E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602df1clh3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block diagram

Table 1. MPC5602D device comparison (continued)

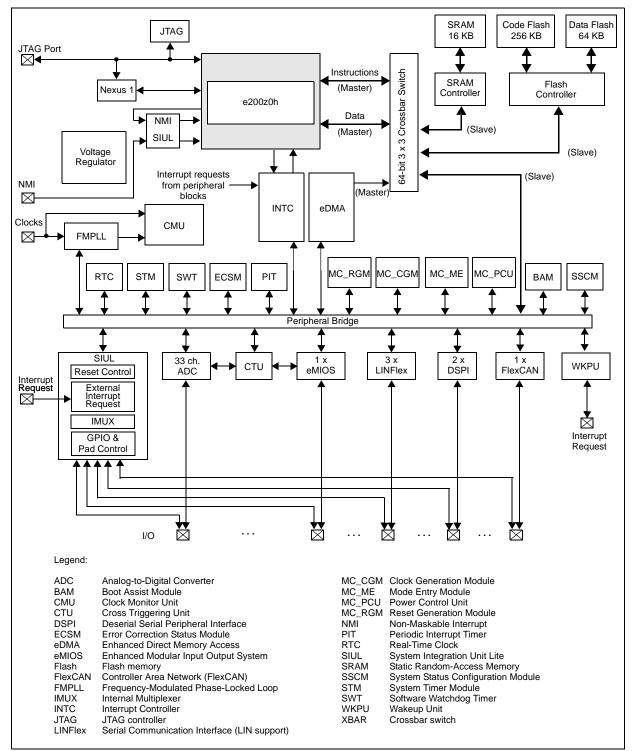
Feature	Device							
	MPC5601DxLH	MPC5601DxLL	MPC5602DxLH	MPC5602DxLL				
Debug		JTAG						
Package	64 LQFP	100 LQFP 64 LQFP		100 LQFP				

¹ Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.

² Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC

³ Type Y = OPWMT + OPWMB + SAIC + SAOC

⁴ Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC


⁵ Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC

⁶ I/O count based on multiplexing with peripherals

2 Block diagram

Figure 1 shows a top-level block diagram of the MPC5602D device series.

Figure 1. MPC5602D series block diagram

Table 2 summarizes the functions of all blocks present in the MPC5602D series of microcontrollers. Please note that the presence and number of blocks varies by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 12-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI)	Handles external events that must produce an immediate response, such as power down detection
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU

Table 2. MPC5602D series block summary

Figure 3 shows the MPC5602D in the 64 LQFP package.

Figure 3. 64 LQFP pin configuration (top view)

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up.
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
- JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
- Main oscillator pads (EXTAL, XTAL) are tristate.

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization.

Package pinouts and signal descriptions

Dort nin	Function	Pin number			
Port pin	Function	64 LQFP	100 LQFP		
VDD_HV	Digital supply voltage	7, 28, 34, 56	15, 37, 52, 70, 84		
VSS_HV	Digital ground	6, 8, 26, 33, 55	14, 16, 35, 51, 69, 83		
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_{LV}}$ pin. ¹	11, 23, 57	19, 32, 85		
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin. ¹	10, 24, 58	18, 33, 86		
VDD_BV	Internal regulator supply voltage	12	20		

Table 3. Voltage supply pin descriptions

¹ A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1 \ 2}$

 $F = Fast^{1 2}$

 $I = Input only with analog feature^1$

J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.5 System pins

The system pins are listed in Table 4.

Table 4. System pin descriptions

Port pin	Function	I/O	Pad type	RESET	Pin number		
i ort pin	T unction	direction	i au type	configuration	64 LQFP	100 LQFP	
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	Μ	Input, weak pull-up only after PHASE2	9	17	
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. ¹	I/O	Х	Tristate	27	36	
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ¹	I	Х	Tristate	25	34	

¹ Refer to the relevant section of the device datasheet.

^{1.} See the I/O pad electrical characteristics in the device datasheet for details.

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see the PCR[SRC] description in the device reference manual).

