



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                               |
|----------------------------|--------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                                      |
| Core Size                  | 32-Bit Single-Core                                                                   |
| Speed                      | 120MHz                                                                               |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, IrDA, SD, SPI, UART/USART, USB, USB OTG |
| Peripherals                | DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT                                            |
| Number of I/O              | 100                                                                                  |
| Program Memory Size        | 1MB (1M x 8)                                                                         |
| Program Memory Type        | FLASH                                                                                |
| EEPROM Size                | -                                                                                    |
| RAM Size                   | 256K x 8                                                                             |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                                         |
| Data Converters            | A/D 41x16b; D/A 2x12b                                                                |
| Oscillator Type            | Internal                                                                             |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                                   |
| Mounting Type              | Surface Mount                                                                        |
| Package / Case             | 144-LQFP                                                                             |
| Supplier Device Package    | 144-LQFP (20x20)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mk63fn1m0vlq12r              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Symbol               | Description                                                    | Min.                  | Max.                  | Unit |
|----------------------|----------------------------------------------------------------|-----------------------|-----------------------|------|
| V <sub>DD</sub>      | Digital supply voltage                                         | -0.3                  | 3.8                   | V    |
| I <sub>DD</sub>      | Digital supply current                                         | —                     | 185                   | mA   |
| V <sub>DIO</sub>     | Digital input voltage (except RESET, EXTAL, and XTAL)          | -0.3                  | 5.5                   | V    |
| V <sub>AIO</sub>     | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage     | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| I <sub>D</sub>       | Maximum current single pin limit (applies to all digital pins) | -25                   | 25                    | mA   |
| V <sub>DDA</sub>     | Analog supply voltage                                          | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3 | V    |
| V <sub>USB0_DP</sub> | USB0_DP input voltage                                          | -0.3                  | 3.63                  | V    |
| V <sub>USB0_DM</sub> | USB0_DM input voltage                                          | -0.3                  | 3.63                  | V    |
| V <sub>REGIN</sub>   | USB regulator input                                            | -0.3                  | 6.0                   | V    |
| V <sub>BAT</sub>     | RTC battery supply voltage                                     | -0.3                  | 3.8                   | V    |

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

## 2 General

## 2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is V\_{IL} + (V\_{IH} - V\_{IL}) / 2

Figure 2. Input signal measurement reference

# 2.2 Nonswitching electrical specifications

| Symbol                | Description                                                                    | Min. | Тур.  | Max.   | Unit | Notes |
|-----------------------|--------------------------------------------------------------------------------|------|-------|--------|------|-------|
|                       | • @ 70°C                                                                       | —    | 114.9 | 196.49 | μA   |       |
|                       | • @ 105°C                                                                      |      |       |        |      |       |
| I <sub>DD_VLLS3</sub> | Very low-leakage stop mode 3 current at 3.0 V                                  |      |       |        |      |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                              |      | 4.4   | 5.54   | μA   |       |
|                       | • @ 70°C                                                                       | _    | 21    | 36.46  | μA   |       |
|                       | • @ 105°C                                                                      | —    | 90.2  | 150.17 | μA   |       |
| I <sub>DD_VLLS2</sub> | Very low-leakage stop mode 2 current at 3.0 V                                  |      |       |        |      |       |
|                       | • @ -40 to 25°C                                                                |      | 2.1   | 2.34   | μA   |       |
|                       | • @ 70°C                                                                       |      | 6.84  | 10.36  | μA   |       |
|                       | • @ 105°C                                                                      | _    | 29.4  | 46.74  | μA   |       |
| I <sub>DD_VLLS1</sub> | Very low-leakage stop mode 1 current at 3.0 V                                  |      |       |        |      |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                              | _    | 0.817 | 0.86   | μA   |       |
|                       | • @ 70°C                                                                       | _    | 3.97  | 5.77   | μA   |       |
|                       | • @ 105°C                                                                      | —    | 21.3  | 33.99  | μA   |       |
| I <sub>DD_VLLS0</sub> | Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled  |      |       |        |      |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                              |      | 0.52  | 0.62   | μA   |       |
|                       | • @ 70°C                                                                       |      | 3.67  | 5.7    | μA   |       |
|                       | • @ 105°C                                                                      | —    | 21.20 | 34.9   | μA   |       |
| I <sub>DD_VLLS0</sub> | Very low-leakage stop mode 0 current at 3.0 V with POB detect circuit disabled |      |       |        |      |       |
|                       | • @ -40 to 25°C                                                                |      | 0.339 | 0.412  | μA   |       |
|                       | • @ 70°C                                                                       |      | 3.36  | 4.2    | μA   |       |
|                       | • @ 105°C                                                                      | —    | 20.3  | 29.9   | μA   |       |
| I <sub>DD_VBAT</sub>  | Average current with RTC and 32 kHz disabled                                   |      |       |        |      |       |
|                       | • @ 1.8 V                                                                      |      |       |        |      |       |
|                       | • @ -40 to 25°C                                                                |      | 0.16  | 0.10   |      |       |
|                       | • @ 70°C                                                                       | —    | 0.10  | 0.19   |      |       |
|                       | • @ 105°C                                                                      |      | 0.55  | 0.72   | μΑ   |       |
|                       | • @ 3.0 V                                                                      |      | 2.0   | 3.00   | μΑ   |       |
|                       | • @ -40 to 25°C                                                                | —    | 0.18  | 0.21   | μA   |       |
|                       | • @ 70°C                                                                       | —    | 0.66  | 0.86   | μA   |       |
|                       | • @ 105°C                                                                      | —    | 2.92  | 4.30   | μA   |       |
| I <sub>DD_VBAT</sub>  | Average current when CPU is not accessing<br>RTC registers                     |      |       |        |      | 10    |

