f _{LPO}	—	1.0	—	KHz
3	D	External reset pulse width ²	t _{extrst}	1.5 × t _{cyc}	_		ns	
4	D	Reset low drive		t _{rstdrv}	34 × t _{cyc}			ns
5	D	BKGD/MS setup time after debug force reset to enter u	t _{MSSU}	500	_	_	ns	
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	IRQ pulse width	Asynchronous path ²	tı∟ıн	100	_	_	ns
	D	-	Synchronous path ⁴	t _{IHIL}	1.5 × t _{cyc}	_	_	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	tı∟ıн	100	_		ns
	D	-	Synchronous path	t _{IHIL}	1.5 × t _{cyc}	_	_	ns
9	С	Port rise and fall time -	—	t _{Rise}	—	10.2	—	ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}	—	9.5		ns

Table 6. Control timing

1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 85 °C.

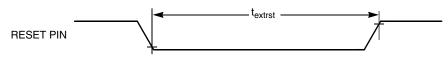


Figure 5. Reset timing

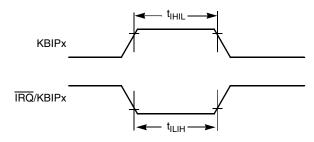
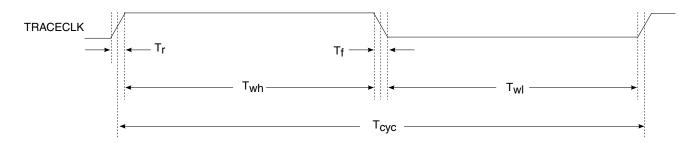



Figure 6. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	dependent	MHz
t _{wl}	Low pulse width	_	ns	
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	—	3	ns
t _f	Clock and data fall time	—	3	ns
t _s	Data setup	3	—	ns
t _h	Data hold	2	_	ns

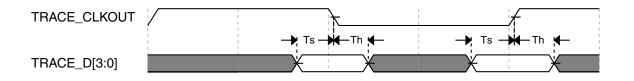


Figure 8. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

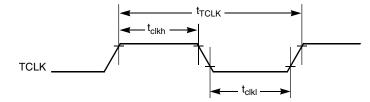


Figure 9. Timer external clock

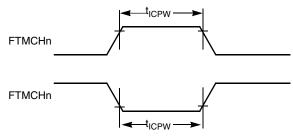


Figure 10. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A ¹	T_L to T_H -40 to 85	°C
Junction temperature range	TJ	-40 to 105	°C
	Thermal resistance	e single-layer board	
32-pin LQFP	R _{θJA}	88	°C/W
20-pin TSSOP	R _{θJA}	116	°C/W
16-pin TSSOP	R _{θJA}	130	°C/W
	Thermal resistance	ce four-layer board	
32-pin LQFP	R _{θJA}	59	°C/W
20-pin TSSOP	R _{0JA}	76	°C/W
16-pin TSSOP	R _{0JA}	87	°C/W

Table 9. Thermal characteristics

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} x$ chip power dissipation.

6 Peripheral operating requirements and behaviors

Table 10. XOSC and ICS specifications (temperature range = -40 to 85 °C ambient) (continued)

Ν	Num	С	Characteristic	Symbol	Min	Typical ¹	Мах	Unit
	13	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	—	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

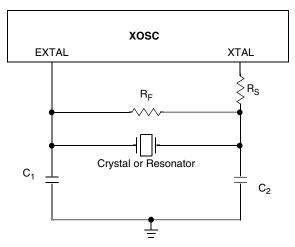


Figure 11. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V

Table 11. Flash characteristics

Table continues on the next page...

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	—	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	—	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	—	—	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	—	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	—		555	t _{cyc}
D	Read Once	t _{RDONCE}	—		450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	—		464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_		407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 85 °C	n _{FLPE}	10 k	100 k		Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 85 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100		years

Table 11. Flash characteristics (continued)

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 10-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	—	5.5	V	—
voltage	Delta to V_{DD} (V_{DD} - V_{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV _{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	—
Analog source	10-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	5	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz	_		_	10		
	8-bit mode		—	-	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	
conversion clock frequency	Low power (ADLPC=1)		0.4	—	4.0		

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

Dimensions

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	10-bit mode	Р	E _{TUE}		±1.5	±2.0	LSB ³
Error ²	8-bit mode	Р			— ±0.7	±1.0	1
Differential Non-	10-bit mode ⁴	Р	DNL		±0.25	±0.5	LSB ³
Linearity	8-bit mode ⁴	Р			±0.15	±0.25	-
Integral Non-Linearity	10-bit mode	Т	INL		±0.3	±0.5	LSB ³
	8-bit mode	Т			±0.15	±0.25	
Zero-scale error ⁵	10-bit mode	Р	E _{zs}	_	±0.25	±1.0	LSB ³
	8-bit mode	Р			±0.65	±1.0	-
Full-scale error ⁶	10-bit mode	Т	E _{FS}		±0.5	±1.0	LSB ³
	8-bit mode	Т			±0.5	±1.0	-
Quantization error	≤10 bit modes	D	Eq		_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}	1	mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	_	mV/°C
	25°C– 85°C				3.638	—	1
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	—	V

