E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-50
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f262g2m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1 INTRO 2 PIN DE 3 REGIS 4 FLASH	DUCTION ESCRIPTION TER & MEMORY MAP I PROGRAM MEMORY	5 6 10 14
4.1		14
4.2	MAIN FEATURES	14
4.3	PROGRAMMING MODES	14
4.4	ICC INTERFACE	15
4.5	MEMORY PROTECTION	16
4.6	RELATED DOCUMENTATION	16
4.7	REGISTER DESCRIPTION	16
5 CENT	RAL PROCESSING UNIT	17
5.1		17
5.2	MAIN FEATURES	17
5.3	CPU REGISTERS	17
6 SUPPL	LY, RESET AND CLOCK MANAGEMENT	20
6.1	PHASE LOCKED LOOP	20
6.2	MULTI-OSCILLATOR (MO)	21
6.3	RESET SEQUENCE MANAGER (RSM)	22
6.4	SYSTEM INTEGRITY MANAGEMENT (SI)	24
7 INTER	RUPTS	28
7.1	INTRODUCTION	28
7.2	MASKING AND PROCESSING FLOW	28
7.3	INTERRUPTS AND LOW POWER MODES	30
7.4	CONCURRENT & NESTED MANAGEMENT	30
7.5	INTERRUPT REGISTER DESCRIPTION	31
8 POWE	R SAVING MODES	33
8.1	INTRODUCTION	33
8.2	SLOW MODE	33
8.3	WAIT MODE	34
8.4	ACTIVE-HALT AND HALT MODES	35
8.5	HALT MODE	36
9 I/O PO	RTS	38
9.1		38
9.2	FUNCTIONAL DESCRIPTION	38
9.3	I/O PORT IMPLEMENTATION	41
9.4	UNUSED I/O PINS	41
9.5	LOW POWER MODES	41
9.6	INTERRUPTS	41
9.7	DEVICE-SPECIFIC I/O PORT CONFIGURATION	42
9.8	I/O PORT REGISTER DESCRIPTION	43
10 MISC	ELLANEOUS REGISTERS	45

57

PIN DESCRIPTION (Cont'd)

For external pin connection guidelines, refer to Section 13 "ELECTRICAL CHARACTERISTICS" on page 126.

Legend / Abbreviations for Table 1:

Type:I = input, O = output, S = supplyInput level:A = Dedicated analog inputIn/Output level: $C_T = CMOS \ 0.3 \ V_{DD}/0.7 \ V_{DD}$ with input triggerOutput level:HS = 20 mA high sink (on N-buffer only)Port and control configuration:

- Input: float = floating, wpu = weak pull-up, int = interrupt ¹), ana = analog
- Output: $OD = open drain^{2}$, PP = push-pull

Refer to Section 9 "I/O PORTS" on page 38 for more details on the software configuration of the I/O ports. The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state.

Table 1. Device Pin Description

P	'in n'	0			Le	vel		Ροι	rt/C	Cont	rol		Main	
32	28	A	Pin Name	ype	ut	out		Inp	out		Out	put	Function	Alternate Function
SDIF	SO:	BG		F	lnp	Outp	float	ndw	int	ana	OD	ΡР	reset)	
1	1	A3	RESET	I/O	Ст			х			Х		Top prior tive low)	ity non maskable interrupt (ac-
2	2	C4	OSC1 ³⁾	I									External of tor inverte oscillator	clock input or Resonator oscilla- er input or resistor input for RC
3	3	В3	OSC2 ³⁾	0									Resonato pacitor in	or oscillator inverter output or ca- put for RC oscillator
4	4	A2	PB7/SS	I/O	C	C _T	Х	ei	1		Х	Х	Port B7	SPI Slave Select (active low)
5	5	A1	PB6/SCK	I/O	C	C _T	Х	ei	1		Х	Х	Port B6	SPI Serial Clock
6	6	B1	PB5/MISO	I/O	0	C _T	Х	ei	1		Х	Х	Port B5	SPI Master In/ Slave Out Data
7	7	B2	PB4/MOSI	I/O	C	C _T	Х	ei	1		Х	Х	Port B4	SPI Master Out / Slave In Data
8		C1	NC											
9		C2	NC								Ν	ot C	onnected	
		D1	NC											
10	8	C3	PB3/OCMP2_A	I/O	C	C _T	Х	ei	1		Х	Х	Port B3	Timer A Output Compare 2
11	9	D2	PB2/ICAP2_A	I/O	C	C _T	Х	ei	1		Х	Х	Port B2	Timer A Input Capture 2
12	10	E1	PB1 /OCMP1_A	I/O	C	Ът	x	ei	1		x	х	Port B1 Timer A Output Compare 1 Caution: Negative current injection not allowed on this pin ⁴).	
13	11	F1	PB0 /ICAP1_A	I/O	C	С _т	x	ei	1		x	х	Port B0	Timer A Input Capture 1 Caution: Negative current injection not allowed on this pin ⁴⁾ .
14	12	F2	PC5/EXTCLK_A/AIN5	I/O	C	C _T	X	ei0/	'ei1	Х	Х	Х	Port C5	Timer A Input Clock or ADC Analog Input 5

