NXP USA Inc. - SPC5602DF1VLH3R Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602df1vlh3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Introduction									
	1.1	Docur	ment overview							
	1.2	Descr	iption							
2	Block	k diagram								
3	Pack	age pir	nouts and signal descriptions							
	3.1	Packa	age pinouts							
	3.2	Pad c	onfiguration during reset phases							
	3.3	Voltag	je supply pins9							
	3.4	Pad ty	/pes							
	3.5	Syster	m pins							
	3.6	Functi	ional ports							
4	Elect	rical ch	aracteristics							
	4.1	Introd	uction							
	4.2	Paran	neter classification							
	4.3	NVUS	RO register							
		4.3.1	NVUSRO[PAD3V5V] field description							
		4.3.2	NVUSRO[OSCILLATOR_MARGIN] field							
			description							
		4.3.3	NVUSRO[WATCHDOG_EN] field description22							
	4.4	Absol	ute maximum ratings							
	4.5	Recor	mmended operating conditions							
	4.6	Therm	nal characteristics							
		4.6.1	Package thermal characteristics							
		4.6.2	Power considerations							
	4.7	I/O pa	d electrical characteristics							
		4.7.1	I/O pad types							
		4.7.2	I/O input DC characteristics							
		4.7.3	I/O output DC characteristics							
		4.7.4	Output pin transition times							
		4.7.5	I/O pad current specification							
	4.8	RESE	T electrical characteristics							
	4.9	Power	r management electrical characteristics							
		4.9.1	Voltage regulator electrical characteristics37							
		4.9.2	Low voltage detector electrical characteristics .40							

	4.10	Power consumption
	4.11	Flash memory electrical characteristics
		4.11.1 Program/Erase characteristics
		4.11.2 Flash power supply DC characteristics 44
		4.11.3 Start-up/Switch-off timings
	4.12	Electromagnetic compatibility (EMC) characteristics 45
		4.12.1 Designing hardened software to avoid
		noise problems 45
		4.12.2 Electromagnetic interference (EMI) 46
		4.12.3 Absolute maximum ratings (electrical sensitivity)46
	4.13	Fast external crystal oscillator (4 to 16 MHz) electrical
		characteristics
	4.14	FMPLL electrical characteristics 51
	4.15	Fast internal RC oscillator (16 MHz) electrical
		characteristics 51
	4.16	Slow internal RC oscillator (128 kHz) electrical
		characteristics
	4.17	ADC electrical characteristics 54
		4.17.1 Introduction
		4.17.2 Input impedance and ADC accuracy 55
		4.17.3 ADC electrical characteristics 60
	4.18	On-chip peripherals
		4.18.1 Current consumption
		4.18.2 DSPI characteristics
		4.18.3 JTAG characteristics
5	Pack	age characteristics 70
	5.1	Package mechanical data 70
		5.1.1 100 LQFP
		5.1.2 64 LQFP
6	Orde	ring information
7	Docu	ment revision history 78

NP

Block	Function
Real-time counter (RTC)	Provides a free-running counter and interrupt generation capability that can be used for timekeeping applications
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (Automotive Open System Architecture) and operating system tasks
Software watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.

Table 2. MPC5602D	series block summary	y (continued)
-------------------	----------------------	---------------

3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please refer to Table 5.

Package pinouts and signal descriptions

							r tion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE1 configura	64 LQFP	100 LQFP
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 — —	GPIO[7] E0UC[7] — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 — SIUL ADC	I/O I/O — I I	S	Tristate	44	71
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁵	GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0]	SIUL eMIOS_0 eMIOS_0 SIUL BAM	I/O I/O — I I	S	Input, weak pull-up	45	72
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁵	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 DSPI_1 BAM	I/O I/O — I/O I	S	Pull-down	46	73
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] — LIN2TX ADC1_S[2]	SIUL eMIOS_0 LINFlex_2 ADC	I/O I/O — 0 I	S	Tristate	47	74
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 — — —	GPIO[11] E0UC[11] — EIRQ[16] ADC1_S[3] LIN2RX	SIUL eMIOS_0 — SIUL ADC LINFlex_2	/O /O 	S	Tristate	48	75
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 — —	GPIO[12] — — EIRQ[17] SIN_0	SIUL — — SIUL DSPI_0	I/O — — — I I	S	Tristate	22	31
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 CS3_1	SIUL DSPI_0 DSPI_1	I/O O I/O	Μ	Tristate	21	30
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	Μ	Tristate	19	28

Table 5. Functional	port pin	descriptions ((continued)
			· · · · · · · · · · · · · · · · · · ·

