

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI, UART/USART
Peripherals	LVD, POR, PWM
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pl8ctj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1 Ordering information	5.2 Switching specifications	13
2 Part identification	5.2.1 Control timing	13
2.1 Description	5.2.2 Debug trace timing specifications	14
2.2 Format	5.2.3 FTM module timing	15
2.3 Fields	5.3 Thermal specifications	16
2.4 Example	5.3.1 Thermal characteristics	16
3 Parameter Classification	6 Peripheral operating requirements and behaviors	16
4 Ratings	6.1 External oscillator (XOSC) and ICS characteristics	16
4.1 Thermal handling ratings	6.2 NVM specifications	18
4.2 Moisture handling ratings	6.3 Analog	19
4.3 ESD handling ratings	6.3.1 ADC characteristics	20
4.4 Voltage and current operating ratings6	7 Dimensions	22
5 General	7.1 Obtaining package dimensions	22
5.1 Nonswitching electrical specifications	8 Pinout	23
5.1.1 DC characteristics	8.1 Signal multiplexing and pin assignments	23
5.1.2 Supply current characteristics	8.2 Device pin assignment	24
5.1.3 EMC performance	9 Revision history	26

Parameter Classification

MC 9 S08 PL AA B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	• 9 = flash based
S08	Core	• S08 = 8-bit CPU
PL	Device family	• PL
AA	Approximate flash size in KB	16 = 16 KB8 = 8 KB
В	Operating temperature range (°C)	• C = -40 to 85
CC	Package designator	 LC = 32-LQFP TJ = 20-TSSOP TG = 16-TSSOP

2.4 Example

This is an example part number:

MC9S08PL16CLC

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

5

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 85°C	-100	+100	mA	

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

MC9S08PL16 Series Data Sheet, Rev. 1, 04/2018

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{DIO}	Digital input voltage (except $\overline{\text{RESET}}$, EXTAL, XTAL, or true open drain pin)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin , are internally clamped to V_{SS} and V_{DD}. is only clamped to V_{SS}.

Nonswitching electrical specifications

Table 3. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)		30.0	_	50.0	kΩ
R _{PU} ²	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0	_	60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{3, 4, 5}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input capacitance, all pins		_	_	_	7	pF
V _{RAM}	С	RAM re	etention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 3. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}.
- 4. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 5. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 4. LVD and POR Specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-arr	n voltage ^{1, 2}	1.5	1.75	2.0	V
V _{LVDH}	С	threshold - hig	Falling low-voltage detect threshold - high range (LVDV = 1) ³		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold -	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	high range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV
V _{LVDL}	С	threshold - low	voltage detect range (LVDV = 0)	2.56	2.61	2.66	V

Table continues on the next page...

Table 4. LVD and POR Specification (continued)

Symbol	С	Desci	ription	Min	Тур	Max	Unit
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	_ low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V_{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	_	Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	С	Low range low-voltage warning hysteresis		_	80	_	mV
V_{BG}	Р	Buffered ban	dgap output 4	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