Package pinouts and signal descriptions

							r tion	Pin number		
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP	
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 SIUL ADC	I/O I/O — I I	S	Tristate	44	71	
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁵	GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0]	SIUL eMIOS_0 eMIOS_0 SIUL BAM	I/O I/O — I I	S	Input, weak pull-up	45	72	
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁵	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 DSPI_1 BAM	I/O I/O — I/O I	S	Pull-down	46	73	
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] — LIN2TX ADC1_S[2]	SIUL eMIOS_0 LINFlex_2 ADC	I/O I/O — 0 I	S	Tristate	47	74	
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 — — —	GPIO[11] E0UC[11] — EIRQ[16] ADC1_S[3] LIN2RX	SIUL eMIOS_0 — SIUL ADC LINFlex_2	I/O I/O — I I I	S	Tristate	48	75	
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — EIRQ[17] SIN_0	SIUL — — SIUL DSPI_0	I/O — — — — — — —	S	Tristate	22	31	
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 — CS3_1	SIUL DSPI_0 DSPI_1	I/O O — I/O	М	Tristate	21	30	
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	Μ	Tristate	19	28	

							T ttion	Pin n	umber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP	
	Port D									
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — — WKPU[27] ³ ADC1_P[4]	SIUL — — WKPU ADC	 - 	Ι	Tristate		41	
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — WKPU[28] ³ ADC1_P[5]	SIUL — — WKPU ADC	 _ 	Ι	Tristate	_	42	
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — ADC1_P[6]	SIUL ADC	 - 	Ι	Tristate	_	43	
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — ADC1_P[7]	SIUL ADC	 - 	-	Tristate		44	
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — ADC1_P[8]	SIUL — — ADC	 	Ι	Tristate		45	
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — ADC1_P[9]	SIUL — — ADC	 	Ι	Tristate	_	46	
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — ADC1_P[10]	SIUL — — ADC	 	I	Tristate		47	
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — ADC1_P[11]	SIUL — — ADC	 	Ι	Tristate	_	48	

							r ttion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 —	GPIO[64] E0UC[16] — — WKPU[6] ³	SIUL eMIOS_0 — WKPU	I/O I/O — I	S	Tristate	_	6
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	_	8
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 — —	GPIO[66] E0UC[18] — EIRQ[21] SIN_1	SIUL eMIOS_0 — SIUL DSPI_1	I/O I/O — I I	Μ	Tristate	_	89
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O —	М	Tristate	_	90
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	I/O I/O I/O — I	М	Tristate	_	93
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate	_	94
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	М	Tristate	_	95
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	96
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] — E0UC[22] —	SIUL — eMIOS_0 —	I/O — I/O —	М	Tristate	—	9

.

Symbol		Parameter	Conditions	Va	Unit	
Symbo		Falameter	Conditions	Min Max		
V _{DD_BV}	SR	Voltage on VDD_BV (regulator supply) pin	_	-0.3	6.0	V
		with respect to ground (V_{SS})	Relative to V _{DD}	$V_{DD} - 0.3$	V _{DD} + 0.3	
V_{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V_{DD_ADC}	SR	Voltage on VDD_HV_ADC (ADC	_	-0.3	6.0	V
		reference) pin with respect to ground (V $_{\rm SS}$)	Relative to V _{DD}	$V_{DD} - 0.3$	V _{DD} + 0.3	
V _{IN}	SR	/oltage on any GPIO pin with respect to		-0.3	6.0	V
		ground (V _{SS})	Relative to V _{DD}	$V_{DD}-0.3$	V _{DD} + 0.3	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
I _{AVGSEG}	SR	Sum of all the static I/O current within a	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	70	mA
		supply segment ¹	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	64	
ICORELV	SR	Low voltage static current sink through VDD_BV	_	—	150	mA
T _{STORAGE}	SR	Storage temperature	_	-55	150	°C

¹ Supply segments are described in Section 4.7.5, I/O pad current specification.

NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

4.5 Recommended operating conditions

bl	с	Parameter	Conditions	Va	lue
	•	Falalletei	Conditiono	Min	N

Table 11. Recommended operating conditions (3.3 V)

					Min	Max	
V _{SS}	SR	—	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR		Voltage on VDD_HV pins with respect to ground (V _{SS})	—	3.0	3.6	V
V _{SS_LV}	² SR		Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} - 0.1	V _{SS} + 0.1	V

