E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, FlexIO, SPI, UART/USART
Peripherals	DMA, I ² S, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 15x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	36-XFBGA
Supplier Device Package	36-XFBGA (3.5x3.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl17z64vda4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Wake-up source	Description
l ² Cx	Address match wakeup
LPUART0 , LPUART1	Any enabled interrupt can be a source as long as the module remains clocked
UART2	Active edge on RXD
RTC	Alarm or seconds interrupt
NMI	NMI pin
ТРМх	Any enabled interrupt can be a source as long as the module remains clocked
LPTMR	Any enabled interrupt can be a source as long as the module remains clocked
SPIx	Slave mode interrupt
FlexIO	Any enabled interrupt can be a source as long as the module remains clocked

Table 2. AWIC stop wake-up sources (continued)

2.1.4 Memory

This device has the following features:

- 8/16 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait states.
- The non-volatile memory is divided into two arrays
 - 32/64 KB of embedded program memory
 - 16 KB ROM (built-in bootloader to support UART, I2C, and SPI interfaces)

The program flash memory contains a 16-byte flash configuration field that stores default protection settings and security information. The page size of program flash is 1 KB.

The protection setting can protect 32 regions of the program flash memory from unintended erase or program operations.

The security circuitry prevents unauthorized access to RAM or flash contents from debug port.

• System register file

This device contains a 32-byte register file that is powered in all power modes.

Also, it retains contents during low power modes and is reset only during a power-on reset.

7

2.1.5 Reset and boot

The following table lists all the reset sources supported by this device.

NOTE

In the following table, Y means the specific module, except for the registers, bits or conditions mentioned in the footnote, is reset by the corresponding Reset source. N means the specific module is not reset by the corresponding Reset source.

Reset	Descriptions	Modules								
sources		РМС	SIM	SMC	RCM	LLWU	Reset pin is negated	RTC	LPTMR	Others
POR reset	Power-on reset (POR)	Y	Y	Y	Y	Y	Y	Y	Y	Y
System resets	Low-voltage detect (LVD)	Y ¹	Y	Y	Y	Y	Y	Ν	Y	Y
	Low leakage wakeup (LLWU) reset	N	Y ²	N	Y	N	Y ³	Ν	N	Y
	External pin reset (RESET)	Y ¹	Y ²	Y ⁴	Y	Y	Y	Ν	N	Y
	Computer operating properly (COP) watchdog reset	Y ¹	Y ²	Y ⁴	Y ⁵	Y	Y	Ν	N	Y
	Stop mode acknowledge error (SACKERR)	Y ¹	Y ²	Y ⁴	Υ ⁵	Y	Y	Ν	N	Y
	Software reset (SW)	Y ¹	Y ²	Y ⁴	Y ⁵	Y	Y	Ν	N	Y
	Lockup reset (LOCKUP)	Y ¹	Y ²	Y ⁴	Y ⁵	Y	Y	Ν	N	Y
	MDM DAP system reset	Y ¹	Y ²	Y ⁴	Y ⁵	Y	Y	Ν	N	Y
Debug reset	Debug reset	Y ¹	Y ²	Y ⁴	Y ⁵	Y	Y	Ν	N	Y

Table 3. Reset source

1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]

2. Except SIM_SOPT1

3. Only if RESET is used to wake from VLLS mode.

4. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT

5. Except RCM_RPFC, RCM_RPFW, RCM_FM

The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table after reset. This device supports booting from:

- internal flash
- boot ROM

8

Module	Bus interface clock	Internal clocks	I/O interface clocks
	Core r	nodules	•
ARM Cortex-M0+ core	Platform clock	Core clock	—
NVIC	Platform clock	—	—
DAP	Platform clock	—	SWD_CLK
	System	modules	
DMA	System clock	—	—
DMA Mux	Bus clock	—	_
Port control	Bus clock	—	—
Crossbar Switch	Platform clock	—	—
Peripheral bridges	System clock	Bus clock	—
LLWU, PMC, SIM, RCM	Bus clock	LPO	—
Mode controller	Bus clock	—	—
MCM	Platform clock	—	—
COP watchdog	Bus clock	LPO, Bus Clock, MCGIRCLK, OSCERCLK	—
CRC	Bus clock	_	_
	Clo	ocks	
MCG_Lite	Bus clock	MCGOUTCLK, MCGPCLK, MCGIRCLK, OSCERCLK, ERCLK32K	_
OSC	Bus clock	OSCERCLK	—
	Memory and m	emory interfaces	
Flash Controller	Platform clock	Flash clock	—
Flash memory	Flash clock	—	—
	An	alog	-
ADC	Bus clock	OSCERCLK	—
CMP	Bus clock	—	—
Internal Voltage Reference (VREF)	Bus clock	_	—
	Tir	ners	
ТРМ	Bus clock	TPM clock	TPM_CLKIN0, TPM_CLKIN1
PIT	Bus clock	—	—
LPTMR	Bus clock	LPO, OSCERCLK, MCGPCLK, ERCLK32K	—
RTC	Bus clock	ERCLK32K	RTC_CLKOUT, RTC_CLKIN
	Communicat	tion interfaces	
SPI0	Bus clock	—	SPI0_SCK
SPI1	System clock	_	SPI1_SCK
I ² C0	System Clock		I2C0_SCL

Table 4. Module clocks

- Auto-alignment feature for source or destination accesses allows block transfers to occur at the optimal size based on the address, byte count, and programmed size, which significantly improves the speed of block transfer
- Automatic single or double channel linking allows the current DMA channel to automatically trigger a DMA request to the linked channels without CPU intervention

For more information on asynchronous DMA, see AN4631.

2.2.3 TPM

This device contains three low power TPM modules (TPM). All TPM modules are functional in Stop/VLPS mode if the clock source is enabled.

The TPM features include:

- TPM clock mode is selectable from external clock input or internal clock source, HIRC48M clock, external crystal input clock or LIRC2M/8M clock.
- Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128
- TPM includes a 16-bit counter
- Includes 6 channels that can be configured for input capture, output compare, edge-aligned PWM mode, or center-aligned PWM mode
- Support the generation of an interrupt and/or DMA request per channel or counter overflow
- Support selectable trigger input to optionally reset or cause the counter to start or stop incrementing
- Support the generation of hardware triggers when the counter overflows and per channel

2.2.4 ADC

this device contains one ADC module. This ADC module supports hardware triggers from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports wakeup of MCU in low power mode when using internal clock source or external crystal clock.

ADC module has the following features:

- Linear successive approximation algorithm with up to 16-bit resolution
- Up to four pairs of differential and 17 single-ended external analog inputs
- Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16bit, 12-bit, 10-bit, and 8-bit single-ended output modes

- 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm
- Register write protection with register lock mechanism
- 1 Hz square wave or second pulse output with optional interrupt

2.2.8 PIT

The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It has two independent channels and each channel has a 32-bit counter. Both channels can be chained together to form a 64-bit counter.

Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be used to periodically trigger DMA channel 1. Either channel can be programmed as an ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger DAC.

The PIT module has the following features:

- Each 32-bit timers is able to generate DMA trigger
- Each 32-bit timers is able to generate timeout interrupts
- Two timers can be cascaded to form a 64-bit timer
- Each timer can be programmed as ADC/TPM trigger source
- Timer 0 is able to trigger DAC

2.2.9 LPTMR

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

The LPTMR module has the following features:

- 16-bit time counter or pulse counter with compare
 - Optional interrupt can generate asynchronous wakeup from any low-power mode
 - Hardware trigger output
 - Counter supports free-running mode or reset on compare
- Configurable clock source for prescaler/glitch filter
- Configurable input source for pulse counter