						T ition	Pin number		
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE	64 LQFP	100 LQFP
PE[0]	PCR[64]	AF0 AF1 AF2	GPIO[64] E0UC[16] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	—	6
		AF3 —	— WKPU[6] ³	— WKPU	— I				
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] —	SIUL eMIOS_0 	I/O I/O 	М	Tristate		8
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — EIRQ[21] SIN_1	SIUL eMIOS_0 — SIUL DSPI_1	I/O I/O — I I	M	Tristate		89
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O —	М	Tristate	_	90
PE[4]	PCR[68]	AF0 AF1 AF2 AF3	GPIO[68] E0UC[20] SCK_1 	SIUL eMIOS_0 DSPI_1 	I/O I/O I/O	М	Tristate	_	93
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate		94
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	95
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	96
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] E0UC[22] 	SIUL eMIOS_0 	I/O — I/O —	М	Tristate	—	9

Table 5. Fund	ctional port	pin descrip	tions (continued)
---------------	--------------	-------------	-------------------

.

⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 If the user configures these. ITAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1.

If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.

4 Electrical characteristics

4.1 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.2 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 6. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.3 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

 P_{INT} is the product of I_{DD} and V_{DD} , expressed in watts. This is the chip internal power.

P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{D} = K / (T_{J} + 273 °C)$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

4.7 I/O pad electrical characteristics

4.7.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage.

Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance.

4.7.2 I/O input DC characteristics

Table 14 provides input DC electrical characteristics as described in Figure 4.

Electrical characteristics

	100 LQFP/64 LQFP						
Pad	Weig	ht 5 V	Weight 3.3 V				
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1			
PB[3]	9%	9%	10%	10%			
PC[9]	8%	8%	10%	10%			
PC[14]	8%	8%	10%	10%			
PC[15]	8%	11%	9%	10%			
PA[2]	8%	8%	9%	9%			
PE[0]	7%	7%	9%	9%			
PA[1]	7%	7%	8%	8%			
PE[1]	7%	10%	8%	8%			
PE[8]	6%	9%	8%	8%			
PE[9]	6%	6%	7%	7%			
PE[10]	6%	6%	7%	7%			
PA[0]	5%	7%	6%	7%			
PE[11]	5%	5%	6%	6%			
PC[11]	7%	7%	9%	9%			
PC[10]	8%	11%	9%	10%			
PB[0]	8%	11%	9%	10%			
PB[1]	8%	8%	10%	10%			
PC[6]	8%	8%	10%	10%			
PC[7]	8%	8%	10%	10%			
PA[15]	8%	11%	9%	10%			
PA[14]	7%	11%	9%	9%			
PA[4]	7%	7%	8%	8%			
PA[13]	7%	10%	8%	9%			
PA[12]	7%	7%	8%	8%			
PB[9]	1%	1%	1%	1%			
PB[8]	1%	1%	1%	1%			
PB[10]	5%	5%	6%	6%			
PD[0]	1%	1%	1%	1%			
PD[1]	1%	1%	1%	1%			
PD[2]	1%	1%	1%	1%			
PD[3]	1%	1%	1%	1%			
PD[4]	1%	1%	1%	1%			

MPC5602D Microcontroller Data Sheet, Rev. 6

Figure 6. Noise filtering on reset signal

Symbol		c	Parameter	Conditions ¹	Value			
Gynib	01	Ŭ	i didiletei	Conditions	Min	Тур	Мах	onne
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	_	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	_	—	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}	V
				Push Pull, I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	—	_	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)		_	0.5	

Table 22. Reset electrical characteristics

Symbol		~	Parameter	Conditions1			Unit	
Symbo	וע	C	Farameter	Conditions	Min	Тур	Max	Onic
t _{tr}	СС	D	Output transition time output pin ³	C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	10	ns
				C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20	
				C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_		40	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	12	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_		40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	_	Ι	_	40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000	_	_	ns
I _{WPU}	СС	Ρ	Weak pull-up current	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10		150	μA
			adsolute value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10		150	
				$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^4$	10	_	250	1

Table 22. Reset electrical character	istics (continued)
--------------------------------------	--------------------

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the device reference manual).

 $^3~$ CL includes device and package capacitance (C_{PKG} < 5 pF).

⁴ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

4.9 **Power management electrical characteristics**

4.9.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage ballast supply V_{DD_BV} . The regulator itself is supplied by the common I/O supply V_{DD} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through V_{DD_BV} power pin. Voltage values should be aligned with V_{DD} .
- LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:

- LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.