Symbo

Unit

Electrical characteristics

Table 2	21. I/O	weight ¹
---------	---------	---------------------

	100 LQFP/64 LQFP						
Pad	Weigl	nt 5 V	Weigh	t 3.3 V			
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1			
PB[3]	9%	9%	10%	10%			
PC[9]	8%	8%	10%	10%			
PC[14]	8%	8%	10%	10%			
PC[15]	8%	11%	9%	10%			
PA[2]	8%	8%	9%	9%			
PE[0]	7%	7%	9%	9%			
PA[1]	7%	7%	8%	8%			
PE[1]	7%	10%	8%	8%			
PE[8]	6%	9%	8%	8%			
PE[9]	6%	6%	7%	7%			
PE[10]	6%	6%	7%	7%			
PA[0]	5%	7%	6%	7%			
PE[11]	5%	5%	6%	6%			
PC[11]	7%	7%	9%	9%			
PC[10]	8%	11%	9%	10%			
PB[0]	8%	11%	9%	10%			
PB[1]	8%	8%	10%	10%			
PC[6]	8%	8%	10%	10%			
PC[7]	8%	8%	10%	10%			
PA[15]	8%	11%	9%	10%			
PA[14]	7%	11%	9%	9%			
PA[4]	7%	7%	8%	8%			
PA[13]	7%	10%	8%	9%			
PA[12]	7%	7%	8%	8%			
PB[9]	1%	1%	1%	1%			
PB[8]	1%	1%	1%	1%			
PB[10]	5%	5%	6%	6%			
PD[0]	1%	1%	1%	1%			
PD[1]	1%	1%	1%	1%			
PD[2]	1%	1%	1%	1%			
PD[3]	1%	1%	1%	1%			
PD[4]	1%	1%	1%	1%			

	100 LQFP/64 LQFP					
Pad	Weigl	nt 5 V	Weight 3.3 V			
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1		
PC[0]	6%	9%	7%	8%		
PE[2]	7%	10%	8%	9%		
PE[3]	7%	10%	9%	9%		
PC[5]	8%	11%	9%	10%		
PC[4]	8%	11%	9%	10%		
PE[4]	8%	12%	10%	10%		
PE[5]	8%	12%	10%	11%		
PE[6]	9%	12%	10%	11%		
PE[7]	9%	12%	10%	11%		
PC[12]	9%	13%	11%	11%		
PC[13]	9%	9%	11%	11%		
PC[8]	9%	9%	11%	11%		
PB[2]	9%	13%	11%	12%		

Table 21. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ } T_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified}$ ² SRC: "Slew Rate Control" bit in SIU_PCR

RESET electrical characteristics 4.8

The device implements a dedicated bidirectional RESET pin.

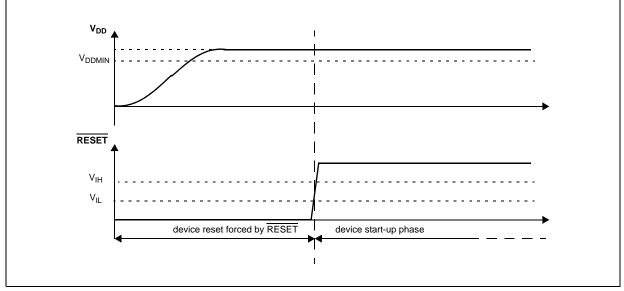


Figure 5. Start-up reset requirements

Symbol		с	Parameter	Conditions ¹		Value		Unit
		C	Parameter	Conditions	Min	Тур	Max	Unit
C _{DEC1}	SR		Decoupling capacitance ² ballast	V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 4.5$ V to 5.5 V	100 ³	470 ⁴	_	nF
				V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 3 V$ to 3.6 V	400			
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	—	nF
V _{MREG}	СС	Т	Main regulator output voltage	Before exiting from reset	_	1.32	—	V
Р		Ρ		After trimming	1.16	1.28		
I _{MREG}	SR	_	Main regulator current provided to $V_{DD_{LV}}$ domain	—	_	_	150	mA
IMREGINT	СС	D	Main regulator module current	I _{MREG} = 200 mA	—	—	2	mA
			consumption	I _{MREG} = 0 mA	—	—	1	
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28	—	V
I _{LPREG}	SR		Low power regulator current provided to V_{DD_LV} domain	—	—	_	15	mA
I _{LPREGINT}	СС	D	Low-power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C	_	5		
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	_	V
I _{ULPREG}	SR	_	Ultra low power regulator current provided to V _{DD_LV} domain	—		_	5	mA
IULPREGINT	СС	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	_	—	100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	—	2	—	
I _{DD_BV}	СС	D	In-rush average current on V_{DD_BV} during power-up ⁵	—	—	_	300 ⁶	mA

Table 23. Voltage regulator electrical characteristics (continued)
--

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

² This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

 $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V.

⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.

⁵ In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded).