Table 2. Hardware Register Map

57

Address	Block	Register Label	Register Name	Reset Status	Remarks
0000h 0001h 0002h	Port C	PCDR PCDDR PCOR	Port C Data Register Port C Data Direction Register Port C Option Register	xx000000h ¹⁾ 00h 00h	R/W ²⁾ R/W ²⁾ R/W ²⁾
0003h			Reserved (1 Byte)		
0004h 0005h 0006h	Port B	PBDR PBDDR PBOR	Port B Data Register Port B Data Direction Register Port B Option Register	00h ¹⁾ 00h 00h	R/W R/W R/W.
0007h			Reserved (1 Byte)		
0008h 0009h 000Ah	Port A	PADR PADDR PAOR	Port A Data Register Port A Data Direction Register Port A Option Register	00h ¹⁾ 00h 00h	R/W R/W R/W
000Bh to 001Bh			Reserved (17 Bytes)		
001Ch 001Dh 001Eh 001Fh	ITC	ISPR0 ISPR1 ISPR2 ISPR3	Interrupt software priority register0 Interrupt software priority register1 Interrupt software priority register2 Interrupt software priority register3	FFh FFh FFh FFh	R/W R/W R/W R/W
0020h		MISCR1	Miscellanous register 1	00h	R/W
0021h 0022h 0023h	SPI	SPIDR SPICR SPICSR	SPI Data I/O Register SPI Control Register SPI Status Register	xxh 0xh 00h	R/W R/W R/W
0024h	WATCHDOG	WDGCR	Watchdog Control Register	7Fh	R/W
0025h		SICSR	System Integrity Control / Status Register	000x 000x	R/W
0026h	MCC	MCCSR	Main Clock Control / Status Register	00h	R/W
0027h			Reserved (1 Byte)		
0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh	l ² C	I2CCR I2CSR1 I2CSR2 I2CCCR I2COAR1 I2COAR2 I2CDR	I ² C Control Register I ² C Status Register 1 I ² C Status Register 2 I ² C Clock Control Register I ² C Own Address Register 1 I ² C Own Address Register2 I ² C Data Register	00h 00h 00h 00h 00h 40h 00h	R/W Read Only Read Only R/W R/W R/W
002Fh 0030h			Reserved (2 Bytes)	-	

6 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 10.

For more details, refer to dedicated parametric section.

Main Features

- Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator)
- Reset Sequence Manager (RSM)
- Multi-Oscillator Clock Management (MO)
 - 4 Crystal/Ceramic resonator oscillators
 - 1 Internal RC oscillator
- System Integrity Management (SI)
 - Main supply Low Voltage Detector (LVD)
 - Auxiliary Voltage Detector (AVD) with interrupt capability for monitoring the main supply

6.1 PHASE LOCKED LOOP

If the clock frequency input to the PLL is in the 2 to 4 MHz range, the PLL can be used to multiply the frequency by two to obtain an f_{OSC2} of 4 to 8 MHz.

The PLL is enabled by option byte. If the PLL is disabled, then $f_{OSC2} = f_{OSC}/2$.

Caution: The PLL is not recommended for applications where timing accuracy is required. See "PLL Characteristics" on page 139.

Figure 9. PLL Block Diagram

Figure 10. Clock, Reset and Supply Block Diagram

6.3 RESET SEQUENCE MANAGER (RSM)

6.3.1 Introduction

The reset sequence manager includes three RE-SET sources as shown in Figure 12:

- External RESET source pulse
- Internal LVD RESET (Low Voltage Detection)
- Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of 3 phases as shown in Figure 11:

- Active Phase depending on the RESET source
- 4096 CPU clock cycle delay (selected by option byte)
- RESET vector fetch

The 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.

