

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-10°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	32-SDIP (0.400", 10.16mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f264g1b5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

_

	10.1	I/O PORT INTERRUPT SENSITIVITY	. 45
	10.2	I/O PORT ALTERNATE FUNCTIONS	. 45
	10.3	MISCELLANEOUS REGISTER DESCRIPTION	. 46
11	ON-C	HIP PERIPHERALS	. 48
	11.1	WATCHDOG TIMER (WDG)	. 48
	11.2	MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (MCC/RTC)	. 53
	11.3	16-BIT TIMER	. 55
	11.4	SERIAL PERIPHERAL INTERFACE (SPI)	. 75
	11.5	SERIAL COMMUNICATIONS INTERFACE (SCI)	. 87
	11.6	I2C BUS INTERFACE (I2C)	103
	11.7	10-BIT A/D CONVERTER (ADC)	116
12	INSTE	RUCTION SET	120
	12.1	CPU ADDRESSING MODES	120
	12.2	INSTRUCTION GROUPS	123
13	ELEC		126
	13.1	PARAMETER CONDITIONS	126
	13.2	ABSOLUTE MAXIMUM RATINGS	127
	13.3	OPERATING CONDITIONS	128
	13.4	SUPPLY CURRENT CHARACTERISTICS	131
	13.5	CLOCK AND TIMING CHARACTERISTICS	135
	13.6	MEMORY CHARACTERISTICS	140
	13.7	EMC CHARACTERISTICS	141
	13.8	I/O PORT PIN CHARACTERISTICS	144
	13.9	CONTROL PIN CHARACTERISTICS	150
	13.10	TIMER PERIPHERAL CHARACTERISTICS	152
	13.11	COMMUNICATION INTERFACE CHARACTERISTICS	153
	13.12	10-BIT ADC CHARACTERISTICS	157
14	PACK	AGE CHARACTERISTICS	159
	14.1	PACKAGE MECHANICAL DATA	159
	14.2	THERMAL CHARACTERISTICS	160
	14.3	LEAD-FREE PACKAGE INFORMATION	161
15	DEVIC	CE CONFIGURATION AND ORDERING INFORMATION	162
	15.1	OPTION BYTES	162
	15.2	DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE	164
	15.3	DEVELOPMENT TOOLS	166
16	KNOV	VN LIMITATIONS	168
	16.1	ALL FLASH AND ROM DEVICES	168
	16.2	FLASH DEVICES ONLY	168
17	REVIS	SION HISTORY	171

Pin n°		0			Le	evel	Port / Control				rol		Main		
32	58	۷	Pin Name	ype	Ŧ	out		Inp	out		Out	put	Function	Alternate Function	
SDIP	SO2	BG		ι Η	Inpi	Outp	float	ndw	int	ana	OD	РР	reset)		
15	13	E2	PC4/OCMP2_B/AIN4	I/O	(CT	x	ei0,	/ei1	х	х	Х	Port C4	Timer B Output Compare 2 or ADC Analog Input 4	
16	14	F3	PC3/ ICAP2_B/AIN3	I/O	(CT	x	ei0	/ei1	х	х	х	Port C3	Timer B Input Capture 2 or ADC Analog Input 3	
17	15	E3	PC2/MCO/AIN2	I/O	(CT	x	ei0	/ei1	х	х	х	Port C2	Main clock output (f _{CPU}) or ADC Analog Input 2	
18	16	F4	PC1/OCMP1_B/AIN1	I/O	(CT	x	ei0	/ei1	х	х	х	Port C1	Timer B Output Compare 1 or ADC Analog Input 1	
19	17	D3	PC0/ICAP1_B/AIN0	I/O	(CT	x	ei0,	/ei1	х	х	х	Port C0	Timer B Input Capture 1 or ADC Analog Input 0	
20	18	E4	PA7/TDO	I/O	C_T	HS	Χ	е	i0		Х	Х	Port A7	SCI output	
21	19	F5	PA6/SDAI	I/O	C_T	HS	Х		ei0		Т		Port A6	I ² C DATA	
22	20	F6	PA5 /RDI	I/O	C_T	HS	Х	е	i0		Х	Х	Port A5	SCI input	
23	21	E6	PA4/SCLI	I/O	C_{T}	HS	Х		ei0		Т		Port A4	I ² C CLOCK	
24		E5	NC								1				
25		D6	NC								Ν	ot C	onnected		
		D5	NC												
26	22	C6	PA3	I/O	C_T	HS	Χ	е	i0		Х	Х	Port A3		
27	23	D4	PA2	I/O	C_{T}	HS	Х	е	i0		Х	Х	Port A2		
		C5	NC		•	•		•			NI				
		B6	NC				Not Connected								
28	24	A6	PA1/ICCDATA	I/O	C_T	HS	Х	е	i0		Х	Х	X Port A1 In Circuit Communication		
29	25	A5	PA0/ICCCLK	I/O	CT	HS	Х	е	i0		х	Х	Port A0	In Circuit Communication Clock	
30	26	B5	ICCSEL	Ι	C_T		Х						ICC mode	e pin, must be tied low	
31	27	A4	V _{SS}	S									Ground		
32	28	B4	V _{DD}	S									Main power supply		