⁶ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

Symbol C		C	Parameter	Conditions ¹	Value			Unit	
		C	raidilietei		Min	Тур	Max	onn	
I _{DDSTDBY}	СС	Ρ			T _A = 25 °C		30	100	μA
		D		(128 kHz) running	T _A = 55 °C		75	_	
		D			T _A = 85 °C		180	700	
		D			T _A = 105 °C	_	315	1000	
		Ρ			T _A = 125 °C		560	1700	

Table 25. Power consumption on VDD_BV and VDD_HV (continued) (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- ³ Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current on Table 23.
- ⁴ RUN current measured with typical application with accesses on both flash memory and SRAM.
- ⁵ Only for the "P" classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled.
- ⁶ Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
- ⁷ Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁸ When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- ⁹ Only for the "P" classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off.

4.11 Flash memory electrical characteristics

The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled.

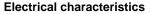
4.11.1 Program/Erase characteristics

Table 26 shows the program and erase characteristics.

Symbol		с	Parameter	Conditions ¹		Value			Unit
		C	Faiameter		Min	Тур	Max	Onit	
IFIRCSTOP	CC	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off		500	_	μA
			frequency and system clock current in stop mode		sysclk = 2 MHz		600		
			·		sysclk = 4 MHz		700		
					sysclk = 8 MHz		900		
					sysclk = 16 MHz		1250		
t _{FIRCSU}	СС	С	Fast internal RC oscillator start-up time	$V_{DD} = 5.0 \text{ V} \pm 10\%$		_	1.1	2.0	μs
$\Delta_{FIRCPRE}$	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1	—	1	%
$\Delta_{FIRCTRIM}$	СС	С	Fast internal RC oscillator trimming step	T _A = 25 °C			1.6		%
	СС	С	Fast internal RC oscillator variation in temperature and supply with respect to f_{FIRC} at $T_A = 55$ °C in high-frequency configuration		_	-5		5	%

 Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.


² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module.

Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics

Symbol	Symbol		Parameter	Conditions ¹		Value		Unit
Cymbol		С	i di dificici	Conditions	Min	Тур	Max	onn
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128	—	kHz
	SR	_	frequency	_	100	_	150	
I _{SIRC} ^{2,}	СС		Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed		_	5	μA
t _{SIRCSU}	СС		Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$		8	12	μs
∆ _{SIRCPRE}	CC		Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	_	2	%
	СС		Slow internal RC oscillator trimming step	—		2.7	_	

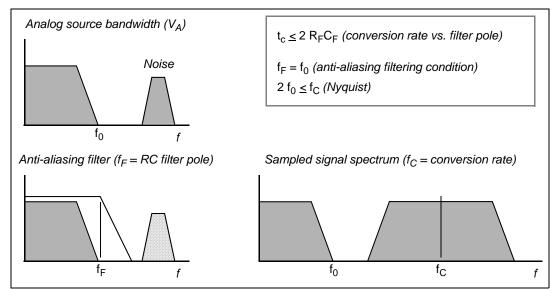


Figure 15. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

Eqn. 11

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

Table 41. ADC conversion	characteristics	(continued)
--------------------------	-----------------	-------------

Symbo	,	с	Parameter	Conditions ¹		Value		Unit
- Cymse		Ŭ	i urumotor	Conditions	Min	Тур	Max	
TUEX ⁽⁷⁾	СС		-	Without current injection	-10		10	LSB
		Т	for extended channel	With current injection	-12		12	

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified.

- $^2\,$ Analog and digital V_{SS} must be common (to be tied together externally).
- ³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.
- ⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- ⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sampling time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.
- ⁶ This parameter does not include the sampling time t_S, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- ⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

4.18 On-chip peripherals

4.18.1 Current consumption

Symbol		С	Parameter	Co	onditions	Typical value ²	Unit
I _{DD_BV(CAN)}	СС	Т	CAN (FlexCAN) supply	,	al (static + dynamic)	8 × f _{periph} + 85	μΑ
			current on V _{DD_BV}	125 Kbyte/s n • X C • N	isumption: FlexCAN in loop-back node KTAL at 8 MHz used as CAN engine clock source Message sending period s 580 μs	8 × f _{periph} + 27	μA
I _{DD_BV(eMIOS)}	СС	Т	eMIOS supply current on V _{DD_BV}	Static consumption: • eMIOS channel OFF • Global prescaler enabled		29 × f _{periph}	μA
				 Dynamic consum It does not cha frequency (0.00) 	ange varying the	3	μA
I _{DD_BV(SCI)}	СС	Т	SCI (LINFlex) supply current on V _{DD_BV}	Total (static + dynamic) consumption: • LIN mode • Baudrate: 20 Kbyte/s		5 × f _{periph} + 31	μA