Symbol		C	Parameter	Conditions ¹			Value		
		Ŭ	i di dificici				Тур	Max	
I _{FLPW}	СС	D	Sum of the current consumption on V_{DDHV} and V_{DDBV} during flash low-power mode	_	Code flash	_	_	910	μA
I _{CFPWD}	СС	D	Sum of the current consumption on	—	Code flash	_	_	125	μA
I _{DFPWD}	СС	D	v _{DDHV} and v _{DDBV} during flash power-down mode		Data flash	_	_	25	μA

Table 30. Flash power supply DC electrical characteristics

 $^1~$ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

4.11.3 Start-up/Switch-off timings

Table 31. Start-up time/Switch-off time

Symbol		C	Parameter	Conditions ¹		Unit		
eyer		Ŭ	i arameter	Conditions	Min	Тур	Max	
t _{FLARSTEXIT}	СС	Т	Delay for flash module to exit reset mode	Code flash	_	_	125	μs
				Data flash	—	—	150	μs
t _{FLALPEXIT}	СС	Т	Delay for flash module to exit low-power mode ²	Code flash	—	—	0.5	μs
t _{FLAPDEXIT}	СС	Т	Delay for flash module to exit power-down	Code flash	—	—	30	μs
			mode	Data flash	_	—	30 ³	μs
t _{FLALPENTRY}	СС	Т	Delay for flash module to enter low-power mode	Code flash	—	—	0.5	μs
t _{FLAPDENTRY}	СС	Т	Delay for flash module to enter	Code flash	—	—	1.5	μs
			power-down mode	Data flash	—	—	4 ⁽³⁾	μs

 $\overline{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² Data flash does not support low-power mode

³ If code flash is already switched-on.

4.12 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

4.12.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

• Software recommendations – The software flowchart must include the management of runaway conditions such as:

Symbol		С	Ratings	Conditions	Class	Max value	Unit
V _{ESD(HBM)}	СС	Т	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	СС	Т	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-003	M2	200	V
V _{ESD(CDM)}	СС	Т	Electrostatic discharge voltage	$T_A = 25 ^{\circ}C$	C3A	500	V
			(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	V

Table 33.	ESD	absolute	maximum	ratings ^{1 2}
-----------	-----	----------	---------	------------------------

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

4.12.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 34. Latch-up results

Symbol		nbol	С	Parameter	Conditions	Class
	LU	CC	Т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

4.14 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbol		C	Parameter	Conditions ¹		Unit			
Symbo	,	C	Falancie	Conditions	Min	Тур	Max		
f _{PLLIN}	SR	—	FMPLL reference clock ²	_	4		48	MHz	
Δ_{PLLIN}	SR		FMPLL reference clock duty cycle ⁽²⁾	_	40	_	60	%	
f _{PLLOUT}	СС	D	FMPLL output clock frequency	—	16	_	48	MHz	
f _{VCO} ³	СС	Ρ	VCO frequency without frequency modulation	_	256	_	512	MHz	
			VCO frequency with frequency modulation	_	245	_	533		
f _{CPU}	SR	—	System clock frequency	—	_	_	48	MHz	
f _{FREE}	СС	Ρ	Free-running frequency	—	20	_	150	MHz	
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)	_	40	100	μs	
∆t _{LTJIT}	СС		FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} at 48 MHz, 4,000 cycles	—	_	10	ns	
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	_	_	4	mA	

Table 37. FMPLL electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$.

4.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device.

Symbol		C	Paramotor	Conditions ¹		Unit		
		C	r ai ainetei	Conditions	Min	Тур	Мах	
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, trimmed	_	16		MHz
	SR	—	frequency	_	12		20	
I _{FIRCRUN} ^{2,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_		200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C	_	_	10	μA

Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

Figure 13. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 14. Transient behavior during sampling phase

NP

Electrical characteristics

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 5

Eqn. 6

Eqn. 7

Eqn. 8

Eqn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_F C_F$ filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

4.17.3 ADC electrical characteristics

Table 40.	ADC	input	leakage	current
-----------	-----	-------	---------	---------

Symbol		С	с	Parameter		Conditions			Unit
- Oyn		Ŭ	i arameter					Мах	
I _{LKG}	СС	С	Input leakage current	$T_A = -40 \ ^\circ C$	No current injection on adjacent pin		1	_	nA
		С		T _A = 25 °C		—	1	_	
		С		T _A = 105 °C		—	8	200	
		Ρ		T _A = 125 °C		—	45	400	

Table 41. ADC conversion characteristics

Symbol		C	Parameter	Conditions ¹	Value			
		U		Conditions	Min	Тур	Мах	onn
V _{SS_ADC}	SR		Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS}) ²	_	-0.1		0.1	V
V _{DD_ADC}	SR	_	Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1	_	V _{DD} + 0.1	V
V _{AINx}	SR	_	Analog input voltage ³	—	$V_{SS_ADC} - 0.1$	_	V _{DD_ADC} + 0.1	V
f _{ADC}	SR		ADC analog frequency	V _{DD} = 5.0 V	3.33		32 + 4%	MHz
				V _{DD} = 3.3 V	3.33		20 + 4%	
Δ_{ADC} sys	SR	—	ADC clock duty cycle (ipg_clk)	ADCLKSEL = 1 ⁴	45		55	%
t _{ADC_PU}	SR		ADC power up delay — — —		_	1.5	μs	
t _s	СС	Т	Sampling time ⁵ V _{DD} = 3.3 V	f _{ADC} = 20 MHz, INPSAMP = 12	600	_	_	ns
				f _{ADC} = 3.33 MHz, INPSAMP = 255	_	_	76.2	μs
		Т	Sampling time $^{(5)}$ $f_{ADC} = 24$ MHz,50 $V_{DD} = 5.0$ VINPSAMP = 13		500		—	ns
			f _{ADC} = 3.33 MHz, INPSAMP = 255		_	—	76.2	μs

