E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 16
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602df1mll4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block diagram

Table 1. MPC5602D device comparison (continued)

Feature	Device							
i cuture	MPC5601DxLH	MPC5601DxLL	MPC5602DxLH	MPC5602DxLL				
Debug	JTAG							
Package	64 LQFP 100 LQFP		64 LQFP	100 LQFP				

¹ Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.

² Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC

³ Type Y = OPWMT + OPWMB + SAIC + SAOC

⁴ Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC

⁵ Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC

⁶ I/O count based on multiplexing with peripherals

2 Block diagram

Figure 1 shows a top-level block diagram of the MPC5602D device series.

Block	Function
Real-time counter (RTC)	Provides a free-running counter and interrupt generation capability that can be used for timekeeping applications
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.

Table 2. MPC5602D	series block summary	y (continued)
-------------------	----------------------	---------------

3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please refer to Table 5.

Package pinouts and signal descriptions

							E O L ±		n number	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE1 configura	64 LQFP	100 LQFP	
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ³	SIUL — — LINFlex_1 WKPU	I/O — — — —	S	Tristate	17	26	
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] —	SIUL LINFlex_2 eMIOS_0 —	I/O O I/O —	S	Tristate	63	99	
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 — —	GPIO[41] — E0UC[7] — LIN2RX WKPU[13] ³	SIUL — eMIOS_0 — LINFlex_2 WKPU	I/O — I/O — I	S	Tristate	2	2	
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] — — MA[1]	SIUL — — ADC	I/O — — O	М	Tristate	13	22	
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 —	GPIO[43] — — MA[2] WKPU[5] ³	SIUL — ADC WKPU	I/O — — 0 I	S	Tristate	_	21	
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19]	SIUL eMIOS_0 — SIUL	I/O I/O — I	Μ	Tristate	_	97	
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	_	98	
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] — EIRQ[8]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate		3	
PC[15]	PCR[47]	AF0 AF1 AF2 AF3 —	GPIO[47] E0UC[15] — EIRQ[20]	SIUL eMIOS_0 — SIUL	I/O I/O — I	Μ	Tristate		4	

Package pinouts and signal descriptions

							T ation	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE [:] configura	64 LQFP	100 LQFP
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — ADC1_P[12]	SIUL — — ADC	 - - 	I	Tristate		49
PD[9]	PCR[57]	AF0 AF1 AF2 AF3 —	GPIO[57] — — — ADC1_P[13]	SIUL — — ADC	 	Ι	Tristate		56
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 —	GPIO[58] — — — ADC1_P[14]	SIUL — — ADC		Ι	Tristate		57
PD[11]	PCR[59]	AF0 AF1 AF2 AF3 —	GPIO[59] — — — ADC1_P[15]	SIUL — — ADC	 	I	Tristate	_	58
PD[12]	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] — ADC1_S[8]	SIUL DSPI_0 eMIOS_0 — ADC	I/O O I/O I	J	Tristate		60
PD[13]	PCR[61]	AF0 AF1 AF2 AF3 —	GPIO[61] CS0_1 E0UC[25] — ADC1_S[9]	SIUL DSPI_1 eMIOS_0 — ADC	I/O I/O I/O I/O I	J	Tristate	_	62
PD[14]	PCR[62]	AF0 AF1 AF2 AF3 —	GPIO[62] CS1_1 E0UC[26] — ADC1_S[10]	SIUL DSPI_1 eMIOS_0 — ADC	I/O O I/O I	J	Tristate	_	64
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 —	GPIO[63] CS2_1 E0UC[27] — ADC1_S[11]	SIUL DSPI_1 eMIOS_0 — ADC	I/O O I/O I	J	Tristate		66
				Port	E				

Table 5. Functional	port pi	n description	s (continued)
	ροιτρι	1 acouption	3 (continucu)