Pinouts

64 LQFP	36 XFB GA	32 QFN	48 QFN	64 MAP BGA	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
						ADC0_ SE4a	ADC0_ SE4a							
11	E1	_	-	G2	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX		FXIO0_D6	
12	F1	-	-	F2	PTE23	ADC0_ DM3/ ADC0_ SE7a	ADC0_ DM3/ ADC0_ SE7a	PTE23		TPM2_CH1	UART2_RX		FXIO0_D7	
13	D3	7	9	F4	VDDA	VDDA	VDDA							
14	D3	7	10	G4	VREFH	VREFH	VREFH							
14	_	-	10	G4	VREFO	VREFO_A	VREFO_A							
15	D4	8	11	G3	VREFL	VREFL	VREFL							
16	D4	8	12	F3	VSSA	VSSA	VSSA							
17	_	-	13	H1	PTE29	CMP0_IN5/ ADC0_ SE4b	CMP0_IN5/ ADC0_ SE4b	PTE29		TPM0_CH2	TPM_ Clkino			
18	F2	9	14	H2	PTE30	ADC0_ SE23/ CMP0_IN4	ADC0_ SE23/ CMP0_IN4	PTE30		TPM0_CH3	TPM_ CLKIN1	LPUART1_ TX	LPTMR0_ ALT1	
19	—	-	-	H3	PTE31	DISABLED		PTE31		TPM0_CH4				
20	_	-	15	H4	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
21	-	—	16	H5	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
22	F3	10	17	D3	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
23	F4	11	18	D4	PTA1	DISABLED		PTA1	LPUART0_ RX	TPM2_CH0				
24	E4	12	19	E5	PTA2	DISABLED		PTA2	LPUART0_ TX	TPM2_CH1				
25	E5	13	20	D5	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
26	F5	14	21	G5	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
27	_	-	_	F5	PTA5	DISABLED		PTA5		TPM0_CH2				
28	-	—	-	H6	PTA12	DISABLED		PTA12		TPM1_CH0				
29	—	-	-	G6	PTA13	DISABLED		PTA13		TPM1_CH1				
30	C3	15	22	G7	VDD	VDD	VDD							
31	C4	16	23	H7	VSS	VSS	VSS							
32	F6	17	24	H8	PTA18	EXTAL0	EXTAL0	PTA18		LPUART1_ RX	TPM_ CLKIN0			
33	E6	18	25	G8	PTA19	XTAL0	XTAL0	PTA19		LPUART1_ TX	TPM_ CLKIN1		LPTMR0_ ALT1	
34	D5	19	26	F8	PTA20	RESET_b		PTA20						RESET_b
35	D6	20	27	F7	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0	SPI1_MOSI	SPI1_MISO		
36	C6	21	28	F6	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1	SPI1_MISO	SPI1_MOSI		

Chip signal name	Module signal name	Description	I/O
TPM_CLKIN[1:0]	TPM_EXTCLK	External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.	I
TPM1_CH[1:0]	TPM_CHn	TPM channel (n = 1 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input.	I/O

Table 17. TPM1 signal descriptions

Table 18. TPM2 signal descriptions

Chip signal name	Module signal name	Description	I/O
TPM_CLKIN[1:0]	TPM_EXTCLK	External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.	I
TPM2_CH[1:0]	TPM_CHn	TPM channel (n = 1 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input.	I/O

Table 19. LPTMR0 signal descriptions

Chip signal name	Module signal name	Description	I/O
LPTMR0_ALT[3:1]	LPTMR0_ALTn	Pulse Counter Input pin	I

Table 20. RTC signal descriptions

Chip signal name	Module signal name	Description	I/O
RTC_CLKOUT ¹	RTC_CLKOUT	1 Hz square-wave output or OSCERCLK	0

1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]

4.3.6 Communication interfaces

Table 21. SPI0 signal descriptions

Chip signal name	Module signal name	Description	I/O
SPI0_MISO	MISO	Master Data In, Slave Data Out	I/O

The figure below shows the 64 MAPBGA pinouts.

NOTE

The 64 MAPBGA package for this product is not yet available. However, it is included in Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

