

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, FlexIO, SPI, UART/USART
Peripherals	DMA, I ² S, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 11x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl17z64vfm4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the flash configuration field. Below is boot flow chart for this device.

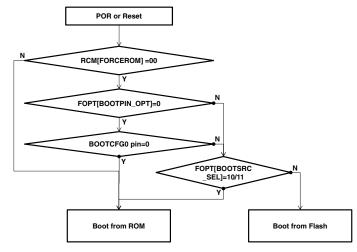


Figure 2. Boot flow chart

The blank chip is default to boot from ROM and remaps the vector table to ROM base address, otherwise, it remaps to flash address.

2.1.6 Clock options

This chip provides a wide range of sources to generate the internal clocks. These sources include internal resistor capacitor (IRC) oscillators, external oscillators, external clock sources, and ceramic resonators. These sources can be configured to provide the required performance and optimize the power consumption.

The IRC oscillators include the high-speed internal resister capacitor (HIRC) oscillator, the low-speed internal resister capacitor (LIRC) oscillator, and the low power oscillator (LPO).

The HIRC oscillator generates a 48 MHz clock.

The LIRC oscillator generates an 8 MHz or 2 MHz clock, and default to 8 MHz system clock on reset. The LIRC oscillator cannot be used in any VLLS modes.

The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode.

9

The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high frequency crystals (1 MHz to 32 MHz), and ceramic resonators (1 MHz to 32 MHz). An external clock source, DC to 48 MHz, can be used as the system clock through the EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768 kHz) on the RTC_CLKIN pin for use with the RTC.

For more details on the clock operations and configurations, see Reference Manual.

The following figure is a high level block diagram of the clock generation.

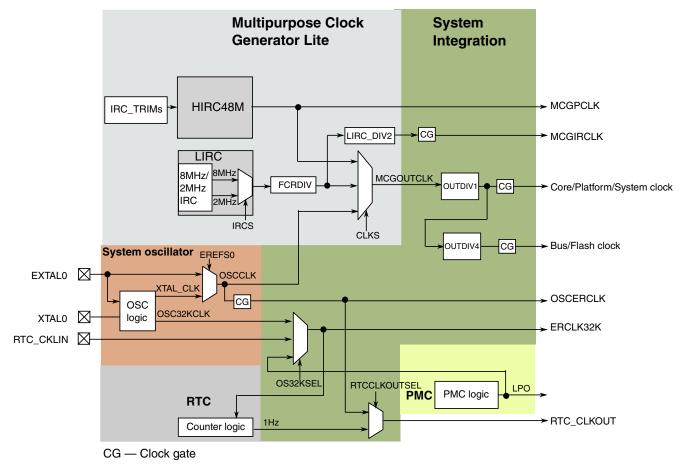


Figure 3. Clock block diagram

In order to provide flexibility, many peripherals can select from multiple clock sources for operation. This enables the peripheral to select a clock that will always be available during operation in various operational modes.

The following table summarizes the clocks associated with each module.

Module	Bus interface clock	Internal clocks	I/O interface clocks					
l ² C1	System Clock	—	I2C1_SCL					
LPUART0, LPUART1	Bus clock	LPUART0 clock	—					
		LPUART1 clock						
UART2	Bus clock	—	—					
FlexIO	Bus clock	FlexIO clock	_					
Human-machine interfaces								
GPIO	Platform clock	_	—					

Table 4.	Module clocks	(continued)

2.1.7 Security

Security state can be enabled via programming flash configuration field (0x40e). After enabling device security, the SWD port cannot access the memory resources of the MCU, and ROM boot loader is also limited to access flash and not allowed to read out flash information via ROM boot loader commands.

Access interface	Secure state	Unsecure operation
SWD port	Cannot access memory source by SWD interface	The debugger can write to the Flash Mass Erase in Progress field of the MDM-AP Control register to trigger a mass erase (Erase All Blocks) command
ROM boot loader Interface (UART/I2C/ SPI)	Limit access to the flash, cannot read out flash content	Send "FlashEraseAllUnsecureh" command or attempt to unlock flash security using the backdoor key

This device features 80-bit unique identification number, which is programmed in factory and loaded to SIM register after power-on reset.

2.1.8 Power management

The Power Management Controller (PMC) expands upon ARM's operational modes of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can be used to optimize current consumption for a wide range of applications. The WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current configuration. For more information on ARM's operational modes, See the ARM® Cortex User Guide.

The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in ARM's Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected.

The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in ARM's Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption.

The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), and Very Low Leakage Stop (VLLS) configurations in ARM's Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power.

The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from LLS and VLLSx modes.