Table 6. Power consumption operating behaviors (continued)



Figure 3. Run mode supply current vs. core frequency

| Board type | Symbol | Description    | 144 LQFP | 144 MAPBGA | Unit | Notes |
|------------|--------|----------------|----------|------------|------|-------|
|            |        | outside center |          |            |      |       |
|            |        | (natural       |          |            |      |       |
|            |        | convection)    |          |            |      |       |

Table 13. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

# **3** Peripheral operating requirements and behaviors

## 3.1 Core modules

## 3.1.1 Debug trace timing specifications

#### Table 14. Debug trace operating behaviors

| Symbol           | Description              | Min.      | Max.      | Unit |
|------------------|--------------------------|-----------|-----------|------|
| T <sub>cyc</sub> | Clock period             | Frequency | dependent | MHz  |
| T <sub>wl</sub>  | Low pulse width          | 2         | —         | ns   |
| T <sub>wh</sub>  | High pulse width         | 2         | _         | ns   |
| T <sub>r</sub>   | Clock and data rise time | —         | 3         | ns   |
| T <sub>f</sub>   | Clock and data fall time | —         | 3         | ns   |
| Ts               | Data setup               | 1.5       | —         | ns   |
| T <sub>h</sub>   | Data hold                | 1         | —         | ns   |

| Symbol | Description                             | Min. | Max. | Unit |
|--------|-----------------------------------------|------|------|------|
| J11    | TCLK low to TDO data valid              | —    | 17   | ns   |
| J12    | TCLK low to TDO high-Z                  | —    | 17   | ns   |
| J13    | TRST assert time                        | 100  | _    | ns   |
| J14    | TRST setup time (negation) to TCLK high | 8    | —    | ns   |

 Table 15. JTAG limited voltage range electricals (continued)

| Symbol | Description                                        | Min. | Max. | Unit |
|--------|----------------------------------------------------|------|------|------|
|        | Operating voltage                                  | 1.71 | 3.6  | V    |
| J1     | TCLK frequency of operation                        |      |      | MHz  |
|        | Boundary Scan                                      | 0    | 10   |      |
|        | JTAG and CJTAG                                     | 0    | 20   |      |
|        | Serial Wire Debug                                  | 0    | 40   |      |
| J2     | TCLK cycle period                                  | 1/J1 | —    | ns   |
| J3     | TCLK clock pulse width                             |      |      |      |
|        | Boundary Scan                                      | 50   | —    | ns   |
|        | JTAG and CJTAG                                     | 25   | —    | ns   |
|        | Serial Wire Debug                                  | 12.5 | —    | ns   |
| J4     | TCLK rise and fall times                           | —    | 3    | ns   |
| J5     | Boundary scan input data setup time to TCLK rise   | 20   | —    | ns   |
| J6     | Boundary scan input data hold time after TCLK rise | 0    | _    | ns   |
| J7     | TCLK low to boundary scan output data valid        |      | 25   | ns   |
| J8     | TCLK low to boundary scan output high-Z            | _    | 25   | ns   |
| J9     | TMS, TDI input data setup time to TCLK rise        | 8    |      | ns   |
| J10    | TMS, TDI input data hold time after TCLK rise      | 2.9  |      | ns   |
| J11    | TCLK low to TDO data valid                         | _    | 22.1 | ns   |
| J12    | TCLK low to TDO high-Z                             |      | 22.1 | ns   |
| J13    | TRST assert time                                   | 100  |      | ns   |
| J14    | TRST setup time (negation) to TCLK high            | 8    | —    | ns   |

Table 16. JTAG full voltage range electricals



Figure 7. Test clock input timing

| Symbol                | Description                    | Min.   | Тур. | Max.                                                          | Unit | Notes |
|-----------------------|--------------------------------|--------|------|---------------------------------------------------------------|------|-------|
|                       | • f <sub>vco</sub> = 48 MHz    | —      | 1350 | —                                                             | ps   |       |
|                       | • f <sub>vco</sub> = 120 MHz   | _      | 600  |                                                               | ps   |       |
| D <sub>lock</sub>     | Lock entry frequency tolerance | ± 1.49 | —    | ± 2.98                                                        | %    |       |
| D <sub>unl</sub>      | Lock exit frequency tolerance  | ± 4.47 | —    | ± 5.97                                                        | %    |       |
| t <sub>pll_lock</sub> | Lock detector detection time   | _      | _    | 150 × 10 <sup>-6</sup><br>+ 1075(1/<br>f <sub>pll_ref</sub> ) | S    | 10    |