						T	T ttion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE	64 LQFP	100 LQFP
PE[0]	PCR[64]	AF0 AF1 AF2	GPIO[64] E0UC[16] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	—	6
		AF3 —	— WKPU[6] ³	— WKPU	— I				
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] —	SIUL eMIOS_0 	I/O I/O 	М	Tristate		8
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — EIRQ[21] SIN_1	SIUL eMIOS_0 — SIUL DSPI_1	I/O I/O — I I	M	Tristate		89
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	М	Tristate	_	90
PE[4]	PCR[68]	AF0 AF1 AF2 AF3	GPIO[68] E0UC[20] SCK_1 	SIUL eMIOS_0 DSPI_1 	I/O I/O I/O	М	Tristate	_	93
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate		94
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	95
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	96
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] E0UC[22] 	SIUL eMIOS_0 	I/O — I/O —	М	Tristate	—	9

Table 5. Fund	ctional port	pin descrip	tions (continued)
---------------	--------------	-------------	-------------------

.

Figure 4. Input DC electrical characteristics definition

Table 14	I. I/O	input	DC	electrical	characteristics
----------	--------	-------	----	------------	-----------------

Symbol		C	Parameter	Condit	ions ¹		Unit		
		C	raianietei	Condit		Min	Тур	Мах	Onic
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} +0.4	V	
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_	-0.4	—	0.35V _{DD}	V	
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	—	—	V	
I _{LKG}	СС	D	Digital input leakage	No injection	$T_A = -40 \ ^\circ C$	—	2	200	nA
		D		on adjacent	T _A = 25 °C	—	2	200	
		D			T _A = 85 °C	—	5	300	
		D			T _A = 105 °C	—	12	500	
		Ρ			T _A = 125 °C	—	70	1000	
W_{FI}^2	SR	Ρ	Digital input filtered pulse	—		—	_	40	ns
W _{NFI} ⁽²⁾	SR	Ρ	Digital input not filtered pulse	-	-	1000		—	ns

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

• Table 15 provides weak pull figures. Both pull-up and pull-down resistances are supported.

Symbol		C	Parameter	Condi	tions ¹		Value		Unit
Symbol		C	Farameter	Conditions		Min	Тур	Max	onn
I _{SWTSLW} ²	СС	D	Dynamic I/O current for SLOW	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		_	20	mA
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	16	
I _{SWTMED} ⁽²⁾	СС	D	Dynamic I/O current for MEDIUM	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	—	29	mA
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	17	
I _{RMSSLW}	СС	D	Root mean square	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,			2.3	mA
			I/O current for SLOW	C _L = 25 pF, 4 MHz	PAD3V5V = 0		—	3.2	
			5	C _L = 100 pF, 2 MHz				6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%,$			1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1			2.3	
				C _L = 100 pF, 2 MHz		_		4.7	
IRMSMED	СС	D	Root mean square	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		6.6	mA
			MEDIUM	C _L = 25 pF, 40 MHz	PAD3V5V = 0	_		13.4	
			configuration	C _L = 100 pF, 13 MHz		—	_	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%,$	_	—	5	
				C _L = 25 pF, 40 MHz	PAD3V5V=1	_	—	8.5	
				C _L = 100 pF, 13 MHz		_	—	11	
I _{AVGSEG}	SR	D	Sum of all the static	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ P}_{C}$	AD3V5V = 0	—	_	70	mA
			supply segment	$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ P}_{DD}$	AD3V5V = 1	—	—	65	

Table 20. I/O consumption

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 21 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%.

	100 LQFP/64 LQFP					
Pad	Weigl	ht 5 V	Weight 3.3 V			
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1		
PC[0]	6%	9%	7%	8%		
PE[2]	7%	10%	8%	9%		
PE[3]	7%	10%	9%	9%		
PC[5]	8%	11%	9%	10%		
PC[4]	8%	11%	9%	10%		
PE[4]	8%	12%	10%	10%		
PE[5]	8%	12%	10%	11%		
PE[6]	9%	12%	10%	11%		
PE[7]	9%	12%	10%	11%		
PC[12]	9%	13%	11%	11%		
PC[13]	9%	9%	11%	11%		
PC[8]	9%	9%	11%	11%		
PB[2]	9%	13%	11%	12%		

Table 21. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ } T_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified}$ ² SRC: "Slew Rate Control" bit in SIU_PCR

RESET electrical characteristics 4.8

The device implements a dedicated bidirectional RESET pin.