Table 13. 10-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

- 2. Includes quantization.
- 3. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^{N}$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin TSSOP	98ASH70247A
20-pin TSSOP	98ASH70169A
32-pin LQFP	98ASH70029A

8 Pinout

8.1 Signal multiplexing and pin assignments

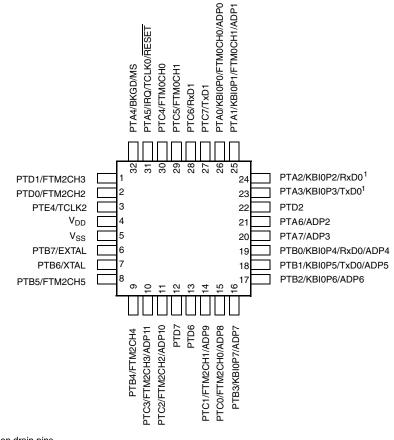
The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

	Pin Number			Lowes	st Priority <> Hig	ghest	
32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	_	—	PTD1	—	FTM2CH3	—	_
2	—	—	PTD0	—	FTM2CH2	_	_
3	—	—	PTE4	_	TCLK2	—	_
4	3	3	—	_	—	—	V _{DD}
5	4	4	_	—	_	—	V _{SS}
6	5	5	PTB7	_	—	—	EXTAL
7	6	6	PTB6	—	—	—	XTAL
8	7	7	PTB5	—	FTM2CH5	—	—
9	8	8	PTB4	_	FTM2CH4	—	_
10	9	—	PTC3	—	FTM2CH3	ADP11	—
11	10	—	PTC2	—	FTM2CH2	ADP10	_
12	_	—	PTD7	_	—	—	_
13	—	—	PTD6	—	—	—	—
14	11	—	PTC1	—	FTM2CH1	ADP9	—
15	12	—	PTC0	—	FTM2CH0	ADP8	—
16	13	9	PTB3	KBI0P7	—	ADP7	_
17	14	10	PTB2	KBI0P6	—	ADP6	—
18	15	11	PTB1	KBI0P5	TXD0	ADP5	_
19	16	12	PTB0	KBI0P4	RXD0	ADP4	—

Table 14. Pin availability by package pin-count

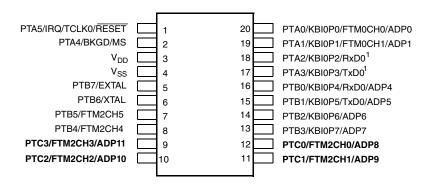
Table continues on the next page ...

	Pin Number			Lowes	st Priority <> Hig	phest	
32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
20	—	—	PTA7	—	—	ADP3	—
21	—	—	PTA6	—	_	ADP2	—
22	_	—	PTD2	—	_	_	—
23	17	13	PTA3 ¹	KBI0P3	TXD0	_	—
24	18	14	PTA2 ¹	KBI0P2	RXD0	_	_
25	19	15	PTA1	KBI0P1	FTM0CH1	_	ADP1
26	20	16	PTA0	KBI0P0	FTM0CH0	_	ADP0
27	—	—	PTC7	—	TxD1	_	_
28	—	—	PTC6	—	RxD1	_	—
29	—	—	PTC5	—	FTM0CH1	—	—
30	—	—	PTC4	—	FTM0CH0	—	—
31	1	1	PTA5	IRQ	TCLK0	_	RESET
32	2	2	PTA4	—	_	BKGD	MS


 Table 14. Pin availability by package pin-count (continued)

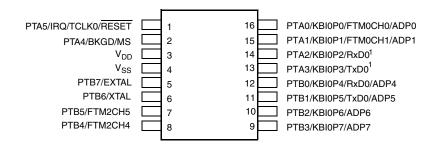
1. This is a true open-drain pin when operated as output.

Note


When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

1. True open drain pins



Pins in **bold** are not available on less pin-count packages. 1. True open drain pins

Revision history

Pins in **bold** are not available on less pin-count packages. 1. True open drain pins

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
0	03/2018	Initial Created
0.1	03/2018	Updated ordering information.
1	04/2018	Completed all the TBDs and added 20-pin TSSOP and 16-pin TSSOP packages.

Table 15. Revision history

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved.

© 2018 NXP B.V.

Document Number MC9S08PL16 Revision 1, 04/2018