For additional information regarding operational modes, power management, the NVIC, AWIC, or the LLWU, please refer to the Reference Manual.

The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes.

Core mode	Device mode	Descriptions
Run mode	Run	In Run mode, all device modules are operational.
	Very Low Power Run	In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled.
Sleep mode	Wait	In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode.
	Very Low Power Wait	In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode.

 Table 6. Peripherals states in different operational modes

2.2.6 CMP

The device contains one high-speed comparator and two 8-input multiplexers for both the inverting and non-inverting inputs of the comparator. Each CMP input channel connects to both muxes.

The CMP includes one 6-bit DAC, which provides a selectable voltage reference for various user application cases. Besides, the CMP also has several module-to-module interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces.

The CMP has the following features:

- Inputs may range from rail to rail
- Programmable hysteresis control
- Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output
- Selectable inversion on comparator output
- Capability to produce a wide range of outputs such as sampled, digitally filtered
- External hysteresis can be used at the same time that the output filter is used for internal functions
- Two software selectable performance levels: shorter propagation delay at the expense of higher power and Low power with longer propagation delay
- DMA transfer support
- Functional in all modes of operation except in VLLS0 mode
- The filter functions are not available in Stop, VLPS, LLS, or VLLSx modes
- Integrated 6-bit DAC with selectable supply reference source and can be power down to conserve power
- Two 8-to-1 channel mux

2.2.7 RTC

The RTC is an always powered-on block that remains active in all low power modes. The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an external crystal using the oscillator or clock directly from RTC_CLKIN pin.

RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all RTC registers.

The RTC module has the following features

• 32-bit seconds counter with roll-over protection and 32-bit alarm

64 LQFP	36 XFB GA	32 QFN	48 QFN	64 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
37	_	-	29	E7	PTB2	ADC0_ SE12	ADC0_ SE12	PTB2	I2C0_SCL	TPM2_CH0				
38	—		30	E8	PTB3	ADC0_ SE13	ADC0_ SE13	PTB3	I2C0_SDA	TPM2_CH1				
39	-	-	31	E6	PTB16	DISABLED		PTB16	SPI1_MOSI	LPUART0_ RX	TPM_ CLKIN0	SPI1_MISO		
40	-	_	32	D7	PTB17	DISABLED		PTB17	SPI1_MISO	LPUART0_ TX	TPM_ CLKIN1	SPI1_MOSI		
41	—	—	—	D6	PTB18	DISABLED		PTB18		TPM2_CH0				
42	-	-	-	C7	PTB19	DISABLED		PTB19		TPM2_CH1				
43	_	_	33	D8	PTC0	ADC0_ SE14	ADC0_ SE14	PTC0		EXTRG_IN		CMP0_OUT		
44	C5	22	34	C6	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_ SE15	ADC0_ SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0			
45	B6	23	35	B7	PTC2	ADC0_ SE11	ADC0_ SE11	PTC2	I2C1_SDA		TPM0_CH1			
46	B5	24	36	C8	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7	SPI1_SCK	LPUART1_ RX	TPM0_CH2	CLKOUT		
47	Ι	_	-	E3	VSS	VSS	VSS							
48	Ι	—	-	E4	VDD	VDD	VDD							
49	A6	25	37	B8	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	LPUART1_ TX	TPM0_CH3	SPI1_PCS0		
50	A5	26	38	A8	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	
51	B4	27	39	A7	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN		SPI0_MISO		
52	A4	28	40	B6	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO			SPI0_MOSI		
53	-	-	-	A6	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4				
54	_	-	_	B5	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5				
55	_	_	-	B4	PTC10	DISABLED		PTC10	I2C1_SCL					
56	_	_	-	A5	PTC11	DISABLED		PTC11	I2C1_SDA					
57	_	_	41	C3	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0		FXIO0_D0	
58	-	-	42	A4	PTD1	ADC0_ SE5b	ADC0_ SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	
59	_	-	43	C2	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
60	_	—	44	B3	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
61	A3	29	45	A3	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4		FXIO0_D4	
62	B3	30	46	C1	PTD5	ADC0_ SE6b	ADC0_ SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	
63	B2	31	47	B2	PTD6/ LLWU_P15	ADC0_ SE7b	ADC0_ SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_ RX	I2C1_SDA	SPI1_MISO	FXIO0_D6	