Figure 5. Start-up reset requirements

Figure 6. Noise filtering on reset signal

Symb	0	c	Parameter	Conditions ¹		Value		Unit
Gynib	01	Ŭ	i didiletei	Conditions	Min	Тур	Мах	onne
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	_	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	_	—	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}	V
				Push Pull, I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	—	_	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)		_	0.5	

Table 22. Reset electrical characteristics

							Val	ue		
Symbol		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit		
t _{dwprogram}	CC	С	Double word (64 bits) program time ⁴		22	50	500	μs		
t _{16Kpperase}	СС	С	16 KB block preprogram and erase time	_	300	500	5000	ms		
t _{32Kpperase}	СС	С	32 KB block preprogram and erase time		400	600	5000	ms		
t _{128Kpperase}	СС	С	128 KB block preprogram and erase time	_	800	1300	7500	ms		
t _{esus}	СС	С	Erase suspend latency	_	—	30	30	μs		

Table 26. Program and erase specifications (code flash)

¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

- ³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁴ Actual hardware programming times. This does not include software overhead.

					Va	lue		
Symbol	Symbol		Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit
t _{swprogram}	СС	С	Single word (32 bits) program time ⁴		30	70	300	μs
t _{16Kpperase}	СС	С	16 KB block preprogram and erase time	_	700	800	1500	ms
t _{Bank_D}	СС	С	64 KB block preprogram and erase time	—	1900	2300	4800	ms

Table 27. Program and erase specifications (data flash)

¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

NP

Electrical characteristics

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 5

Eqn. 6

Eqn. 7

Eqn. 8

Eqn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_F C_F$ filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

		•	Parameter Conditions ¹			Value			
Symbo	ы	C	Parameter	Cond	tions'	Min	Тур	Max	Unit
t _c	СС	Ρ	Conversion time ⁶ V _{DD} = 3.3 V	f _{ADC} = 20 MHz INPCMP = 0	,	2.4	—	_	μs
				f _{ADC} = 13.33 M INPCMP = 0	Hz,	—	—	3.6	
		Ρ	Conversion time ⁽⁶⁾ V _{DD} = 5.0 V	f _{ADC} = 32 MHz INPCMP = 0		1.5	—	_	μs
				f _{ADC} = 13.33 M INPCMP = 0	Hz,	—	—	3.6	
C _S	СС	D	ADC input sampling capacitance	-	_		5		pF
C _{P1}	СС	D	ADC input pin capacitance 1	-	_		3		pF
C _{P2}	СС	D	ADC input pin capacitance 2	-	_		1		pF
C _{P3}	СС	D	ADC input pin capacitance 3	-	_		1.5		pF
R _{SW1}	СС	D	Internal resistance of analog source	-	_	—	—	1	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	-	_	_	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	-	_	_	—	0.3	kΩ
I _{INJ}	SR		Input current Injection	Current injection on	V _{DD} = 3.3 V ± 10%	-5	—	5	mA
				one ADC input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	_	5	
INLP	СС	Т	Absolute Integral non-linearity-precise channels	No overload			1	3	LSB
INLX	СС	Т	Absolute Integral non-linearity-extended channels	No overload			1.5	5	LSB
DNL	СС	Т	Absolute Differential non-linearity	No overload		-	0.5	1	LSB
E _O	СС	Т	Absolute Offset error	-		_	2	_	LSB
E _G	СС	Т	Absolute Gain error	-	_	_	2		LSB
TUEP ⁷	СС	Ρ	Total unadjusted error	Without current	injection	-6		6	LSB
		Т	input only pins	With current inj	With current injection			8	

Symbo	Symbol		Parameter	Conditions ¹		Value		Unit
Cymbe		Ū	i diamotor	N	Min	Тур	Мах	0.111
TUEX ⁽⁷⁾	СС	Т	Total unadjusted error	Without current injection	-10		10	LSB
		Т	for extended channel	With current injection	-12		12	

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified.