Electrical characteristics	Electrical	characteristics
----------------------------	------------	-----------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	at 25 °C and below	_	2.34	3.80		
	• at 50 °C	_	5.04	8.03		
	• at 85 °C	_	20.48	31.97	μA	
	• at 105 °C	_	42.34	65.78		
I _{DD_VLPS}	Very-low-power stop mode current at 1.8 V • at 25 °C and below		2.33	3.80		
	• at 50 °C	_	4.95	7.94		
	• at 85 °C	_	20.18	31.57	μА	
	• at 105 °C	_	41.93	65 17	μ.,	
	Low-leakage stop mode current, all peripheral		11.00	00.17		
	disable, at 3.0 V	_	1.71	1.96	μA	
	 at 25 °C and below 	_	2 59	3 30		
	• at 50 °C	_	4 46	7.06		
	• at 70 °C		7.55	10.15		
	• at 85 °C		17.00	00.67		
	• at 105 °C	_	17.03	22.07		
I _{DD_LLS}	Low-leakage stop mode current with RTC					3
	current, at 3.0 V	_	2.27	2.52	μA	
		_	3.1	3.81		
	• at 50 °C	_	4.99	7.59		
	• at 70 °C	_	8.1	10.70		
	• at 85 °C	_	17.32	22.96		
	• at 105 °C					
I _{DD_LLS}	Low-leakage stop mode current with RTC					3
	• at 25 °C and below	—	2.1	2.35	μΑ	
	• at 50 °C	_	2.89	3.60		
	• at 70 °C	_	4.65	7.25		
	• at 85 °C	—	7.61	10.21		
	• at 105 °C	_	16.38	22.02		
IDD_VLLS3	Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V				uА	
	• at 25 °C and below	-	1.43	1.58	F **' '	
	• at 50 °C	—	2.06	2.52		
	• at 70 °C	-	3.51	5.20		
		-	5.91	7.60		
		_	13.36	17.08		

Table 38.	Power consum	ption operatin	g behaviors	(continued)
		puon operating	g benaviors	(continucu)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 85 °C					
	• at 105 °C					
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with					3
	RTC current, at 3.0 V	_	1.83	1.98	μA	
		_	2.47	2.93		
	• at 50 °C	_	3.96	5.65		
	• at 70 °C	_	6.44	8.13		
	• at 85 °C	_	13.84	17.56		
	• at 105 °C					
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with					3
	 at 25 °C and below 	_	1.68	1.83	μΑ	
	• at 50 °C	—	2.27	2.73		
	• at 70 °C	-	3.66	5.35		
	• at 85 °C	_	5.97	7.66		
	• at 105 °C	_	12.92	16.64		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all					
	• at 25 °C and below	-	0.84	1.06		
	• at 50°C	-	1.19	1.33		
	• at 70°C	-	2.03	2.62	μA	
	• at 85°C	-	3.54	4.13		
	• at 105 °C	—	8.53	9.98		
	Venulow-lookage stop mode 1 current RTC					3
VLLS1	enabled at 3.0 V		1.26	1 / 9		9
	 at 25 °C and below 		1.20	1.40		
	• at 50°C	_		1.75		
	• at 70°C	-	2.5	3.09	μΑ	
	• at 85°C	-	4.07	4.66		
	• at 105 °C	-	9	10.45		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC					3
	enabled at 1.8 V	—	1.08	1.30		
	• at 50°C	_	1.42	1.56		
	- at 50 C	_	2.21	2.80	μΑ	
		_	3.59	4.18		
	• at 85°C	_	8.02	9.47		
	• at 105 °C					

Table 38. Power consumption operating behaviors (continued)

5.2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	—	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
Port rise and fall time		36	ns	3

Table 42. General switching specifications

1. The synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

5.2.4 Thermal specifications

5.2.4.1 Thermal operating requirements Table 43. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

5.2.4.2 Thermal attributes

NOTE

The 48 QFN and 64 MAPBGA packages for this product are not yet available. However, it is included in Package Your Way program for Kinetis MCUs. Visit freescale.com/ KPYW for more details.

Electrical characteristics

Figure 23. Serial wire data timing

5.3.2 System modules

There are no specifications necessary for the device's system modules.

5.3.3 Clock modules

5.3.3.1 MCG-Lite specifications Table 46. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD48M}	Supply current	_	400	500	μA	
f _{irc48m}	Internal reference frequency		48		MHz	
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature		± 0.5	± 1.5	%f _{irc48m}	
Δf _{irc48m_ol_hv}	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1
J _{cyc_irc48m}	Period Jitter (RMS)		35	150	ps	
t _{irc48mst}	Startup time		2	3	μs	2

- 1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard deviation (mean±3 sigma).
- 2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings:
 - MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10, or
 - SIM_SOPT2[PLLFLLSEL]=11