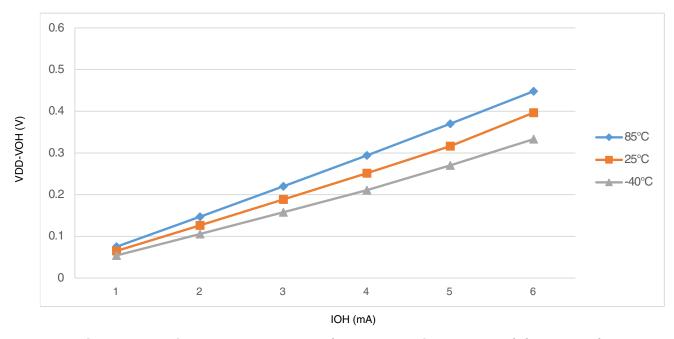


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

Nonswitching electrical specifications

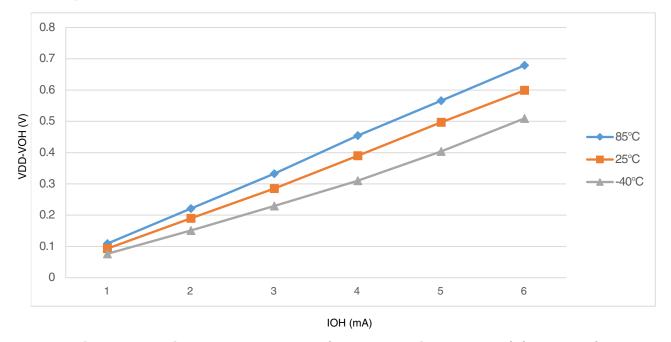


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

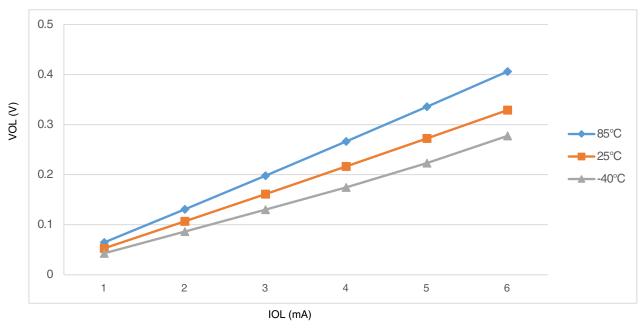


Figure 3. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 5 V)

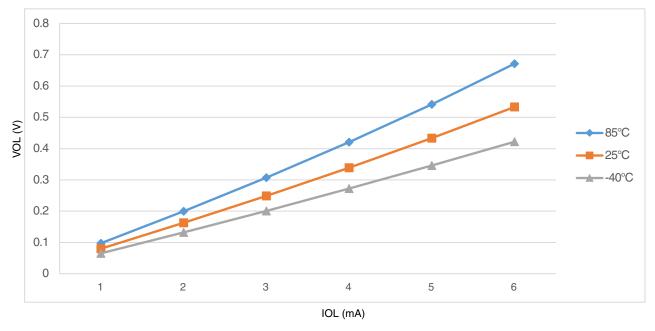


Figure 4. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 5. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI_{DD}	20 MHz	5	7.60	_	mA	-40 to 85 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	_		
		monn naon		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	_		
				1 MHz		1.85			
2	С	Run supply current FEI	RI_{DD}	20 MHz	5	5.88	_	mA	-40 to 85 °C
	С	mode, all modules off & gated; run from flash		10 MHz		3.70			
		gatoa, ran nom naon		1 MHz		1.85	_		
	С			20 MHz	3	5.35	1		
	С			10 MHz		3.42			
				1 MHz		1.80	_		
3	Р	Run supply current FBE	RI_DD	20 MHz	5	10.9	14.0	mA	-40 to 85 °C
	С	mode, all modules on; run from RAM		10 MHz		6.10			
				1 MHz		1.69	_		
	Р			20 MHz	3	8.18			
	С			10 MHz		5.14	_		

Table continues on the next page...

Table 5. Supply current characteristics (continued)

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
				1 MHz		1.44	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 85 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.07	_		
		gatea, rair iroin riviti		1 MHz		1.59	_		
	Р			20 MHz	3	6.11	_		
	С			10 MHz		4.10	_		
				1 MHz		1.34	_		
5	Р	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95	_	mA	-40 to 85 °C
	С	mode, all modules on		10 MHz		3.50	_		
				1 MHz		1.24	_		
	С			20 MHz	3	5.45	_		
				10 MHz		3.25	_		
				1 MHz		1.20			
6	С	Stop3 mode supply	S3I _{DD}	1	5	4.6	1	μΑ	-40 to 85 °C
	С	current no clocks active (except 1kHz LPO clock) ²			3	4.5	1		-40 to 85 °C
7	С	ADC adder to stop3	_		5	40	_	μA	-40 to 85 °C
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	LVD adder to stop3 ³	_	_	5	128	_	μΑ	-40 to 85 °C
	С				3	124	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.
- 3. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult NXP applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.2 Switching specifications

5.2.1 Control timing

Table 6. Control timing

Num	С	Rating	J	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	_	20	MHz
2	С	Internal low power oscillato	r frequency	f _{LPO}	_	1.0	_	KHz
3	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
4	D	Reset low drive	set low drive			_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u		t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter u		t _{MSH}	100	_	_	ns
7	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ⁴	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
9	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}	_	9.5	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 85 °C.