64 LQFP	36 XFBGA	32 QFN	48 QFN	64 MAPBGA	Pin name	Driver strength	Default status after POR	Pullup/ pulldown setting after POR	Slew rate after POR	Passive pin filter after POR	Open drain	Pin interrupt
18	F2	9	14	H2	PTE30	ND	Hi-Z	—	SS	N	N	Y
19	_		—	H3	PTE31	ND	Hi-Z	_	SS	N	N	Y
20			15	H4	PTE24	ND	Hi-Z	—	SS	N	N	Y
21	—	—	16	H5	PTE25	ND	Hi-Z	—	SS	N	N	Y
22	F3	10	17	D3	PTA0	ND	L	PD	SS	N	N	Y
23	F4	11	18	D4	PTA1	ND	Hi-Z	—	SS	N	N	Y
24	E4	12	19	E5	PTA2	ND	Hi-Z	—	SS	N	N	Y
25	E5	13	20	D5	PTA3	ND	Н	PU	FS	N	N	Y
26	F5	14	21	G5	PTA4	ND	Н	PU	SS	Y	Ν	Y
27	—	_	—	F5	PTA5	ND	Hi-Z	—	SS	N	N	Y
28		_		H6	PTA12	ND	Hi-Z	—	SS	N	N	Y
29		—	—	G6	PTA13	ND	Hi-Z	—	SS	N	N	Y
30	C3	15	22	G7	VDD	ND	_	—	—	—	—	—
31	C4	16	23	H7	VSS	ND		—	_	_	—	—
32	F6	17	24	H8	PTA18	ND	Hi-Z	—	SS	N	N	Y
33	E6	18	25	G8	PTA19	ND	Hi-Z	—	SS	N	N	Y
34	D5	19	26	F8	PTA20	ND	Н	PU	SS	N	Y	Y
35	D6	20	27	F7	PTB0/LLWU_P5	HD	Hi-Z	—	FS	N	Ν	Y
36	C6	21	28	F6	PTB1	HD	Hi-Z	_	FS	N	N	Y
37		_	29	E7	PTB2	ND	Hi-Z	—	SS	N	N	Y
38	—	—	30	E8	PTB3	ND	Hi-Z	—	SS	N	N	Y
39	—	—	31	E6	PTB16	ND	Hi-Z	—	FS	N	N	Y
40	—	_	32	D7	PTB17	ND	Hi-Z	_	FS	N	N	Y
41		—	_	D6	PTB18	ND	Hi-Z	—	SS	N	Ν	Y
42	—	—	—	C7	PTB19	ND	Hi-Z	—	SS	N	N	Y
43	—	—	33	D8	PTC0	ND	Hi-Z	—	SS	N	N	Y
44	C5	22	34	C6	PTC1/ LLWU_P6/ RTC_CLKIN	ND	Hi-Z		SS	N	N	Y
45	B6	23	35	B7	PTC2	ND	Hi-Z	_	SS	N	N	Y

Properties	Abbreviation	Descriptions
	н	High level
	L	Low level
Pullup/ pulldown setting	PD	Pullup
after POR	PU	Pulldown
Slew rate after POR	FS	Fast slew rate
	SS	Slow slew rate
Passive Pin Filter after	N	Disabled
POR	Y	Enabled
Open drain	N	Disabled ¹
	Y	Enabled ²
Pin interrupt	Y	Yes

1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain configurable.

2. PTA20 is a true open drain pin that must never be pulled above VDD.

4.3 Module Signal Description Tables

The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction.

4.3.1 Core modules

Table 9.	SWD	signal	descriptions
----------	-----	--------	--------------

Chip signal name	Module signal name	Description	I/O
SWD_DIO	SWD_DIO	Serial Wire Debug Data Input/Output	Input /
		The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally.	Output
SWD_CLK	SWD_CLK	Serial Wire Clock	Input
		This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally.	

4.3.2 System modules

Chip signal name	Module signal name	Description	I/O
NMI	_	Non-maskable interrupt NOTE: Driving the <u>NMI</u> signal low forces a non-maskable interrupt, if the <u>NMI</u> function is selected on the corresponding pin.	I
RESET	—	Reset bidirectional signal	I/O
VDD	—	MCU power	I
VSS	_	MCU ground	I

 Table 10.
 System signal descriptions

Table 11. LLWU signal descriptions

Chip signal name	Module signal name	Description	I/O
LLWU_Pn	LLWU_Pn	Wakeup inputs (n = 5, 6, 7, 8, 9, 10, 14, 15)	I

4.3.3 Clock modules

Table 12. OSC signal descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL0	EXTAL	External clock/Oscillator input	I
XTAL0	XTAL	Oscillator output	0

4.3.4 Analog

This table presents the signal descriptions of the ADC0 module.