Table 17. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco\_1</sub>) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

## 3.3.2 IRC48M specifications

#### Table 18. IRC48M specifications

| Symbol                     | Description                                                                                                                                                                                                                         | Min. | Тур.           | Max.           | Unit                 | Notes |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|----------------|----------------------|-------|
| V <sub>DD</sub>            | Supply voltage                                                                                                                                                                                                                      | 1.71 | —              | 3.6            | V                    |       |
| I <sub>DD48M</sub>         | Supply current                                                                                                                                                                                                                      | _    | 400            | 500            | μA                   |       |
| f <sub>irc48m</sub>        | Internal reference frequency                                                                                                                                                                                                        | —    | 48             | _              | MHz                  |       |
| Δf <sub>irc48m_ol_lv</sub> | Open loop total deviation of IRC48M frequency at<br>low voltage (VDD=1.71V-1.89V) over full<br>temperature<br>• Regulator disable<br>(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)<br>• Regulator enable<br>(USB_CLK_RECOVER_IRC_EN[REG_EN]=1) | _    | ± 0.5<br>± 0.5 | ± 1.5<br>± 2.0 | %f <sub>irc48m</sub> | 1     |
| Δf <sub>irc48m_ol_hv</sub> | Open loop total deviation of IRC48M frequency at<br>high voltage (VDD=1.89V-3.6V) over full<br>temperature<br>• Regulator enable<br>(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)                                                              |      | ± 0.5          | ± 1.5          | %f <sub>irc48m</sub> | 1     |

Table continues on the next page ...

| Symbol                     | Description                                                                                                                                                   | Min. | Тур.  | Max.  | Unit                 | Notes |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|----------------------|-------|
| ∆f <sub>irc48m_ol_hv</sub> | Open loop total deviation of IRC48M frequency at<br>high voltage (VDD=1.89V-3.6V) over 0 to 85 °C<br>• Regulator enable<br>(USB_CLK_RECOVER_IRC_EN[REG_EN]=1) | _    | ± 0.5 | ± 1.0 | %f <sub>irc48m</sub> | 1     |
| ∆f <sub>irc48m_cl</sub>    | Closed loop total deviation of IRC48M frequency<br>over voltage and temperature                                                                               | _    | _     | ± 0.1 | %f <sub>host</sub>   | 2     |
| J <sub>cyc_irc48m</sub>    | Period Jitter (RMS)                                                                                                                                           | _    | 35    | 150   | ps                   |       |
| t <sub>irc48mst</sub>      | Startup time                                                                                                                                                  |      | 2     | 3     | μs                   | 3     |

### Table 18. IRC48M specifications (continued)

1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard deviation (mean ± 3 sigma)

2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB\_CLK\_RECOVER\_IRC\_CTRL[CLOCK\_RECOVER\_EN]=1, USB\_CLK\_RECOVER\_IRC\_EN[IRC\_EN]=1).

IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by setting USB\_CLK\_RECOVER\_IRC\_EN[IRC\_EN]=1.

## 3.3.3 Oscillator electrical specifications

### 3.3.3.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

| Symbol             | Description                             | Min. | Тур. | Max. | Unit | Notes |
|--------------------|-----------------------------------------|------|------|------|------|-------|
| V <sub>DD</sub>    | Supply voltage                          | 1.71 | —    | 3.6  | V    |       |
| I <sub>DDOSC</sub> | Supply current — low-power mode (HGO=0) |      |      |      |      | 1     |
|                    | • 32 kHz                                | _    | 500  | —    | nA   |       |
|                    | • 4 MHz                                 | _    | 200  | _    | μΑ   |       |
|                    | • 8 MHz (RANGE=01)                      | _    | 300  | _    | μΑ   |       |
|                    | • 16 MHz                                | _    | 950  | _    | μA   |       |
|                    | • 24 MHz                                | _    | 1.2  | _    | mA   |       |
|                    | • 32 MHz                                | _    | 1.5  | -    | mA   |       |
| IDDOSC             | Supply current — high-gain mode (HGO=1) |      |      |      |      | 1     |
|                    | • 32 kHz                                | _    | 25   | _    | μΑ   |       |
|                    | • 4 MHz                                 | _    | 400  | _    | μΑ   |       |
|                    | • 8 MHz (RANGE=01)                      | _    | 500  | _    | μΑ   |       |
|                    | • 16 MHz                                | _    | 2.5  | _    | mA   |       |
|                    | • 24 MHz                                | _    | 3    | _    | mA   |       |
|                    | • 32 MHz                                | _    | 4    | _    | mA   |       |

Table continues on the next page...

| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| C <sub>x</sub>               | EXTAL load capacitance                                                                                 | _    | _               | _    |      | 2, 3  |
| Cy                           | XTAL load capacitance                                                                                  | _    | _               | _    |      | 2, 3  |
| R <sub>F</sub>               | Feedback resistor — low-frequency, low-power mode (HGO=0)                                              | —    | _               | —    | MΩ   | 2, 4  |
|                              | Feedback resistor — low-frequency, high-gain mode (HGO=1)                                              | —    | 10              | —    | MΩ   |       |
|                              | Feedback resistor — high-frequency, low-power mode (HGO=0)                                             | —    | —               | —    | MΩ   |       |
|                              | Feedback resistor — high-frequency, high-gain mode (HGO=1)                                             | _    | 1               |      | MΩ   |       |
| R <sub>S</sub>               | Series resistor — low-frequency, low-power<br>mode (HGO=0)                                             | —    | _               | —    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode (HGO=1)                                                | —    | 200             | —    | kΩ   |       |
|                              | Series resistor — high-frequency, low-power<br>mode (HGO=0)                                            | _    | _               | —    | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                            |      |                 |      |      |       |
|                              |                                                                                                        | —    | 0               | —    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) | _    | V <sub>DD</sub> |      | V    |       |

#### Table 19. Oscillator DC electrical specifications (continued)

1.  $V_{DD}$ =3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3.  $C_x$  and  $C_y$  can be provided by using either integrated capacitors or external components.

4. When low-power mode is selected, R<sub>F</sub> is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

| Symbol                       | Description                                   | Min. | Тур. | Max. | Unit |
|------------------------------|-----------------------------------------------|------|------|------|------|
| C <sub>para</sub>            | Parasitical capacitance of EXTAL32 and XTAL32 | _    | 5    | 7    | pF   |
| V <sub>pp</sub> <sup>1</sup> | Peak-to-peak amplitude of oscillation         | —    | 0.6  | —    | V    |

|--|

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

### 3.3.4.2 32 kHz oscillator frequency specifications Table 22. 32 kHz oscillator frequency specifications

| Symbol                  | Description                               | Min. | Тур.   | Max.             | Unit | Notes |
|-------------------------|-------------------------------------------|------|--------|------------------|------|-------|
| f <sub>osc_lo</sub>     | Oscillator crystal                        | —    | 32.768 | —                | kHz  |       |
| t <sub>start</sub>      | Crystal start-up time                     | —    | 1000   | —                | ms   | 1     |
| f <sub>ec_extal32</sub> | Externally provided input clock frequency | —    | 32.768 | —                | kHz  | 2     |
| V <sub>ec_extal32</sub> | Externally provided input clock amplitude | 700  | —      | V <sub>BAT</sub> | mV   | 2, 3  |

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and  $V_{IH}$  and  $V_{IL}$  specifications do not apply. The voltage of the applied clock must be within the range of  $V_{SS}$  to  $V_{BAT}$ .

## 3.4 Memories and memory interfaces

## 3.4.1 Flash (FTFE) electrical specifications

This section describes the electrical characteristics of the FTFE module.

### 3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                    | Description                                    | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm8</sub>       | Program Phrase high-voltage time               | _    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub>     | Erase Flash Sector high-voltage time           | _    | 13   | 113  | ms   | 1     |
| t <sub>hversblk512k</sub> | Erase Flash Block high-voltage time for 512 KB | _    | 416  | 3616 | ms   | 1     |

 Table 23.
 NVM program/erase timing specifications



Figure 13. FlexBus write timing diagram

# 3.5 Security and integrity modules

## 3.5.1 Drylce Tamper Electrical Specifications

Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local NXP sales representative.

## 3.6 Analog

## 3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 30 and Table 31 are achievable on the differential pins ADCx\_DP0, ADCx\_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

|                   |                                           |                                                                                               | -                 |                   |                   |      |       |
|-------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|------|-------|
| Symbol            | Description                               | Conditions                                                                                    | Min.              | Typ. <sup>1</sup> | Max.              | Unit | Notes |
| V <sub>DDA</sub>  | Supply voltage                            | Absolute                                                                                      | 1.71              | —                 | 3.6               | V    |       |
| $\Delta V_{DDA}$  | Supply voltage                            | Delta to V <sub>DD</sub> (V <sub>DD</sub> – V <sub>DDA</sub> )                                | -100              | 0                 | +100              | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage                            | Delta to V <sub>SS</sub> (V <sub>SS</sub> – V <sub>SSA</sub> )                                | -100              | 0                 | +100              | mV   | 2     |
| V <sub>REFH</sub> | ADC reference voltage high                |                                                                                               | 1.13              | V <sub>DDA</sub>  | V <sub>DDA</sub>  | V    |       |
| V <sub>REFL</sub> | ADC reference voltage low                 |                                                                                               | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V    |       |
| V <sub>ADIN</sub> | Input voltage                             |                                                                                               | V <sub>REFL</sub> | —                 | V <sub>REFH</sub> | V    |       |
| C <sub>ADIN</sub> | Input<br>capacitance                      | 16-bit mode                                                                                   | —                 | 8                 | 10                | pF   |       |
|                   |                                           | <ul> <li>8-bit / 10-bit / 12-bit<br/>modes</li> </ul>                                         | _                 | 4                 | 5                 |      |       |
| R <sub>ADIN</sub> | Input series<br>resistance                |                                                                                               |                   | 2                 | 5                 | kΩ   |       |
| R <sub>AS</sub>   | Analog source<br>resistance<br>(external) | 13-bit / 12-bit modes<br>f <sub>ADCK</sub> < 4 MHz                                            |                   | _                 | 5                 | kΩ   | 3     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | ≤ 13-bit mode                                                                                 | 1.0               | _                 | 18.0              | MHz  | 4     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | onversion 16-bit mode requency                                                                |                   |                   | 12.0              | MHz  | 4     |
| C <sub>rate</sub> | ADC conversion                            | ≤ 13-bit modes                                                                                |                   |                   |                   |      | 5     |
|                   | rate                                      | No ADC hardware averaging<br>Continuous conversions<br>enabled, subsequent<br>conversion time | 20.000            | _                 | 818.330           | ksps |       |