- $^2\,$ Analog and digital V_{SS} must be common (to be tied together externally).
- ³ V_{AINx} may exceed V_{SS_ADC} and V_{DD_ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.
- ⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- ⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sampling time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.
- ⁶ This parameter does not include the sampling time t_S, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- ⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

4.18 On-chip peripherals

4.18.1 Current consumption

Symbol		С	Parameter	Conditions	Typical value ²	Unit
I _{DD_BV} (CAN)	CC	Т	CAN (FlexCAN) supply current on V _{DD_BV}	500 Kbyte/sTotal (static + dynamic) consumption: • FlexCAN in loop-back mode 	8 × f _{periph} + 85 8 × f _{periph} + 27	μΑ
I _{DD_BV} (eMIOS)	СС	т	eMIOS supply current on V _{DD_BV}	Static consumption: • eMIOS channel OFF • Global prescaler enabled	29 × f _{periph}	μA
				Dynamic consumption:It does not change varying the frequency (0.003 mA)	3	μA
I _{DD_BV(SCI)}	CC	Т	SCI (LINFlex) supply current on V _{DD_BV}	Total (static + dynamic) consumption: • LIN mode • Baudrate: 20 Kbyte/s	5 × f _{periph} + 31	μA

Table 42. On-chip peripherals current consumption¹

Figure 16. DSPI classic SPI timing – master, CPHA = 0

Figure 18. DSPI classic SPI timing – slave, CPHA = 0

Figure 19. DSPI classic SPI timing – slave, CPHA = 1

Figure 20. DSPI modified transfer format timing – master, CPHA = 0

Figure 23. DSPI modified transfer format timing – slave, CPHA = 1

Figure 24. DSPI PCS strobe (PCSS) timing

Document revision history

Revision	Date	Description of Changes
3.1	23 Feb 2011	Deleted the "Freescale Confidential Proprietary" label (the document is public)

Table 45. Revision history (continued)

Document revision history

Revision	Date	Description of Changes
4	14 Jul 2011	Formatting and editorial changes throughout Device comparison table: for the "Total timer I/O eMIOS", changed "13 ch" to "14 ch" Features: Replaced "e200z0" with "e200z0h"; added an explanation of which LINFlex modules support master mode and slave MPC5601D/MPC5602D series block summary: • added definition for "AUTOSAB" acronym
		changed "System watchdog timer" to "Software watchdog timer"64 LQFP pin configuration (top view): changed pin 6 from VPP_TEST to VSS_HV Added section "Pad configuration during reset phases" Added section "Voltage supply pins"
		Added section "Pad types" Added section "System pins"
		Renamed and updated section "Functional ports" (was previously section "Pin muxing"); update includes replacing all instances of WKUP with WKPU (WKPU is the correct abbreviation for Wakeup Unit)
		Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality
		Added section "NVUSRO[WATCHDOG_EN] field description" Absolute maximum ratings: Removed "C" column from table
		Replaced "TBD" with "—" in T _{VDD} min value cell of 3.3 V and 5 V recommended operating conditions tables
		LQFP thermal characteristics: removed $R_{\theta JB}$ single layer board conditions; updated footnote 4
		 I/O input DC electrical characteristics: removed footnote "All values need to be confirmed during device validation"; updated I_{LKG} characteristics MEDIUM configuration output buffer electrical characteristics: changed "I_{OU} = 100 µA"
		to " $I_{OL} = 100 \ \mu$ A" in V_{OL} conditions
		Updated section "Voltage regulator electrical characteristics"
		Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); added a fifth LVD (LVDHV3B); added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; deleted note referencing power domain No. 2 (this domain is not present
		Updated and renamed section "Power consumption" (was previously section "Low voltage domain power consumption")
		Program and erase specifications (code flash): updated symbols; updated t _{esus} values Updated Flash memory read access timing
		Updated FMPLL electrical characteristics Crystal oscillator and resonator connection scheme: inserted footnote about possibly
		requiring a series resistor Fast internal RC oscillator (16 MHz) electrical characteristics: updated t _{FIRCSU} values
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 13
		updated conditions for conversion time V _{DD} = 5.0 V
		Commercial product code structure: added character for frequency; updated optional fields character and description
		Restored the revision history table and added an entry for Rev. 3.1 Updated Abbreviations

Table 45. Revision history (continued)