Chip signal name	Module signal name	Description	I/O
ADC0_DPn	DADP3-DADP0	Differential Analog Channel Inputs	I
ADC0_DMn	DADM3-DADM0	Differential Analog Channel Inputs	I
ADC0_SEn	ADn	Single-Ended Analog Channel Inputs	I
VREFH	V _{REFSH}	Voltage Reference Select High	I

 Table 13. ADC0 signal descriptions

Chip signal name	Module signal name	Description	I/O
TPM_CLKIN[1:0]	TPM_EXTCLK	External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.	-
TPM1_CH[1:0]	TPM_CHn	TPM channel (n = 1 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input.	I/O

Table 17. TPM1 signal descriptions

Table 18. TPM2 signal descriptions

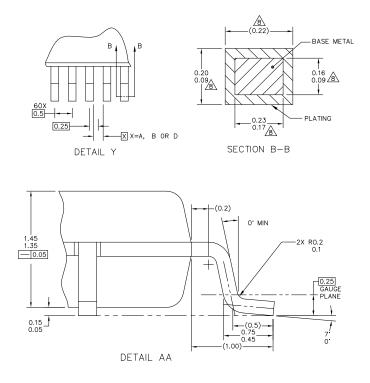
Chip signal name	Module signal name	Description	I/O
TPM_CLKIN[1:0]	TPM_EXTCLK	External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.	Ι
TPM2_CH[1:0]	TPM_CHn	TPM channel (n = 1 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input.	I/O

Table 19. LPTMR0 signal descriptions

Chip signal name	Module signal name	Description	I/O
LPTMR0_ALT[3:1]	LPTMR0_ALTn	Pulse Counter Input pin	I

Table 20. RTC signal descriptions

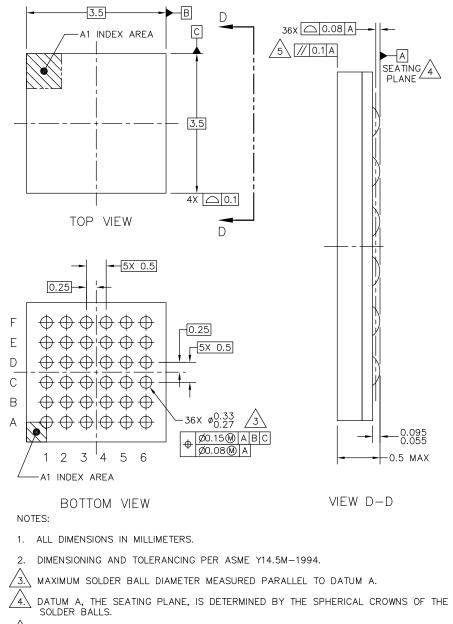
Chip signal name	Module signal name	Description	I/O
RTC_CLKOUT ¹	RTC_CLKOUT	1 Hz square-wave output or OSCERCLK	0


1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]

4.3.6 Communication interfaces

Table 21. SPI0 signal descriptions

Chip signal name	Module signal name	Description	I/O
SPI0_MISO	MISO	Master Data In, Slave Data Out	I/O


NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- $\underline{\bigtriangleup}$ dimensions to be determined at seating plane c.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 MM AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 MM.
- THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- \triangle exact shape of each corner is optional.

Figure 12. 64-pin LQFP package dimensions 2

Pinouts

25. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Figure 16. 36-pin XFBGA package dimension

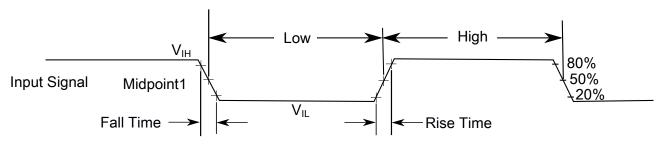

Symbol	Description	Min.	Max.	Unit
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

 Table 33.
 Voltage and current absolute operating ratings (continued)

5.2 General

5.2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 19. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30$ pF loads
- Slew rate disabled
- Normal drive strength

5.2.2 Nonswitching electrical specifications

Symbol	Description	•		``	,	Notos
Symbol	Description	Min.	Тур.	Max.	Unit	Notes
IDD_RUN	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 105 °C	_	3.39 3.57	3.53 3.71	mA	
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 105 °C	_	2.36 2.53	2.48 2.66	mA	
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 105 °C		1.84 2	1.93 2.10	mA	
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C • at 105 °C	_	4.98 5.16	5.18 5.37	mA	
I _{DD_VLPRCO}	Very-low-power run core mark in flash in compute operation mode— 8 MHz LIRC mode, 4 MHz core/1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	710	752.6	μA	
I _{DD_VLPRCO}	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	251	376.5	μΑ	
I _{DD_VLPRCO}	Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C		115	143.75	μA	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	91	136.5	μΑ	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	34	51	μA	