#### 3.6.1.1 16-bit ADC operating conditions Table 30. 16-bit ADC operating conditions

Table continues on the next page...

| Symbol            | Description    | Conditions                                                       | Min.   | Typ. <sup>1</sup> | Max.    | Unit | Notes |
|-------------------|----------------|------------------------------------------------------------------|--------|-------------------|---------|------|-------|
| C <sub>rate</sub> | ADC conversion | 16-bit mode                                                      |        |                   |         |      | 5     |
|                   | rate           | No ADC hardware averaging                                        | 37.037 | —                 | 461.467 | ksps |       |
|                   |                | Continuous conversions<br>enabled, subsequent<br>conversion time |        |                   |         |      |       |

 Table 30.
 16-bit ADC operating conditions (continued)

- Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R<sub>AS</sub>/C<sub>AS</sub> time constant should be kept to < 1 ns.</li>
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.



Figure 14. ADC input impedance equivalency diagram

### 3.6.1.2 16-bit ADC electrical characteristics



Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

## 3.6.3 12-bit DAC electrical characteristics

### 3.6.3.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

| Symbol            | Desciption              | Min. | Max. | Unit | Notes |
|-------------------|-------------------------|------|------|------|-------|
| V <sub>DDA</sub>  | Supply voltage          | 1.71 | 3.6  | V    |       |
| V <sub>DACR</sub> | Reference voltage       | 1.13 | 3.6  | V    | 1     |
| CL                | Output load capacitance | —    | 100  | pF   | 2     |
| ١L                | Output load current     | —    | 1    | mA   |       |

1. The DAC reference can be selected to be  $V_{\text{DDA}}$  or  $V_{\text{REFH}}.$ 

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

#### Peripheral operating requirements and behaviors

V<sub>DDA</sub> = 3.0 V, reference select set for V<sub>DDA</sub> (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device



Figure 19. Typical INL error vs. digital code

## 3.8.6 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

| Num | Description                         | Min.                          | Max.                      | Unit | Notes |
|-----|-------------------------------------|-------------------------------|---------------------------|------|-------|
|     | Operating voltage                   | 2.7                           | 3.6                       | V    |       |
|     | Frequency of operation              | —                             | 30                        | MHz  |       |
| DS1 | DSPI_SCK output cycle time          | 2 x t <sub>BUS</sub>          | —                         | ns   |       |
| DS2 | DSPI_SCK output high/low time       | (t <sub>SCK</sub> /2) – 2     | (t <sub>SCK</sub> /2) + 2 | ns   |       |
| DS3 | DSPI_PCSn valid to DSPI_SCK delay   | (t <sub>BUS</sub> x 2) –<br>2 | _                         | ns   | 1     |
| DS4 | DSPI_SCK to DSPI_PCSn invalid delay | (t <sub>BUS</sub> x 2) –<br>2 | _                         | ns   | 2     |
| DS5 | DSPI_SCK to DSPI_SOUT valid         | —                             | 8.5                       | ns   |       |
| DS6 | DSPI_SCK to DSPI_SOUT invalid       | -2                            | _                         | ns   |       |
| DS7 | DSPI_SIN to DSPI_SCK input setup    | 15                            | _                         | ns   |       |
| DS8 | DSPI_SCK to DSPI_SIN input hold     | 0                             | _                         | ns   |       |

 Table 44. Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx\_CTARn[PSSCK] and SPIx\_CTARn[CSSCK].