Figure 5. Reset timing

MC9S08PL16 Series Data Sheet, Rev. 1, 04/2018

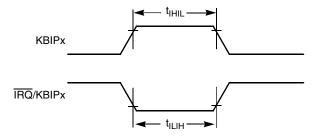


Figure 6. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications

Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit	
t _{cyc}	t _{cyc} Clock period		Frequency dependent		
t _{wl}	Low pulse width	2	_	ns	
t _{wh}	High pulse width	2	_	ns	
t _r	Clock and data rise time	_	3	ns	
t _f	Clock and data fall time	_	3	ns	
t _s	Data setup	3	_	ns	
t _h	Data hold	2	_	ns	

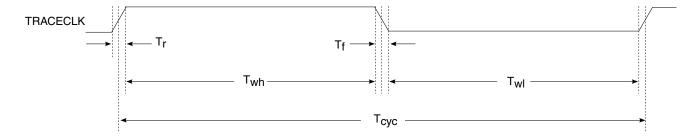


Figure 7. TRACE_CLKOUT specifications

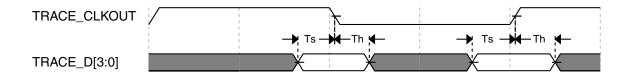


Figure 8. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

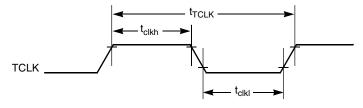


Figure 9. Timer external clock

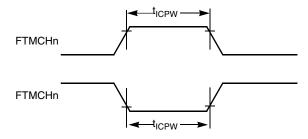


Figure 10. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating **Symbol** Value Unit T_L to T_H -40 to 85 °С Operating temperature range (packaged) °С Junction temperature range T_{J} -40 to 105 Thermal resistance single-layer board °C/W 32-pin LQFP $R_{\theta JA}$ 88 20-pin TSSOP 116 °C/W $R_{\theta JA}$ °C/W 16-pin TSSOP 130 $R_{\theta JA}$ Thermal resistance four-layer board 32-pin LQFP 59 °C/W $R_{\theta JA}$ 20-pin TSSOP °C/W $R_{\theta JA}$ 76 16-pin TSSOP 87 °C/W $R_{\theta JA}$

Table 9. Thermal characteristics

6 Peripheral operating requirements and behaviors

^{1.} Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} x$ chip power dissipation.

6.1 External oscillator (XOSC) and ICS characteristics

Table 10. XOSC and ICS specifications (temperature range = -40 to 85 °C ambient)

Num	С	C	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode		4	_	20	MHz
2	D	Lo	oad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R_{F}	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R _S	_	_	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 32.768 kHz	Low range, high power		_	800	_	ms
Ī	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	_	5	MHz
	D	input clock frequency	FBELP mode		0	_	20	MHz
9	Р	Average inter	nal reference frequency - trimmed	f _{int_t}	_		_	kHz
10	Р	DCO output fi	requency range - trimmed	f _{dco_t}	16	_	20	MHz
11	Р	Total deviation of DCO output	Over full voltage and temperature range	Δf_{dco_t}	_	_	±2.0	%f _{dco}
	С	from trimmed frequency ⁵	Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
12	С	FILO	FLL acquisition time ⁵ , ⁷		_		2	ms

Table continues on the next page...