Table 42. On-chip peripherals current consumption¹

No	No. Symbol		Symbol		с	Paramete	DSPI0/DSPI1				Unit
110.			Ŭ	raiametei		Min	Тур	Max	Jint		
	∆t _{CSC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode	Master mode	_	_	130 ²	ns		
	Δt _{ASC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 1	Master mode	_		130 ⁽²⁾	ns		
2	t _{CSCext} ³	SR	D	CS to SCK delay	Slave mode	32	_	—	ns		
3	t _{ASCext} 4	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	_	—	ns		
4	t _{SDC}	СС	D	SCK duty cycle	Master mode	_	t _{SCK} /2		ns		
		SR	D		Slave mode	t _{SCK} /2	—	_			
5	t _A	SR	D	Slave access time	—	1/f _{DSPI} + 70	—	_	ns		
6	t _{DI}	SR	D	Slave SOUT disable time	—	7	—		ns		
7	t _{PCSC}	SR	D	PCSx to PCSS time	—	0	—	_	ns		
8	t _{PASC}	SR	D	PCSS to PCSx time	—	0	—	_	ns		
9	t _{SUI}	SR	D	Data setup time for inputs	Master mode	43	—	_	ns		
					Slave mode	5	—	_			
10	t _{HI}	SR	D	Data hold time for inputs	Master mode	0	_	_	ns		
					Slave mode	2 ⁵	—				
11	t _{SUO} 6	СС	D	Data valid after SCK edge	Master mode	—	—	32	ns		
					Slave mode	—	—	52			
12	t _{HO} ⁽⁶⁾	СС	D	Data hold time for outputs	Master mode	0	—	—	ns		
					Slave mode	8	—	—			

Table 43. DSPI characteristics ¹	(continued)
---	-------------

 $^1\,$ Operating conditions: C_{OUT} = 10 to 50 pF, Slew_{IN} = 3.5 to 15 ns

² Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad

³ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{CSC} to ensure positive t_{CSCext}.

⁴ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext}.

⁵ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR.

⁶ SCK and SOUT configured as MEDIUM pad

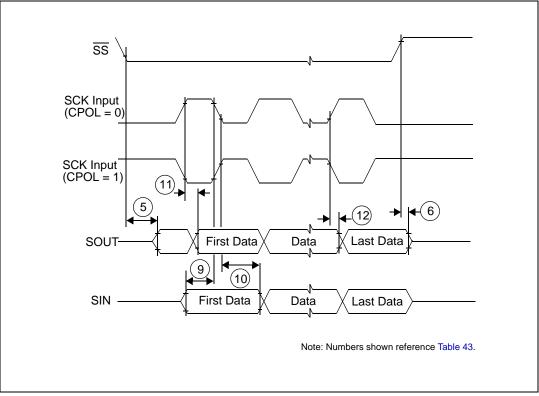


Figure 23. DSPI modified transfer format timing – slave, CPHA = 1

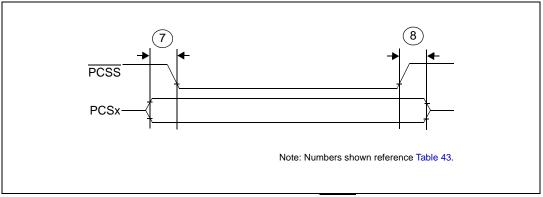


Figure 24. DSPI PCS strobe (PCSS) timing

Package characteristics

4.18.3 JTAG characteristics

Table	44.	JTAG	characteristics
		• • • • •	

No.	Symbol		с	Parameter		Value	Unit	
NO.			C	raiameter	Min	Тур	Max	Unit
1	t _{JCYC}	CC	D	TCK cycle time	83.33	_	—	ns
2	t _{TDIS}	CC	D	TDI setup time	15	_	—	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	—	ns
4	t _{TMSS}	CC	D	TMS setup time	15	_	—	ns
5	t _{TMSH}	CC	D	TMS hold time	5	_	—	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid	—	_	49	ns
7	t _{TDOI}	CC	D	TCK low to TDO invalid	6		—	ns