Figure 12. Reset Block Diagram

The RESET vector fetch phase duration is 2 clock cycles.

Figure 11. RESET Sequence Phases

6.3.2 Asynchronous External RESET pin

The $\overline{\text{RESET}}$ pin is both an input and an open-drain output with integrated R_{ON} weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details.

A RESET signal originating from an external source must have a duration of at least $t_{h(RSTL)in}$ in order to be recognized (see Figure 13). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode.

6.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains group the Low voltage Detector (LVD) and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to Section 12.2.1 on page 123 for further details.

6.4.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the V_{DD} supply voltage is below a V_{IT}- reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT-} reference value for a voltage drop is lower than the V_{IT+} reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when V_{DD} is below:

 $-V_{IT+}$ when V_{DD} is rising

 $-V_{IT}$ when V_{DD} is falling

The LVD function is illustrated in Figure 14.

The voltage threshold can be configured by option byte to be low, medium or high.

Provided the minimum V_{DD} value (guaranteed for the oscillator frequency) is above V_{IT-} , the MCU can only be in two modes:

- under full software control
- in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:

The LVD allows the device to be used without any external RESET circuitry.

The LVD is an optional function which can be selected by option byte.

Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur in the application, it is recommended to pull V_{DD} down to 0V to ensure optimum restart conditions. Refer to circuit example in Figure 91 on page 151 and note 6.

It is recommended to make sure that the V_{DD} supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

Figure 14. Low Voltage Detector vs Reset

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

6.4.3 Low Power Modes

Mode	Description
WAIT	No effect on SI. AVD interrupts cause the device to exit from Wait mode.
HALT	The SICSR register is frozen.

6.4.3.1 Interrupts

The AVD interrupt event generates an interrupt if the corresponding Enable Control Bit (AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
AVD event	AVDF	AVDIE	Yes	No

11.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (MCC/RTC)

The Main Clock Controller consists of a real time clock timer with interrupt capability

11.2.1 Real Time Clock Timer (RTC)

5/

The counter of the real time clock timer allows an interrupt to be generated based on an accurate real time clock. Four different time bases depending directly on f_{OSC2} are available. The whole functionality is controlled by four bits of the MCC-SR register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set), the ST7 enters ACTIVE-HALT mode when the HALT instruction is executed. See Section 8.4 "ACTIVE-HALT AND HALT MODES" on page 35 for more details.

Figure 34. Main Clock Controller (MCC/RTC) Block Diagram

16-BIT TIMER (Cont'd)

Figure 35. Timer Block Diagram

16-BIT TIMER (Cont'd)

Notes:

- 1. After a processor write cycle to the OC*i*HR register, the output compare function is inhibited until the OC*i*LR register is also written.
- 2. If the OC*i*E bit is not set, the OCMP*i* pin is a general I/O port and the OLVL*i* bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
- When the timer clock is f_{CPU}/2, OCF*i* and OCMP*i* are set while the counter value equals the OC*i*R register value (see Figure 42 on page 63). This behaviour is the same in OPM or PWM mode.
 When the timer clock is f_{CPU}/4, f_{CPU}/8 or in external clock mode, OCF*i* and OCMP*i* are set while the counter value equals the OC*i*R register value plus 1 (see Figure 43 on page 63).
- 4. The output compare functions can be used both for generating external events on the OCMP*i* pins even if the input capture mode is also used.
- 5. The value in the 16-bit OC*i*R register and the OLV*i* bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.

Figure 41. Output Compare Block Diagram

Forced Compare Output capability

When the FOLV*i* bit is set by software, the OLVL*i* bit is copied to the OCMP*i* pin. The OLV*i* bit has to be toggled in order to toggle the OCMP*i* pin when it is enabled (OC*i*E bit=1). The OCF*i* bit is then not set by hardware, and thus no interrupt request is generated.