2. The delay is programmable in SPIx\_CTARn[PASC] and SPIx\_CTARn[ASC].





#### Peripheral operating requirements and behaviors



### Figure 30. I<sup>2</sup>S timing — master mode

| Num | Description                                                    | Min. | Max. | Unit        |
|-----|----------------------------------------------------------------|------|------|-------------|
|     | Operating voltage                                              | 2.7  | 3.6  | V           |
| S11 | I2S_BCLK cycle time (input)                                    | 80   | —    | ns          |
| S12 | I2S_BCLK pulse width high/low (input)                          | 45%  | 55%  | MCLK period |
| S13 | I2S_FS input setup before I2S_BCLK                             | 5    | —    | ns          |
| S14 | I2S_FS input hold after I2S_BCLK                               | 2    | _    | ns          |
| S15 | I2S_BCLK to I2S_TXD/I2S_FS output valid                        | —    | 19.5 | ns          |
| S16 | I2S_BCLK to I2S_TXD/I2S_FS output invalid                      | 0    | —    | ns          |
| S17 | I2S_RXD setup before I2S_BCLK                                  | 5    | _    | ns          |
| S18 | I2S_RXD hold after I2S_BCLK                                    | 2    | _    | ns          |
| S19 | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup> |      | 21   | ns          |

### Table 52. I<sup>2</sup>S slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear



Figure 34. I2S/SAI timing — master modes

### Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)                        | 250  | —    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)              | 45%  | 55%  | MCLK period |
| S13  | I2S_TX_FS/I2S_RX_FS input setup before<br>I2S_TX_BCLK/I2S_RX_BCLK | 30   | _    | ns          |
| S14  | I2S_TX_FS/I2S_RX_FS input hold after<br>I2S_TX_BCLK/I2S_RX_BCLK   | 11   | _    | ns          |
| S15  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid                     | —    |      | ns          |
| S16  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid                   | 0    | —    | ns          |
| S17  | I2S_RXD setup before I2S_RX_BCLK                                  | 30   | —    | ns          |
| S18  | I2S_RXD hold after I2S_RX_BCLK                                    | 11   | —    | ns          |
| S19  | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup>    | —    | 72   | ns          |

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

| 144  | 144        | Pin Name          | Default                               | ALT0      | ALT1              | ALT2                                | ALT3            | ALT4                           | ALT5     | ALT6             | ALT7                       | EzPort   |
|------|------------|-------------------|---------------------------------------|-----------|-------------------|-------------------------------------|-----------------|--------------------------------|----------|------------------|----------------------------|----------|
| LQFP | MAP<br>BGA |                   |                                       |           |                   |                                     |                 |                                |          |                  |                            |          |
| 47   | -          | PTE26             | DISABLED                              |           | PTE26             | ENET_1588_<br>CLKIN                 | UART4_<br>CTS_b |                                |          | RTC_<br>CLKOUT   | USB_CLKIN                  |          |
| 48   | -          | PTE27             | DISABLED                              |           | PTE27             |                                     | UART4_<br>RTS_b |                                |          |                  |                            |          |
| 49   | -          | PTE28             | DISABLED                              |           | PTE28             |                                     |                 |                                |          |                  |                            |          |
| 50   | J5         | PTA0              | JTAG_TCLK/<br>SWD_CLK/<br>EZP_CLK     |           | PTA0              | UART0_<br>CTS_b/<br>UART0_<br>COL_b | FTM0_CH5        |                                |          |                  | JTAG_TCLK/<br>SWD_CLK      | EZP_CLK  |
| 51   | J6         | PTA1              | JTAG_TDI/<br>EZP_DI                   |           | PTA1              | UART0_RX                            | FTM0_CH6        |                                |          |                  | JTAG_TDI                   | EZP_DI   |
| 52   | K6         | PTA2              | JTAG_TDO/<br>TRACE_<br>SWO/<br>EZP_DO |           | PTA2              | UART0_TX                            | FTM0_CH7        |                                |          |                  | JTAG_TDO/<br>TRACE_<br>SWO | EZP_DO   |
| 53   | K7         | PTA3              | JTAG_TMS/<br>SWD_DIO                  |           | PTA3              | UART0_<br>RTS_b                     | FTM0_CH0        |                                |          |                  | JTAG_TMS/<br>SWD_DIO       |          |
| 54   | L7         | PTA4/<br>LLWU_P3  | NMI_b/<br>EZP_CS_b                    |           | PTA4/<br>LLWU_P3  |                                     | FTM0_CH1        |                                |          |                  | NMI_b                      | EZP_CS_b |
| 55   | M8         | PTA5              | DISABLED                              |           | PTA5              | USB_CLKIN                           | FTM0_CH2        | RMII0_<br>RXER/<br>MII0_RXER   | CMP2_OUT | I2S0_TX_<br>BCLK | JTAG_<br>TRST_b            |          |
| 56   | E7         | VDD               | VDD                                   | VDD       |                   |                                     |                 |                                |          |                  |                            |          |
| 57   | G7         | VSS               | VSS                                   | VSS       |                   |                                     |                 |                                |          |                  |                            |          |
| 58   | J7         | PTA6              | DISABLED                              |           | PTA6              |                                     | FTM0_CH3        |                                |          |                  | TRACE_<br>CLKOUT           |          |
| 59   | J8         | PTA7              | ADC0_SE10                             | ADC0_SE10 | PTA7              |                                     | FTM0_CH4        |                                |          |                  | TRACE_D3                   |          |
| 60   | K8         | PTA8              | ADC0_SE11                             | ADC0_SE11 | PTA8              |                                     | FTM1_CH0        |                                |          | FTM1_QD_<br>PHA  | TRACE_D2                   |          |
| 61   | L8         | PTA9              | DISABLED                              |           | PTA9              |                                     | FTM1_CH1        | MII0_RXD3                      |          | FTM1_QD_<br>PHB  | TRACE_D1                   |          |
| 62   | M9         | PTA10             | DISABLED                              |           | PTA10             |                                     | FTM2_CH0        | MII0_RXD2                      |          | FTM2_QD_<br>PHA  | TRACE_D0                   |          |
| 63   | L9         | PTA11             | DISABLED                              |           | PTA11             |                                     | FTM2_CH1        | MII0_RXCLK                     | I2C2_SDA | FTM2_QD_<br>PHB  |                            |          |
| 64   | K9         | PTA12             | CMP2_IN0                              | CMP2_IN0  | PTA12             | CAN0_TX                             | FTM1_CH0        | RMII0_<br>RXD1/<br>MII0_RXD1   | I2C2_SCL | 12S0_TXD0        | FTM1_QD_<br>PHA            |          |
| 65   | J9         | PTA13/<br>LLWU_P4 | CMP2_IN1                              | CMP2_IN1  | PTA13/<br>LLWU_P4 | CAN0_RX                             | FTM1_CH1        | RMII0_<br>RXD0/<br>MII0_RXD0   | I2C2_SDA | 12S0_TX_FS       | FTM1_QD_<br>PHB            |          |
| 66   | L10        | PTA14             | DISABLED                              |           | PTA14             | SPI0_PCS0                           | UART0_TX        | RMII0_CRS_<br>DV/<br>MII0_RXDV | I2C2_SCL | I2S0_RX_<br>BCLK | I2S0_TXD1                  |          |