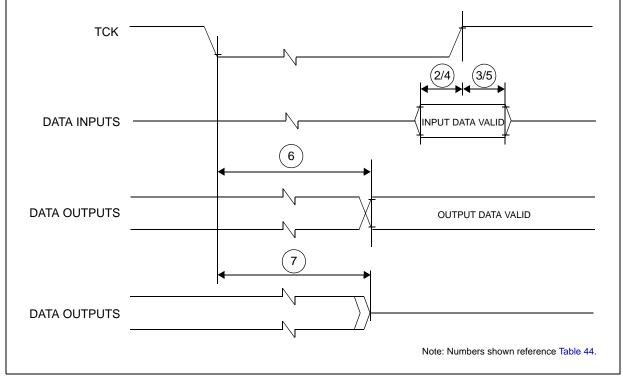


Figure 25. Timing diagram – JTAG boundary scan

5 Package characteristics

- 5.1 Package mechanical data
- 5.1.1 100 LQFP

Document revision history

 Features: Replaced "e20020" with "e20020h"; added an explanation of which LINFlemodules support master mode and slave MPC5601D/MPC5602D series block summary: added definition for "AUTOSAR" acronym changed "System watchdog timer" to "Software watchdog timer"64 LQFP pin configuration (top view): changed pin 6 from VPP_TEST to VSS_HV Added section "Pad configuration during reset phases" Added section "Voltage supply pins" Added section "Pad types" Added section "System pins" Renamed and updated section "Functional ports" (was previously section "Pin muxing update includes replacing all instances of WKUP with WKPU (WKPU is the correlable viation for Wakeup Unit) Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality Added section "NUSRO[WATCHDOG_EN] field description" Absolute maximum ratings: Removed "C" column from table Replaced "TBD" with "—" in T_{VDD} min value cell of 3.3 V and 5 V recommended operating conditions tables LQFP thermal characteristics: removed R_{6JB} single layer board conditions; updated footnote 4 I/O input DC electrical characteristics: removed footnote "All values need to be confirmed during device validation"; updated I_{LKG} characteristics: changed "I_{OH} = 100 μ 	Revision	Date	Description of Changes
 I/O consumption: replaced instances of "Root medium square" with "Root mean squa Updated section "Voltage regulator electrical characteristics" Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added a fifth LVD (LVDHV3B); added event stat flag names found in RGM chapter of device reference manual to POR module an LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; deleted note referencing power domain No. 2 (this domain is not prese on the device); updated electrical characteristics table Updated and renamed section "Power consumption" (was previously section "Low voltage domain power consumption") Program and erase specifications (code flash): updated symbols; updated t_{esus} valu Updated Flash memory read access timing EMI radiated emission measurement: updated S_{EMI} values Updated FMPLL electrical characteristics Crystal oscillator and resonator connection scheme: inserted footnote about possibly requiring a series resistor Fast internal RC oscillator (16 MHz) electrical characteristics: updated t_{FIRCSU} value Section "Input impedance and ADC accuracy": changed "V_A/V_{A2}" to "V_{A2}/V_A" in Equation 13 ADC conversion characteristics: updated conditions for sampling time V_{DD} = 5.0 V updated conditions for conversion time V_{DD} = 5.0 V 			Formatting and editorial changes throughout Device comparison table: for the "Total timer I/O eMIOS", changed "13 ch" to "14 ch" Features: Replaced "e20020" with "e20020"; added an explanation of which LINFlex modules support master mode and slave MPC5601D/MPC5602D series block summary: • added definition for "AUTOSAR" acronym changed "System watchdog time" to "Software watchdog timer"64 LQFP pin configuration (top view): changed pin 6 from VPP_TEST to VSS_HV Added section "Pad types" Added section "Pad types" Added section "Voltage supply pins" Added section "Voltage supply pins" Added section "Voltage supply pins" Added section "Notuse pins" Renamed and updated section "Functional ports" (was previously section "Pin muxing"); update includes replacing all instances of WKUP with WKPU (WKPU is the correct abbreviation for Wakeup Unit) Section "NVUSRO[WATCHDOC_EN] field description" Added section "NUVSRO[WATCHDOC_EN] field description" Added section "NUVSRO[WATCHDOC_EN] field description" Added section voltage differentistics: removed footnote "All values need to be confirmed during device validation"; updated l _{LKG} characteristics MDDUM configuration output buffer electrical characteristics: changed "G _{OH} = 100 µA" to 'I _{OL} = 100 µA" in V _{OL} conditions I/O consumption: replaced instances of "Low relaterestics"

Table 45. Revision history (continued)