Figure 16. DSPI classic SPI timing – master, CPHA = 0

Figure 18. DSPI classic SPI timing – slave, CPHA = 0

MPC5602D Microcontroller Data Sheet, Rev. 6

Package characteristics

4.18.3 JTAG characteristics

No	Symbol		<u> </u>	Parameter		Unit		
NO.					Min	Тур	Мах	Unit
1	t _{JCYC}	CC	D	TCK cycle time	83.33	_	—	ns
2	t _{TDIS}	CC	D	TDI setup time	15	_	—	ns
3	t _{TDIH}	CC	D	TDI hold time	5	_	—	ns
4	t _{TMSS}	CC	D	TMS setup time	15	_	—	ns
5	t _{TMSH}	CC	D	TMS hold time	5	_	—	ns
6	t _{TDOV}	CC	D	TCK low to TDO valid	—	_	49	ns
7	t _{TDOI}	CC	D	TCK low to TDO invalid	6	_	—	ns

Figure 25. Timing diagram – JTAG boundary scan

5 Package characteristics

- 5.1 Package mechanical data
- 5.1.1 100 LQFP

Package characteristics

N

	MECHANICAL OUTLINE		DOCUMENT NO: 98ASS23234W					
	DICTIONARY	PAGE:	840F					
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRA	WING REV:	E					
NOTES:								
1. DIMENSIONS ARE IN MI	LLIMETERS.							
2. DIMENSIONING AND TOL	ERANCING PER ASME Y14.	5M-1994.						
3. DATUMS A, B AND D TO	3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.							
A DIMENSIONS TO BE DE	DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.							
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 mr LOCATED ON THE LOWER PROTRUSION AND ADJAG	THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.							
THIS DIMENSION DOES IS 0.25 mm PER SIDE. DIMENSION INCLUDING	A THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.							
🛆 exact shape of each	\triangle exact shape of each corner is optional.							
A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.								
TITLE: 64LD LQFP,	CASE NUM	BER: 840F-02						
10 X 10 X 1.4	PKG, STANDARD	:JEDEC MS-0	26 BCD					
U. J FIICH, CASE (PACKAGE	CODE: 8426	SHEET: 3					

Figure 31. 64 LQFP mechanical drawing (part 3 of 3)

MPC5602D Microcontroller Data Sheet, Rev. 6

Document revision history

7 Document revision history

Table 45 summarizes revisions to this document.

Table 45. Revision history

Revision Date		Description of Changes			
1	30 Sep 2009	Initial release			
2	18 Feb 2010	Updated the following tables: - Absolute maximum ratings - Low voltage power domain electrical characteristics; - On-chip peripherals current consumption - DSPI characteristics; - JTAG characteristics; - ADC conversion characteristics; Inserted a note on "Flash power supply DC characteristics" section.			
3	10 Aug 2010	 "Features" section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and low power capabilities "MPC5602D device comparison" table: updated the "Execution speed" row "MPC5602D series block diagram" figure: updated Legend "MPC5602D series block summary" table: added contents concernig the eDMA block "100 LQFP pin configuration (top view)" figure: removed alternate functions updated supply pins "64 LQFP pin configuration (top view)" figure: removed alternate functions Added "Pin muxing" section "NVUSRO register" section: Deleted "NVUSRO[WATCHDOG_EN] field description" section "Recommended operating conditions (3.3 V)" table: *VV_{DD}: deleted min value In footnote No. 3, changed capacitance value between V_{DD_BV} and V_{SS_LV} "Recommended operating conditions (5.0 V)" table: deleted TV_{DD} min value "LQFP thermal characteristics" table: changed R_{0.0C} values "I/O input DC electrical characteristics" table: W_{FI}: updated min value W_{NFI}: updated min value "Voltage regulator electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Start-up time/Switch-off time" "Fast internal RC oscillator (16 MHz) electrical characteristics" "ADC conversion characteristics" "ADC conversion characteristics" "ADC conversion characteristics" "ADC conversion characteristics" "On-chip peripherals current consumption" "DSPI characteristics" section: removed "DSPI PCS strobe (PCSS) timing" figure 			
3 (continued)	10 Aug 2010	"Ordering information" section: removed "Orderable part number summary" table			

MPC5602D Microcontroller Data Sheet, Rev. 6