FOLVL*i* bits have no effect in both one pulse mode and PWM mode.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

11.5.4.9 Clock Deviation Causes

The causes which contribute to the total deviation are:

- D_{TRA}: Deviation due to transmitter error (Local oscillator error of the transmitter or the transmitter is transmitting at a different baud rate).
- D_{QUANT}: Error due to the baud rate quantisation of the receiver.
- D_{REC}: Deviation of the local oscillator of the receiver: This deviation can occur during the reception of one complete SCI message assuming that the deviation has been compensated at the beginning of the message.
- D_{TCL}: Deviation due to the transmission line (generally due to the transceivers)

All the deviations of the system should be added and compared to the SCI clock tolerance:

 $\mathsf{D}_{\mathsf{TRA}} + \mathsf{D}_{\mathsf{QUANT}} + \mathsf{D}_{\mathsf{REC}} + \mathsf{D}_{\mathsf{TCL}} < 3.75\%$

11.5.4.10 Noise Error Causes

See also description of Noise error in Section 11.5.4.3.

Start bit

The noise flag (NF) is set during start bit reception if one of the following conditions occurs:

- 1. A valid falling edge is not detected. A falling edge is considered to be valid if the 3 consecutive samples before the falling edge occurs are detected as '1' and, after the falling edge occurs, during the sampling of the 16 samples, if one of the samples numbered 3, 5 or 7 is detected as a "1".
- 2. During sampling of the 16 samples, if one of the samples numbered 8, 9 or 10 is detected as a "1".

Therefore, a valid Start Bit must satisfy both the above conditions to prevent the Noise Flag getting set.

Data Bits

The noise flag (NF) is set during normal data bit reception if the following condition occurs:

 During the sampling of 16 samples, if all three samples numbered 8, 9 and 10 are not the same. The majority of the 8th, 9th and 10th samples is considered as the bit value.

Therefore, a valid Data Bit must have samples 8, 9 and 10 at the same value to prevent the Noise Flag getting set.

Figure 56. Bit Sampling in Reception Mode

57/

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

11.5.7 Register Description STATUS REGISTER (SCISR)

Read Only

Reset Value: 1100 0000 (C0h)

7							0
TDRE	тс	RDRF	IDLE	OR	NF	FE	PE

Bit 7 = **TDRE** *Transmit data register empty.*

This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TIE bit=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Data is not transferred to the shift register

1: Data is transferred to the shift register

Note: Data will not be transferred to the shift register unless the TDRE bit is cleared.

Bit 6 = **TC** Transmission complete.

This bit is set by hardware when transmission of a frame containing Data is complete. An interrupt is generated if TCIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Transmission is not complete

1: Transmission is complete

Note: TC is not set after the transmission of a Preamble or a Break.

Bit 5 = **RDRF** *Received data ready flag.*

This bit is set by hardware when the content of the RDR register has been transferred to the SCIDR register. An interrupt is generated if RIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: Data is not received

1: Received data is ready to be read

Bit 4 = **IDLE** *Idle line detect.*

This bit is set by hardware when a Idle Line is detected. An interrupt is generated if the ILIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Idle Line is detected

1: Idle Line is detected

Note: The IDLE bit will not be set again until the RDRF bit has been set itself (i.e. a new idle line occurs).

Bit 3 = **OR** Overrun error.

This bit is set by hardware when the word currently being received in the shift register is ready to be transferred into the RDR register while RDRF=1. An interrupt is generated if RIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Overrun error

1: Overrun error is detected

Note: When this bit is set RDR register content will not be lost but the shift register will be overwritten.

Bit 2 = NF Noise flag.

This bit is set by hardware when noise is detected on a received frame. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No noise is detected

1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RDRF bit which itself generates an interrupt.

Bit 1 = **FE** Framing error.

This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register).

0: No Framing error is detected

1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RDRF bit which itself generates an interrupt. If the word currently being transferred causes both frame error and overrun error, it will be transferred and only the OR bit will be set.

Bit 0 = **PE** Parity error.

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE=1 in the SCICR1 register. 0: No parity error

1: Parity error

57

I²C BUS INTERFACE (Cont'd)

Acknowledge may be enabled and disabled by software.

The I²C interface address and/or general call address can be selected by software.

The speed of the I^2C interface may be selected between Standard (up to 100KHz) and Fast I^2C (up to 400KHz).

SDA/SCL Line Control

Transmitter mode: the interface holds the clock line low before transmission to wait for the microcontroller to write the byte in the Data Register.

Receiver mode: the interface holds the clock line low after reception to wait for the microcontroller to read the byte in the Data Register. The SCL frequency ($\rm F_{scl}$) is controlled by a programmable clock divider which depends on the $\rm I^2C$ bus mode.