Peripheral operating requirements and behaviors

Table 10. XOSC and ICS specifications (temperature range = -40 to 85 °C ambient) (continued)

Nun	C	Characteristic	Symbol	Min	Typical ¹	Max	Unit
13	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

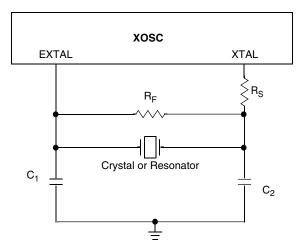


Figure 11. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 11. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V_{Read}	2.7	_	5.5	V

Table continues on the next page...

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 10-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	10-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	5	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

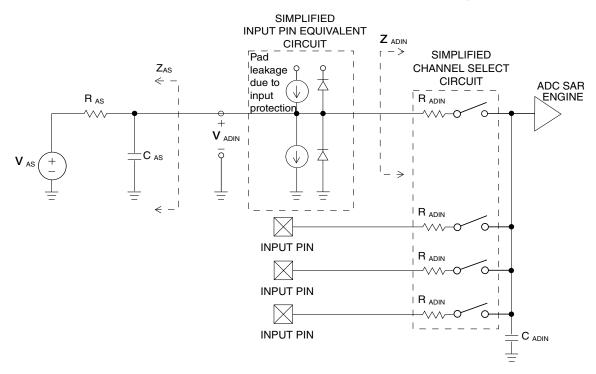


Figure 12. ADC input impedance equivalency diagram

Table 13. 10-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		T	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μΑ
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μΑ
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

Table continues on the next page...

Dimensions

Table 13. 10-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	-
Total unadjusted	10-bit mode	Р	E _{TUE}	_	±1.5	±2.0	LSB ³
Error ²	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	10-bit mode ⁴	Р	DNL	_	±0.25	±0.5	LSB ³
Linearity	8-bit mode ⁴	Р		_	±0.15	±0.25	1
Integral Non-Linearity	10-bit mode	Т	INL	_	±0.3	±0.5	LSB ³
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ⁵	10-bit mode	Р	E _{ZS}	_	±0.25	±1.0	LSB ³
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁶	10-bit mode	Т	E _{FS}	_	±0.5	±1.0	LSB ³
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤10 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	_	mV/°C
	25°C– 85°C				3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

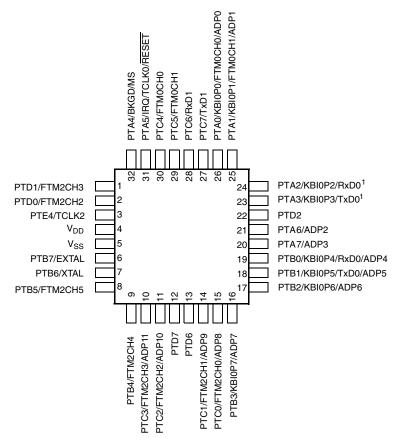
7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

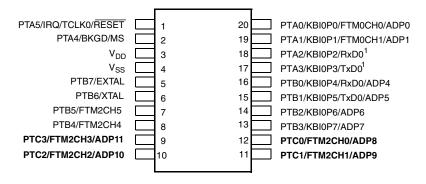
^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$


^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

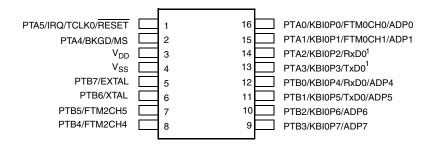
^{6.} $V_{ADIN} = V_{DDA}$


^{7.} I_{In} = leakage current (refer to DC characteristics)

25

1. True open drain pins

Figure 13. 32-pin LQFP package



Pins in **bold** are not available on less pin-count packages.

1. True open drain pins

Figure 14. 20-pin TSSOP package

Revision history

Pins in **bold** are not available on less pin-count packages.

1. True open drain pins

Figure 15. 16-pin TSSOP package

9 Revision history

The following table provides a revision history for this document.

Table 15. Revision history

Rev. No.	Date	Substantial Changes			
0	03/2018	Initial Created			
0.1	03/2018	Updated ordering information.			
1	04/2018	Completed all the TBDs and added 20-pin TSSOP and 16-pin TSSOP packages.			