Notes:

1. In the interrupt input column, "eiX" defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is a pull-up interrupt input, otherwise the configuration is a floating interrupt input. Port C is mapped to ei0 or ei1 by option byte.

2. In the open drain output column, "T" defines a true open drain I/O (P-Buffer and protection diode to V_{DD} are not implemented). See Section 9 "I/O PORTS" on page 38 for more details.

3. OSC1 and OSC2 pins connect a crystal or ceramic resonator, or an external source to the on-chip oscillator see Section 2 "PIN DESCRIPTION" on page 6 and Section 6.2 "MULTI-OSCILLATOR (MO)" on page 21 for more details.

4: For details refer to Section 13.8 on page 144

Table 2. Hardware Register Map

57

Address	Block	Register Label	Register Name	Reset Status	Remarks		
0000h 0001h 0002h	Port C	PCDR PCDDR PCOR	Port C Data Register Port C Data Direction Register Port C Option Register	xx000000h ¹⁾ 00h 00h	R/W ²⁾ R/W ²⁾ R/W ²⁾		
0003h			Reserved (1 Byte)				
0004h 0005h 0006h	Port B	PBDR PBDDR PBOR	Port B Data Register Port B Data Direction Register Port B Option Register	00h ¹⁾ 00h 00h	R/W R/W R/W.		
0007h			Reserved (1 Byte)				
0008h 0009h 000Ah	Port A	PADR PADDR PAOR	Port A Data Register Port A Data Direction Register Port A Option Register	00h ¹⁾ 00h 00h	R/W R/W R/W		
000Bh to 001Bh	Reserved (17 Bytes)						
001Ch 001Dh 001Eh 001Fh	ITC	ISPR0 ISPR1 ISPR2 ISPR3	Interrupt software priority register0 Interrupt software priority register1 Interrupt software priority register2 Interrupt software priority register3	FFh FFh FFh FFh	R/W R/W R/W R/W		
0020h		MISCR1	Miscellanous register 1	00h	R/W		
0021h 0022h 0023h	SPI	SPIDR SPICR SPICSR	SPI Data I/O Register SPI Control Register SPI Status Register	xxh 0xh 00h	R/W R/W R/W		
0024h	WATCHDOG	WDGCR	Watchdog Control Register	7Fh	R/W		
0025h		SICSR	System Integrity Control / Status Register	000x 000x	R/W		
0026h	MCC	MCCSR	Main Clock Control / Status Register	00h	R/W		
0027h			Reserved (1 Byte)				
0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh	l ² C	I2CCR I2CSR1 I2CSR2 I2CCCR I2COAR1 I2COAR2 I2CDR	I ² C Control Register I ² C Status Register 1 I ² C Status Register 2 I ² C Clock Control Register I ² C Own Address Register 1 I ² C Own Address Register2 I ² C Data Register	00h 00h 00h 00h 00h 40h 00h	R/W Read Only Read Only R/W R/W R/W		
002Fh 0030h	Reserved (2 Bytes)						