| 144  | 144        | Pin Name           | Default                | ALT0                   | ALT1               | ALT2      | ALT3            | ALT4             | ALT5    | ALT6             | ALT7     | EzPort |
|------|------------|--------------------|------------------------|------------------------|--------------------|-----------|-----------------|------------------|---------|------------------|----------|--------|
| LQFP | MAP<br>BGA |                    |                        |                        |                    |           |                 |                  |         |                  |          |        |
| 94   | F5         | VDD                | VDD                    | VDD                    |                    |           |                 |                  |         |                  |          |        |
| 95   | E10        | PTB16              | DISABLED               |                        | PTB16              | SPI1_SOUT | UART0_RX        | FTM_CLKIN0       | FB_AD17 | EWM_IN           |          |        |
| 96   | E9         | PTB17              | DISABLED               |                        | PTB17              | SPI1_SIN  | UART0_TX        | FTM_CLKIN1       | FB_AD16 | EWM_OUT_<br>b    |          |        |
| 97   | D12        | PTB18              | DISABLED               |                        | PTB18              | CAN0_TX   | FTM2_CH0        | I2S0_TX_<br>BCLK | FB_AD15 | FTM2_QD_<br>PHA  |          |        |
| 98   | D11        | PTB19              | DISABLED               |                        | PTB19              | CAN0_RX   | FTM2_CH1        | I2S0_TX_FS       | FB_OE_b | FTM2_QD_<br>PHB  |          |        |
| 99   | D10        | PTB20              | DISABLED               |                        | PTB20              | SPI2_PCS0 |                 |                  | FB_AD31 | CMP0_OUT         |          |        |
| 100  | D9         | PTB21              | DISABLED               |                        | PTB21              | SPI2_SCK  |                 |                  | FB_AD30 | CMP1_OUT         |          |        |
| 101  | C12        | PTB22              | DISABLED               |                        | PTB22              | SPI2_SOUT |                 |                  | FB_AD29 | CMP2_OUT         |          |        |
| 102  | C11        | PTB23              | DISABLED               |                        | PTB23              | SPI2_SIN  | SPI0_PCS5       |                  | FB_AD28 |                  |          |        |
| 103  | B12        | PTC0               | ADC0_SE14              | ADC0_SE14              | PTC0               | SPI0_PCS4 | PDB0_<br>EXTRG  | USB_SOF_<br>OUT  | FB_AD14 | I2S0_TXD1        |          |        |
| 104  | B11        | PTC1/<br>LLWU_P6   | ADC0_SE15              | ADC0_SE15              | PTC1/<br>LLWU_P6   | SPI0_PCS3 | UART1_<br>RTS_b | FTM0_CH0         | FB_AD13 | I2S0_TXD0        |          |        |
| 105  | A12        | PTC2               | ADC0_SE4b/<br>CMP1_IN0 | ADC0_SE4b/<br>CMP1_IN0 | PTC2               | SPI0_PCS2 | UART1_<br>CTS_b | FTM0_CH1         | FB_AD12 | I2S0_TX_FS       |          |        |
| 106  | A11        | PTC3/<br>LLWU_P7   | CMP1_IN1               | CMP1_IN1               | PTC3/<br>LLWU_P7   | SPI0_PCS1 | UART1_RX        | FTM0_CH2         | CLKOUT  | I2S0_TX_<br>BCLK |          |        |
| 107  | H8         | VSS                | VSS                    | VSS                    |                    |           |                 |                  |         |                  |          |        |
| 108  | _          | VDD                | VDD                    | VDD                    |                    |           |                 |                  |         |                  |          |        |
| 109  | A9         | PTC4/<br>LLWU_P8   | DISABLED               |                        | PTC4/<br>LLWU_P8   | SPI0_PCS0 | UART1_TX        | FTM0_CH3         | FB_AD11 | CMP1_OUT         |          |        |
| 110  | D8         | PTC5/<br>LLWU_P9   | DISABLED               |                        | PTC5/<br>LLWU_P9   | SPI0_SCK  | LPTMR0_<br>ALT2 | I2S0_RXD0        | FB_AD10 | CMP0_OUT         | FTM0_CH2 |        |
| 111  | C8         | PTC6/<br>LLWU_P10  | CMP0_IN0               | CMP0_IN0               | PTC6/<br>LLWU_P10  | SPI0_SOUT | PDB0_<br>EXTRG  | I2S0_RX_<br>BCLK | FB_AD9  | I2S0_MCLK        |          |        |
| 112  | B8         | PTC7               | CMP0_IN1               | CMP0_IN1               | PTC7               | SPI0_SIN  | USB_SOF_<br>OUT | I2S0_RX_FS       | FB_AD8  |                  |          |        |
| 113  | A8         | PTC8               | ADC1_SE4b/<br>CMP0_IN2 | ADC1_SE4b/<br>CMP0_IN2 | PTC8               |           | FTM3_CH4        | I2S0_MCLK        | FB_AD7  |                  |          |        |
| 114  | D7         | PTC9               | ADC1_SE5b/<br>CMP0_IN3 | ADC1_SE5b/<br>CMP0_IN3 | PTC9               |           | FTM3_CH5        | I2S0_RX_<br>BCLK | FB_AD6  | FTM2_FLT0        |          |        |
| 115  | C7         | PTC10              | ADC1_SE6b              | ADC1_SE6b              | PTC10              | I2C1_SCL  | FTM3_CH6        | I2S0_RX_FS       | FB_AD5  |                  |          |        |
| 116  | B7         | PTC11/<br>LLWU_P11 | ADC1_SE7b              | ADC1_SE7b              | PTC11/<br>LLWU_P11 | I2C1_SDA  | FTM3_CH7        | 12S0_RXD1        | FB_RW_b |                  |          |        |
| 117  | A7         | PTC12              | DISABLED               |                        | PTC12              |           | UART4_<br>RTS_b |                  | FB_AD27 | FTM3_FLT0        |          |        |
| 118  | D6         | PTC13              | DISABLED               |                        | PTC13              |           | UART4_<br>CTS_b |                  | FB_AD26 |                  |          |        |
| 119  | C6         | PTC14              | DISABLED               |                        | PTC14              |           | UART4_RX        |                  | FB_AD25 |                  |          |        |
| 120  | B6         | PTC15              | DISABLED               |                        | PTC15              |           | UART4_TX        |                  | FB_AD24 |                  |          |        |
| 121  | -          | VSS                | VSS                    | VSS                    |                    |           |                 |                  |         |                  |          |        |