Symbol	Description Min. Typ. Max.		Max.	Unit	Notes	
I _{DD_2M}	Supply current in 2 MHz mode	—	14	17	μA	—
I _{DD_8M}	Supply current in 8 MHz mode	—	30	35	μA	—
f _{IRC_2M}	Output frequency	—	2	—	MHz	_
f _{IRC_8M}	Output frequency	—	8	_	MHz	—
f _{IRC_T_2M}	Output frequency range (trimmed)	—	_	±3	%f _{IRC}	_
f _{IRC_T_8M}	Output frequency range (trimmed)	—	_	±3	%f _{IRC}	_
T _{su_2M}	Startup time	—	_	12.5	μs	—
T _{su_8M}	Startup time	_	_	12.5	μs	

Table 47. IRC8M/2M specification

5.3.3.2 Oscillator electrical specifications

5.3.3.2.1 Oscillator DC electrical specifications Table 48. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)		—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750		ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)		0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

5.3.3.2.2 Oscillator frequency specifications Table 49. Oscillator frequency specifications

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

5.3.4 Memories and memory interfaces

5.3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

5.3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	—
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100		years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2

Table 53. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_j \leq 125 °C.

5.3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

5.3.6 Analog

5.3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

5.3.6.1.1 16-bit ADC operating conditions Table 54. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	—	31/32 × VREFH	V	—
		All other modes	VREFL		VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	—
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	—
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz			5	kΩ	3

5.3.6.1.2 16-bit ADC electrical characteristics

Table 55.	16-bit ADC characteristics	$(V_{REFH} = V_{DDA})$, V _{REFL} = V _{SSA})
-----------	----------------------------	------------------------	--

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	1/f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter for	r sample tim	ies			
TUE	Total	12-bit modes	_	±2	±6.8	LSB ⁴	5
	unadjusted error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non-	12-bit modes	—	±0.7	-1.1 to	LSB ⁴	5
	linearity	 <12-bit modes 	_	±0.2	+1.9		
					–0.3 to 0.5		
INL	Integral non-	12-bit modes	_	±0.9	–2.7 to	LSB ⁴	5
	linearity	• <12-bit modes		+0.4	+1.9		
				±0.4	–0.7 to		
					+0.5		
E _{FS}	Full-scale error	12-bit modes		-4	-5.4	LSB ⁴	$V_{ADIN} =$
		 <12-bit modes 		-1.4	-1.8		V DDA
EQ	Quantization	16-bit modes		-1 to 0	—	LSB ⁴	
		• ≤13-bit modes	—	—	±0.5		
ENOB	Effective	16-bit differential mode					6
	number of bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	—	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	—	bits	
		• Avg = 4	11.4	13.1	—	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	× ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	_	-94	—	dB	
		16-bit single-ended mode	_	-85	_	dB	

5.3.6.1.3 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage		3.6	V	

 Table 56.
 VREF full-range operating requirements

6.1 Hardware design considerations

This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

6.1.1 Printed circuit board recommendations

- Place connectors or cables on one edge of the board and do not place digital circuits between connectors.
- Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground.
- Physically isolate analog circuits from digital circuits if possible.
- Place input filter capacitors as close to the MCU as possible.
- For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP packages; and solder the exposed pad (EP) to ground directly under QFN packages.

6.1.2 Power delivery system

Consider the following items in the power delivery system:

- Use a plane for ground.
- Use a plane for MCU VDD supply if possible.
- Always route ground first, as a plane or continuous surface, and never as sequential segments.
- Route power next, as a plane or traces that are parallel to ground traces.
- Place bulk capacitance, $10 \,\mu\text{F}$ or more, at the entrance of the power plane.
- Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.
- The minimum bypass requirement is to place $0.1 \,\mu\text{F}$ capacitors positioned as near as possible to the package supply pins.
- Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V typically) as the ADC reference.

NOTE

The internal reference voltage output (VREFO) is bonded to the VREFH pin on some packages and to PTE30 on other packages. When the VREFO output is used, a 0.1 μ F capacitor

is required as a filter. Do not connect any other supply voltage to the pin that has VREFO activated.

6.1.3 Analog design

Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be RAS max if fast sampling and high resolution are required. The value of C must be chosen to ensure that the RC time constant is very small compared to the sample period.

Figure 34. RC circuit for ADC input

High voltage measurement circuits require voltage division, current limiting, and over-voltage protection as shown the following figure. The voltage divider formed by R1 - R4 must yield a voltage less than or equal to VREFH. The current must be limited to less than the injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages.

Figure 35. High voltage measurement with an ADC input