Address	Block	Register Label	Register Name	Reset Status	Remarks			
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 003Ah 003Ah 003Ah 003Bh 003Ch 003Ch 003Fh	TIMER A	TACR2 TACR1 TASCSR TAIC1HR TAIC1LR TAOC1LR TAOC1LR TACLR TACLR TAACHR TAACLR TAACLR TAIC2HR TAIC2LR TAOC2LR TAOC2LR	Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter Low Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register	00h 00h xxh xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h	R/W R/W Read Only Read Only R/W Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W			
0040h		MISCR2	Miscellanous register 2	00h	R/W			
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Ch 004Ch 004Ch 004Ch 004Ch 004Ch 0050h 0051h 0052h 0053h 0055h 0056h	TIMER B	TBCR2 TBCR1 TBSCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBC1LR TBCLR TBCLR TBCLR TBACHR TBACLR TBIC2HR TBIC2HR TBIC2LR TBIC2LR TBOC2LR SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR SCIETPR	Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Output Compare 2 High Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register SCI Status Register SCI Data Register SCI Control Register1 SCI Control Register2 SCI Extended Receive Prescaler Register	00h 00h xxh xxh xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h C0h xxh 00h x000 0000h 00h 00h	R/W R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W			
0057h to 006Eh	Reserved (24 Bytes)							
006Fh 0070h 0071h	ADC	ADCDRL ADCDRH ADCCSR	Data Register Low ³⁾ Data Register High ³⁾ Control/Status Register	00h 00h 00h	Read Only Read Only R/W			
0072h	FLASH	FCSR	Flash Control Register	00h	R/W			
0073h to 007Fh	Reserved (13 Bytes)							

57

5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

5.2 MAIN FEATURES

- Enable executing 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes (with indirect addressing mode)
- Two 8-bit index registers
- 16-bit stack pointer
- Low power HALT and WAIT modes
- Priority maskable hardware interrupts
- Non-maskable software/hardware interrupts

5.3 CPU REGISTERS

The 6 CPU registers shown in Figure 7 are not present in the memory mapping and are accessed by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)

These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures.

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

Figure 7. CPU Registers

5/

6 SUPPLY, RESET AND CLOCK MANAGEMENT

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 10.

For more details, refer to dedicated parametric section.

Main Features

- Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator)
- Reset Sequence Manager (RSM)
- Multi-Oscillator Clock Management (MO)
 - 4 Crystal/Ceramic resonator oscillators
 - 1 Internal RC oscillator
- System Integrity Management (SI)
 - Main supply Low Voltage Detector (LVD)
 - Auxiliary Voltage Detector (AVD) with interrupt capability for monitoring the main supply

6.1 PHASE LOCKED LOOP

If the clock frequency input to the PLL is in the 2 to 4 MHz range, the PLL can be used to multiply the frequency by two to obtain an f_{OSC2} of 4 to 8 MHz.

The PLL is enabled by option byte. If the PLL is disabled, then $f_{OSC2} = f_{OSC}/2$.

Caution: The PLL is not recommended for applications where timing accuracy is required. See "PLL Characteristics" on page 139.

Figure 9. PLL Block Diagram

Figure 10. Clock, Reset and Supply Block Diagram

RESET SEQUENCE MANAGER (Cont'd)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

6.3.3 External Power-On RESET

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V_{DD} is over the minimum level specified for the selected f_{OSC} frequency.

A proper reset signal for a slow rising V_{DD} supply can generally be provided by an external RC network connected to the RESET pin.

6.3.4 Internal Low Voltage Detector (LVD) RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

- Power-On RESET
- Voltage Drop RESET

The device $\overline{\text{RESET}}$ pin acts as an output that is pulled low when $V_{DD}{<}V_{IT{+}}$ (rising edge) or $V_{DD}{<}V_{IT{-}}$ (falling edge) as shown in Figure 13.

The LVD filters spikes on V_{DD} larger than $t_{g(VDD)}$ to avoid parasitic resets.

6.3.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 13.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least $t_{w(RSTL)out}$.

Figure 13. RESET Sequences

57/

INTERRUPTS (Cont'd)

7.3 INTERRUPTS AND LOW POWER MODES

All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit the HALT modes (see column "Exit from HALT" in "Interrupt Mapping" table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an interrupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 17.

Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced.

7.4 CONCURRENT & NESTED MANAGEMENT

The following Figure 18 and Figure 19 show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in Figure 19. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0. The software priority is given for each interrupt.

Warning: A stack overflow may occur without notifying the software of the failure.

Note: TLI (Top Level Interrupt) is not available in this product.