| 144<br>LQFP | 144<br>Map<br>Bga | Pin Name | Default  | ALT0 | ALT1  | ALT2      | ALT3 | ALT4     | ALT5 | ALT6   | ALT7 | EzPort |
|-------------|-------------------|----------|----------|------|-------|-----------|------|----------|------|--------|------|--------|
| 144         | C1                | PTD15    | DISABLED |      | PTD15 | SPI2_PCS1 |      | SDHC0_D7 |      | FB_A23 |      |        |

## 5.2 Unused analog interfaces

 Table 57.
 Unused analog interfaces

| Module name      | Pins                                                                                                                                                                                       | Recommendation if unused                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADC              | ADC0_DP1, ADC0_DM1, ADC1_DP1,<br>ADC1_DM1, ADC0_DP0/ADC1_DP3,<br>ADC0_DM0/ADC1_DM3, ADC1_DP0/<br>ADC0_DP3, ADC1_DM0/ADC0_DM3,<br>ADC1_SE16/ADC0_SE22,<br>ADC0_SE16/ADC0_SE21,<br>ADC1_SE18 | Ground                                                                                                                                               |
| DAC <sup>1</sup> | DAC0_OUT, DAC1_OUT                                                                                                                                                                         | Float                                                                                                                                                |
| USB              | VREGIN, USB0_GND, VOUT33 <sup>2</sup>                                                                                                                                                      | Connect VREGIN and VOUT33 together and tie to ground through a 10 $k\Omega$ resistor. Do not tie directly to ground, as this causes a latch-up risk. |
|                  | USB0_DM, USB0_DP                                                                                                                                                                           | Float                                                                                                                                                |

1. Unused DAC signals do not apply to all parts. See the Pinout section for details.

2. USB0\_VBUS and USB0\_GND are board level signals

# 5.3 K63 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.