When the I^2C cell is enabled, the SDA and SCL ports must be configured as floating inputs. In this case, the value of the external pull-up resistor used depends on the application.

When the I²C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins.

Figure 58. I²C Interface Block Diagram

I²C BUS INTERFACE (Cont'd) I²C CLOCK CONTROL REGISTER (CCR)

Read / Write Reset Value: 0000 0000 (00h)

7							0
FM/SM	CC6	CC5	CC4	CC3	CC2	CC1	CC0

Bit 7 = **FM/SM** Fast/Standard l^2C mode.

This bit is set and cleared by software. It is not cleared when the interface is disabled (PE=0). 0: Standard I^2C mode

1: Fast I²C mode

Bit 6:0 = CC[6:0] 7-bit clock divider.

These bits select the speed of the bus (F_{SCL}) depending on the I²C mode. They are not cleared when the interface is disabled (PE=0).

Refer to the Electrical Characteristics section for the table of values.

Note: The programmed $\mathrm{F}_{\mathrm{SCL}}$ assumes no load on SCL and SDA lines.

I²C DATA REGISTER (DR)

Read / Write

Reset Value: 0000 0000 (00h)

7							0
D7	D6	D5	D4	D3	D2	D1	D0

Bit 7:0 = D[7:0] 8-bit Data Register.

These bits contain the byte to be received or transmitted on the bus.

- Transmitter mode: Byte transmission start automatically when the software writes in the DR register.
- Receiver mode: the first data byte is received automatically in the DR register using the least significant bit of the address.

Then, the following data bytes are received one by one after reading the DR register.

I²C BUS INTERFACE (Cont'd) I²C OWN ADDRESS REGISTER (OAR1)

Read / Write Reset Value: 0000 0000 (00h)

7							0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0

7-bit Addressing Mode

Bit 7:1 = **ADD**[7:1] Interface address.

These bits define the l^2C bus address of the interface. They are not cleared when the interface is disabled (PE=0).

Bit 0 = ADD0 Address direction bit.

This bit is don't care, the interface acknowledges either 0 or 1. It is not cleared when the interface is disabled (PE=0).

Note: Address 01h is always ignored.

10-bit Addressing Mode

Bit 7:0 = **ADD**[7:0] Interface address.

These are the least significant bits of the I^2C bus address of the interface. They are not cleared when the interface is disabled (PE=0).

I²C OWN ADDRESS REGISTER (OAR2)

Read / Write

Reset Value: 0100 0000 (40h)

7							0
FR1	FR0	0	0	0	ADD9	ADD8	0

Bit 7:6 = **FR[1:0]** Frequency bits.

These bits are set by software only when the interface is disabled (PE=0). To configure the interface to I^2C specified delays select the value corresponding to the microcontroller frequency F_{CPU} .

f _{CPU}	FR1	FR0
< 6 MHz	0	0
6 to 8 MHz	0	1

Bit 5:3 = Reserved

Bit 2:1 = ADD[9:8] Interface address.

These are the most significant bits of the I^2C bus address of the interface (10-bit mode only). They are not cleared when the interface is disabled (PE=0).

Bit 0 = Reserved.

INSTRUCTION SET OVERVIEW (Cont'd)

12.1.1 Inherent

All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation.

Inherent Instruction	Function			
NOP	No operation			
TRAP	S/W Interrupt			
WFI	Wait For Interrupt (Low Pow- er Mode)			
HALT	Halt Oscillator (Lowest Power Mode)			
RET	Sub-routine Return			
IRET	Interrupt Sub-routine Return			
SIM	Set Interrupt Mask (level 3)			
RIM	Reset Interrupt Mask (level 0)			
SCF	Set Carry Flag			
RCF	Reset Carry Flag			
RSP	Reset Stack Pointer			
LD	Load			
CLR	Clear			
PUSH/POP	Push/Pop to/from the stack			
INC/DEC	Increment/Decrement			
TNZ	Test Negative or Zero			
CPL, NEG	1 or 2 Complement			
MUL	Byte Multiplication			
SLL, SRL, SRA, RLC, RRC	Shift and Rotate Operations			
SWAP	Swap Nibbles			

12.1.2 Immediate

5/

Immediate instructions have two bytes, the first byte contains the opcode, the second byte contains the operand value.