Related Documentation

AN1044: Multiple interrupt source management for ST7 MCUs

Figure 18. Concurrent Interrupt Management

		SOFTWARE PRIORITY LEVEL		0I ES
		3	1 1	BYT
	+ + + + IT1	2	0 0	= 20
	* i +	2 1	0 1	ACK
	<u>-</u>	3	1 1	D ST
] IIT4) [.]	3	1 1	USEI
[⊥] <u>MAIN</u>		- MAIN - 3/0 10		-

POWER SAVING MODES (Cont'd)

8.3 WAIT MODE

WAIT mode places the MCU in a low power consumption mode by stopping the CPU.

This power saving mode is selected by calling the "WFI" ST7 software instruction.

All peripherals remain active. During WAIT mode, the I [1:0] bits in the CC register are forced to '10b', to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or Reset occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine.

The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up.

Refer to Figure 22.

Note:

1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits in the CC register are set during the interrupt routine and cleared when the CC register is popped.

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0024h	WDGCR	WDGA	T6	T5	T4	T3	T2	T1	Т0
	Reset Value	0	1	1	1	1	1	1	1

Table 12. Watchdog Timer Register Map and Reset Values

16-BIT TIMER (Cont'd)

Figure 35. Timer Block Diagram

16-BIT TIMER (Cont'd)

\$7

Figure 42. Output Compare Timing Diagram, f_{TIMER} =f_{CPU}/2

INTERNAL CPU CLOCK	
TIMER CLOCK	
COUNTER REGISTER	2ECF 2ED0 2ED1 2ED2 2ED3 2ED4
OUTPUT COMPARE REGISTER i (OCRi)	2ED3
OUTPUT COMPARE FLAG i (OCFi)	
OCMP <i>i</i> PIN (OLVL <i>i</i> =1)	

Figure 43. Output Compare Timing Diagram, f_{TIMER} =f_{CPU}/4

INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER	
OUTPUT COMPARE REGISTER i (OCRi)	2ED3
COMPARE REGISTER / LATCH	
OUTPUT COMPARE FLAG i (OCFi)	
OCMP <i>i</i> PIN (OLVL <i>i</i> =1)	

SERIAL PERIPHERAL INTERFACE (Cont'd)

11.4.3.1 Functional Description

57

A basic example of interconnections between a single master and a single slave is illustrated in Figure 47.

The MOSI pins are connected together and the MISO pins are connected together. In this way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits data to a slave device via MOSI pin, the slave device re-

Figure 47. Single Master/ Single Slave Application

sponds by sending data to the master device via the MISO pin. This implies full duplex communication with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin).

To use a single data line, the MISO and MOSI pins must be connected at each node (in this case only simplex communication is possible).

Four possible data/clock timing relationships may be chosen (see Figure 50) but master and slave must be programmed with the same timing mode.

SERIAL PERIPHERAL INTERFACE (Cont'd)

11.4.3.3 Master Mode Operation

In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

To operate the SPI in master mode, perform the following steps in order (if the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not taken into account):

1. Write to the SPICR register:

- Select the clock frequency by configuring the SPR[2:0] bits.
- Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 50 shows the four possible configurations.
 Note: The slave must have the same CPOL and CPHA settings as the master.
- 2. Write to the SPICSR register:
 - Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence.
- 3. Write to the SPICR register:
 - Set the MSTR and SPE bits
 <u>Note</u>: MSTR and SPE bits remain set only if SS is high).

The transmit sequence begins when software writes a byte in the SPIDR register.

11.4.3.4 Master Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first.

When data transfer is complete:

- The SPIF bit is set by hardware
- An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A read to the SPIDR register.

5/

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

11.4.3.5 Slave Mode Operation

In slave mode, the serial clock is received on the SCK pin from the master device.

To operate the SPI in slave mode:

- 1. Write to the SPICSR register to perform the following actions:
 - Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see Figure 50).
 Note: The slave must have the same CPOL and CPHA settings as the master.
 - Manage the SS pin as described in Section 11.4.3.2 and Figure 48. If CPHA=1 SS must be held low continuously. If CPHA=0 SS must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register.
- 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions.

11.4.3.6 Slave Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first.

The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin.

When data transfer is complete:

- The SPIF bit is set by hardware
- An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

1. An access to the SPICSR register while the SPIF bit is set.

2. A write or a read to the SPIDR register.

Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 11.4.5.2).