Table 38.	Power consum	ption operating	behaviors	(continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C		212	318	μA	
I _{DD_VLPR}	Very-low-power run mode current—8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	302	392.6	μA	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V • at 25 °C	_	1.81	2.12	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V • at 25 °C	_	1.27	1.46	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C	_	156	193.2	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C	_	63	100.8	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C	_	32	48	μA	
IDD_PSTOP2	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, V _{DD} = 3.0 V • at 25 °C		1.68	2.05	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, V _{DD} = 3.0 V • at 25 °C		1.05	1.26	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below		158.1	175.81		
	• at 50 °C	_	171	180.24		
	• at 85 °C	—	203.8	228.64	μA	
L	• at 105 °C		251.7	300.06		

Table 38. Power consumption operating behaviors (conti
--

Symbol	Description			Tempera	ature (°C)		Un
		-40	25	50	70	85	105	
	entering all modes with the crystal	440	490	540	560	570	580	
	enabled. • VLLS1	490	490	540	560	570	680	
	• VLLS1	510	560	560	560	610	680	
	• LLS	510	560	560	560	610	680	n A
	VLPS STOP	010						
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	
I _{CMP}	CMP peripheral adder measured by	16	16	16	16	16	16	n/ µ/
	placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.							
IRTC	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	430	500	500	530	530	760	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	IRC8M (8 MHz internal reference	96	96	96	96	96	96	μA
	clock)IRC2M (2 MHz internal reference clock)	31	31	31	31	31	31	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • IRC8M (8 MHz internal reference							μι
	clock)IRC2M (2 MHz internal reference clock)	130	130	130	130	130	130	

 Table 39. Low power mode peripheral adders — typical value (continued)

5.3.6.1.2 16-bit ADC electrical characteristics

Table 55.	16-bit ADC characteristics	$(V_{REFH} = V_{DDA})$, V _{REFL} = V _{SSA})
-----------	----------------------------	------------------------	--

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/f _{ADACK}
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	
f _{ADACK}		 ADLPC = 0, ADHSC = 0 	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter for	r sample tim	nes			
TUE	Total	12-bit modes	_	±2	±6.8	LSB ⁴	5
	unadjusted error	<12-bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity	 <12-bit modes 	_	±0.2	-0.3 to		
					0.5		
INL	Integral non- linearity	12-bit modes		±0.9	-2.7 to +1.9	LSB ⁴	5
linearity	lineanty	 <12-bit modes 	_	±0.4	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes		-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes		-1 to 0	_	LSB ⁴	
error	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective	16-bit differential mode					6
	number of bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9		bits	
		• Avg = 4	11.4	13.1	_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	_	-94	_	dB	
		16-bit single-ended mode	_	-85		dB	

Electrical characteristics

Num.	Symbol	Description	Min.	Max.	Unit	Note
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2.5	_	ns	—
7	t _{HI}	Data hold time (inputs)	3.5	—	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	31	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 62. SPI slave mode timing on slew rate disabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

3. Time to data active from high-impedance state

4. Hold time to high-impedance state

Table 63. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	—
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

88

- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

For all other partner-developed software and tools, visit http://www.freescale.com/ partners.

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL17
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm)¹ LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm)¹ DA = 36 XFBGA (3.5 mm x 3.5 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz

 Table 67. Part number fields description

Field	Description	Values
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

Table 67. Part number fields description (continued)

1. This package for this product is not yet available. However, it is included in Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

7.4 Example

This is an example part number:

MKL17Z64VLH4

8 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
4	28 January/ 2015	 Initial public release Updated the features and completed the ordering information. Updated Table 9 - Power consumption operating behaviors with Max. values. Added a note before Table 9. Updated Table 17 - IRC48M specifications. Updated Table 28. VREF full-range (-40 – 105 °C) operating behaviors with Min., Max., and Typical values. Added Table 36 - I²C 1Mbit/s timing.
4.1	2 February/ 2015	Moved the ordering information out of the front page to be a separate chapter.Added Module signal description table and Package dimension sections.
5	21 April/2015	 32-pin QFN package is now standard part, added Marking information and thermal attributes of this package Added Overview chapter Added Memory map chapter Added Pin properties Added a note to the t_{rd1all} in Flash timing specifications — commands Added a note to the Maximum of f_{SCL} in the fast mode in Inter-Integrated Circuit Interface (I2C) timing Added a footnote to the Δfirc48m_ol_hv in MCG-Lite specifications Added Design considerations chapter

Table 68. Revision history