Immediate Instruction	Function
LD	Load
CP	Compare
BCP	Bit Compare
AND, OR, XOR	Logical Operations
ADC, ADD, SUB, SBC	Arithmetic Operations

12.1.3 Direct

In Direct instructions, the operands are referenced by their memory address.

The direct addressing mode consists of two submodes:

Direct (short)

The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF addressing space.

Direct (long)

The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode.

12.1.4 Indexed (No Offset, Short, Long)

In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset.

The indirect addressing mode consists of three sub-modes:

Indexed (No Offset)

There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space.

Indexed (Short)

The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE addressing space.

Indexed (long)

The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode.

12.1.5 Indirect (Short, Long)

The required data byte to do the operation is found by its memory address, located in memory (pointer).

The pointer address follows the opcode. The indirect addressing mode consists of two sub-modes:

Indirect (short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode.

Indirect (long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

13.8 I/O PORT PIN CHARACTERISTICS

13.8.1 General Characteristics

 $T_A = -40$ to $+85^{\circ}C$ unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{IL}	Input low level voltage ¹⁾			V _{ss} - 0.3		$0.3 \mathrm{xV}_{\mathrm{DD}}$	V	
V _{IH}	Input high level voltage ¹⁾			$0.7 \mathrm{xV}_{\mathrm{DD}}$		V _{DD} + 0.3		
V _{hys}	Schmitt trigger voltage hysteresis 1)				400		mV	
I _{INJ(PIN)} 2)	Injected current on Flash device pins PB0 and PB1					+4	mA	
. ,	Injected Current on other I/O pins	V _{DD} =5V				±4		
$\Sigma I_{\rm INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins)					±25		
١L	Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}				±1		
۱ _S	Static current consumption	Floating input mode ³⁾			400		μΑ	
R _{PU}	Weak pull-up equivalent resistor ⁴⁾	V _{IN} =V _{SS}	V _{DD} =5V	50	85	250	kΩ	
			V _{DD} =3V	170 ¹⁾	190	230 ¹⁾		
C _{IO}	I/O pin capacitance				5		pF	
t _{f(IO)out}	Output high to low level fall time ¹⁾	C _L =50pF Between 10% and 90%			25		ne	
t _{r(IO)out}	Output low to high level rise time ¹⁾				25		115	
t _{w(IT)in}	External interrupt pulse time ⁵⁾			1			t _{CPU}	

Notes:

1. Data based on characterization results, not tested in production.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

Caution: Negative current injection not allowed on Flash device pins PB0 and PB1.

3. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example and leaving the I/O unconnected on the board or an external pull-up or pull-down resistor (see Figure 76). Data based on design simulation and/or technology characteristics, not tested in production.

4. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 77).

5. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

Figure 76. Two typical Applications with unused I/O Pin configured as input

Note: I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

I/O PORT PIN CHARACTERISTICS (Cont'd)

Figure 81. Typ. V_{OL} at V_{DD}=3V (high-sink)

57

Figure 82. Typ. V_{OL} at V_{DD}=2.7V (standard)

Figure 83. Typ. V_{OL} at V_{DD}=5V (high-sink)

COMMUNICATION INTERFACE CHARACTERISTICS (Cont'd)

13.11.2 I²C - Inter IC Control Interface

Subject to general operating conditions for $V_{DD}, f_{OSC},$ and T_A unless otherwise specified.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics

(SDAI and SCLI). Refer to Table 26 for the speed conditions. The ST7 I^2C interface meets the requirements of the Standard I^2C communication protocol described in the following table.

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁵⁾		Llmit	
		Min ¹⁾	Max ¹⁾	Min ¹⁾	Max ¹⁾		
t _{w(SCLL)}	SCL clock low time	4.7		1.3			
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μδ	
t _{su(SDA)}	SDA setup time	250		100			
t _{h(SDA)}	SDA data hold time	0 ³⁾		0 ²⁾	900 ³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300		
t _{h(STA)}	START condition hold time	4.0		0.6			
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μδ	
t _{su(STO)}	STOP condition setup time	4.0		0.6		μS	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs	
Cb	Capacitive load for each bus line		400		400	pF	

Figure 96. Typical Application with I²C Bus and Timing Diagram ⁴⁾

Notes:

1. Data based on standard I²C protocol requirement, not tested in production.

2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL signal.

4. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

5. At 4MHz f_{CPU}, max.I²C speed (400kHz) is not achievable. In this case, max. I²C speed will be approximately 260KHz.

Notes:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

47/