SERIAL PERIPHERAL INTERFACE (Cont'd)

11.4.6 Low Power Modes

Mode	Description
WAIT	No effect on SPI. SPI interrupt events cause the Device to exit from WAIT mode.
HALT	SPI registers are frozen. In HALT mode, the SPI is inactive. SPI oper- ation resumes when the Device is woken up by an interrupt with "exit from HALT mode" capability. The data received is subsequently read from the SPIDR register when the soft- ware is running (interrupt vector fetching). If several data are received before the wake- up event, then an overrun error is generated. This error can be detected after the fetch of the interrupt routine that woke up the Device.

11.4.6.1 Using the SPI to wake-up the Device from Halt mode

In slave configuration, the SPI is able to wake-up the Device from HALT mode through a SPIF interrupt. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetch). If multiple data transfers have been performed before software clears the SPIF bit, then the OVR bit is set by hardware.

Note: When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to perform an extra communications cycle to bring the SPI from Halt mode state to normal state. If the SPI exits from Slave mode, it returns to normal state immediately.

Caution: The SPI can wake-up the Device from Halt mode only if the Slave Select signal (external

57/

SS pin or the SSI bit in the SPICSR register) is low when the Device enters Halt mode. So if Slave selection is configured as external (see Section 11.4.3.2), make sure the master drives a low level on the SS pin when the slave enters Halt mode.

11.4.7 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
SPI End of Trans- fer Event	SPIF		Yes	Yes
Master Mode Fault Event	MODF	SPIE	Yes	No
Overrun Error	OVR		Yes	No

Note: The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

SERIAL COMMUNICATIONS INTERFACE (Cont'd) CONTROL REGISTER 1 (SCICR1)

Read/Write

Reset Value: x000 0000 (x0h)

7							0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE

Bit 7 = R8 Receive data bit 8.

This bit is used to store the 9th bit of the received word when M=1.

Bit 6 = T8 Transmit data bit 8.

This bit is used to store the 9th bit of the transmitted word when M=1.

Bit 5 = **SCID** *Disabled for low power consumption* When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software.

0: SCI enabled

1: SCI prescaler and outputs disabled

Bit $4 = \mathbf{M}$ Word length. This bit determines the word length. It is set or cleared by software.

0: 1 Start bit, 8 Data bits, 1 Stop bit

1: 1 Start bit, 9 Data bits, 1 Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception).

Bit 3 = WAKE Wake-Up method.

This bit determines the SCI Wake-Up method, it is set or cleared by software. 0: Idle Line 1: Address Mark

Bit 2 = **PCE** *Parity control enable.*

This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission).

0: Parity control disabled

1: Parity control enabled

Bit 1 = **PS** Parity selection.

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte.

0: Even parity

1: Odd parity

Bit 0 = **PIE** Parity interrupt enable.

This bit enables the interrupt capability of the hardware parity control when a parity error is detected (PE bit set). It is set and cleared by software.

0: Parity error interrupt disabled

1: Parity error interrupt enabled.

11.7 10-BIT A/D CONVERTER (ADC)

11.7.1 Introduction

The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has 6 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from 6 different sources.

The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register.

11.7.2 Main Features

- 10-bit conversion
- 6 channels with multiplexed input
- Linear successive approximation

Figure 61. ADC Block Diagram

- Data register (DR) which contains the results
- Conversion complete status flag
- On/off bit (to reduce consumption)

The block diagram is shown in Figure 61.

11.7.3 Functional Description

11.7.3.1 Analog Power Supply

 V_{DDA} and V_{SSA} are the high and low level reference voltage pins. In some devices (refer to device pin out description) they are internally connected to the V_{DD} and V_{SS} pins.

Conversion accuracy may therefore be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines.

457/

13.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

13.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit			
V _{DD} - V _{SS}	Supply voltage	6.5	V			
V _{IN}	Input voltage on any pin ^{1) & 2)}	$V_{\rm SS}\mbox{-}0.3$ to $V_{\rm DD}\mbox{+}0.3$	v			
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	- see Section 13.7.3 on page 142				
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)					

13.2.2 Current Characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) 3)	100	mA
I _{VSS}	Total current out of V_{SS} ground lines (sink) ³⁾	150	
	Output current sunk by any standard I/O and control pin	25	
I _{IO}	Output current sunk by any high sink I/O pin	50	
	Output current source by any I/Os and control pin	- 25	
	Injected current on Flash device pins PB0 and PB1	+ 5	
2) & 4)	Injected current on RESET pin	± 5	
'INJ(PIN)	Injected current on OSC1 and OSC2 pins	± 5	
	Injected current on any other pin ^{5) & 6)}	± 5	
$\Sigma I_{\rm INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins) 5)	± 20	

13.2.3 Thermal Characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature (see Section Figure 104. Package" on page 160)	"Low Profile Fine Pitch Ba	all Grid Array

Notes:

1. Directly connecting the I/O pins to V_{DD} or V_{SS} could damage the device if an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 10k Ω for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration. For reset pin, please refer to Figure 91 and Figure 92.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

4. Negative injection disturbs the analog performance of the device. See note in "10-BIT ADC CHARACTERISTICS" on page 157. For best reliability, it is recommended to avoid negative injection of more than 1.6mA.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

6. True open drain I/O port pins do not accept positive injection.

14 PACKAGE CHARACTERISTICS

14.1 PACKAGE MECHANICAL DATA

57

Figure 101. 32-Pin Plastic Dual In-Line Package, Shrink 400-mil Width

Figure 102. Figure 103. 28-Pin Plastic Small Outline Package, 300-mil Width

15 DEVICE CONFIGURATION AND ORDERING INFORMATION

Each device is available for production in user programmable versions (FLASH) as well as in factory coded versions (ROM/FASTROM).

ST7226x devices are ROM versions. ST72P26x devices are Factory Advanced Service Technique ROM (FASTROM) versions: they are factory-programmed XFlash devices.

ST72F26x XFlash devices are shipped to customers with a default program memory content (FFh). The option bytes are programmed to enable the internal RC oscillator. The ROM/FASTROM factory coded parts contain the code supplied by the customer. This implies that FLASH devices have to be configured by the customer using the Option Bytes while the ROM/FASTROM devices are factoryconfigured.

15.1 OPTION BYTES

The two option bytes allow the hardware configuration of the microcontroller to be selected.

The option bytes have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the FLASH is fixed to FFh.

In masked ROM devices, the option bytes are fixed in hardware by the ROM code (see option list).

USER OPTION BYTE 0

OPT 7 = **WDG HALT** *Watchdog reset on HALT* This option bit determines if a RESET is generated when entering HALT mode while the Watchdog is active.

0: No Reset generation when entering Halt mode 1: Reset generation when entering Halt mode

OPT 6 = **WDG SW** Hardware or software watchdog

This option bit selects the watchdog type.

0: Hardware (watchdog always enabled)

1: Software (watchdog to be enabled by software)

OPT 5:4 = VD[1:0] Voltage detection selection These option bits enable the voltage detection block (LVD and AVD) with a selected threshold of the LVD and AVD.

Configuration	VD1	VD0
LVD Off	1	1
Lowest Voltage Threshold (~3.05V)	1	0
Medium Voltage Threshold (~3.6V)	0	1
Highest Voltage Threshold (~4.1V)	0	0

OPT 3:2 = **SEC[1:0]** Sector 0 size definition These option bits indicate the size of sector 0 according to the following table.

Sector 0 Size	SEC1	SEC0			
0.5k	0	0			
1k	0	1			
2	1	0			
4k ¹⁾	1	1			

Note 1: 4k available on FASTROM devices only.

OPT 1 = FMP_R Read-out protection

Read-out protection, when selected, provides a protection against Program Memory content extraction and against write access to Flash memory.

Erasing the option bytes when the FMP_R option is selected will cause the whole memory to be erased first, and the device can be reprogrammed. Refer to Section 4.5 and the ST7 Flash Programming Reference Manual for more details.

0: Read-out protection off

1: Read-out protection on

	USER OPTION BYTE 0								USER OPTION BYTE 1							
	7						0 7							0		
					050	050					OSC	OSC	OSC	OSC	OSC	
	HALT SW VD1	SW	VD1	VD0	SEC 1	SEC	FMP		EXTIT	Res.	TYPE	TYPE RNGE	RNGE	RNGE	RNGE	
				0 11 10		•••	••		1	0	2	1	0	OFF		
Default Value	1	1	1	1	1	1	0	0	1	1	1	0	1	1	1	1