E·XFL

NXP USA Inc. - SPC5602DF1VLL3 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602df1vll3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Functional ports

The functional port pins are listed in Table 5.

Table 5. Functiona	al port pin	descriptions
--------------------	-------------	--------------

							T ttion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP
				Port	Α				
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT E0UC[13] WKPU[19] ³	SIUL eMIOS_0 CGL eMIOS_0 WKPU	I/O I/O O I/O I	Μ	Tristate	5	12
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 —	GPIO[1] E0UC[1] — NMI ⁴ WKPU[2] ³	SIUL eMIOS_0 — WKPU WKPU WKPU	I/O I/O — I I	S	Tristate	4	7
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 —	GPIO[2] E0UC[2] — MA[2] WKPU[3] ³	SIUL eMIOS_0 — ADC WKPU	I/O I/O — 0 I	S	Tristate	3	5
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 — —	GPIO[3] E0UC[3] — CS4_0 EIRQ[0] ADC1_S[0]	SIUL eMIOS_0 — DSPI_0 SIUL ADC	I/O I/O I/O I I	S	Tristate	43	68
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — CS0_1 WKPU[9] ³	SIUL eMIOS_0 — DSPI_1 WKPU	I/O I/O — I/O I	S	Tristate	20	29
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	79
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] CS1_1 EIRQ[1]	SIUL eMIOS_0 DSPI_1 SIUL	I/O I/O I/O I	S	Tristate	52	80

Package pinouts and signal descriptions

							tion	Pin number		
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP	
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 SIUL ADC	I/O I/O — I I	S	Tristate	44	71	
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁵	GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0]	SIUL eMIOS_0 eMIOS_0 SIUL BAM	I/O I/O — I I	S	Input, weak pull-up	45	72	
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁵	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 DSPI_1 BAM	I/O I/O — I/O I	S	Pull-down	46	73	
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] — LIN2TX ADC1_S[2]	SIUL eMIOS_0 LINFlex_2 ADC	I/O I/O — 0 I	S	Tristate	47	74	
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 — — —	GPIO[11] E0UC[11] — EIRQ[16] ADC1_S[3] LIN2RX	SIUL eMIOS_0 — SIUL ADC LINFlex_2	I/O I/O — I I I	S	Tristate	48	75	
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — EIRQ[17] SIN_0	SIUL — — SIUL DSPI_0	I/O — — — — — — —	S	Tristate	22	31	
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 — CS3_1	SIUL DSPI_0 DSPI_1	I/O O — I/O	М	Tristate	21	30	
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	Μ	Tristate	19	28	

Package pinouts and signal descriptions

						f	Pin number		
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPIO[23] — — — ADC1_P[3]	SIUL — — ADC	 - 	I	Tristate	37	55
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 —	GPIO[24] — — ADC1_S[4] WKPU[25] ³	SIUL — — ADC WKPU	 	Ι	Tristate	30	39
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ADC1_S[5] WKPU[26] ³	SIUL — — ADC WKPU	 	I	Tristate	29	38
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 —	GPIO[26] — — ADC1_S[6] WKPU[8] ³	SIUL — — ADC WKPU	I/O — — — — — — —	J	Tristate	31	40
PB[11]	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] — CS0_0 ADC1_S[12]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O I/O I	J	Tristate	38	59
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC1_X[0]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	39	61
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ADC1_X[1]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	40	63
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] CS3_0 ADC1_X[2]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	41	65

							T ttion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration	64 LQFP	100 LQFP
	Port D								
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 —	GPIO[48] — — — WKPU[27] ³ ADC1_P[4]	SIUL — — WKPU ADC	 - 	Ι	Tristate		41
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 —	GPIO[49] — — WKPU[28] ³ ADC1_P[5]	SIUL — — WKPU ADC	 _ 	Ι	Tristate	_	42
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — ADC1_P[6]	SIUL ADC	 - 	Ι	Tristate	_	43
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — ADC1_P[7]	SIUL ADC	 - 	-	Tristate		44
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — ADC1_P[8]	SIUL — — ADC	 	Ι	Tristate		45
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — — ADC1_P[9]	SIUL — — ADC	 	Ι	Tristate	_	46
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — ADC1_P[10]	SIUL — — ADC	 	I	Tristate		47
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — ADC1_P[11]	SIUL — — ADC	 	Ι	Tristate	_	48

Sumbo		Parameter	Conditions	Va	Unit	
Symbo		Falameter	Conditions	Min	Max	Unit
V _{DD_BV}	SR	Voltage on VDD_BV (regulator supply) pin	—	-0.3	6.0	V
		with respect to ground (V_{SS})	Relative to V _{DD}	$V_{DD} - 0.3$	V _{DD} + 0.3	
V_{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	V
V_{DD_ADC}	SR	Voltage on VDD_HV_ADC (ADC	_	-0.3	6.0	V
		reference) pin with respect to ground (V $_{\rm SS}$)	Relative to V _{DD}	$V_{DD} - 0.3$	V _{DD} + 0.3	
V _{IN}	SR	Voltage on any GPIO pin with respect to	_	-0.3	6.0	V
		ground (V _{SS})	Relative to V _{DD}	$V_{DD}-0.3$	V _{DD} + 0.3	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
I _{AVGSEG}	SR	Sum of all the static I/O current within a	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	70	mA
		supply segment ¹	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	64	
ICORELV	SR	Low voltage static current sink through VDD_BV	_	—	150	mA
T _{STORAGE}	SR	Storage temperature	_	-55	150	°C

¹ Supply segments are described in Section 4.7.5, I/O pad current specification.

NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

4.5 Recommended operating conditions

bl	с	Parameter	Conditions	Value		
	•		Conditions	Min	N	

Table 11. Recommended operating conditions (3.3 V)

					Min	Max	
V _{SS}	SR	—	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR		Voltage on VDD_HV pins with respect to ground (V _{SS})	—	3.0	3.6	V
V _{SS_LV}	² SR		Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} - 0.1	V _{SS} + 0.1	V

Symbo

Unit

Symbo		с	Parameter	Conditions	Va	lue	Unit
Symbo	1	C	Farameter	Conditions	Min	Max	Unit
V _{DD_BV} ³	SR	—	Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	V
			respect to ground (V _{SS})	Relative to V _{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1	
V_{SS_ADC}	SR		Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} + 0.1	V
$V_{\text{DD}_\text{ADC}}{}^4$	SR	—	Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁵	3.6	V
			with respect to ground (V_{SS})	Relative to V _{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1	
V _{IN} SR — Volta		—	Voltage on any GPIO pin with respect to ground	—	$V_{SS} - 0.1$	—	V
			(*SS/	Relative to V_{DD}	—	V _{DD} + 0.1	
I _{INJPAD}	SR		Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR		Absolute sum of all injected input currents during overload condition	—	-50	50	mA
TV _{DD}	SR	—	V _{DD} slope to ensure correct power up ⁶	—	—	0.25	V/µs
T _{A C-Grade} Part	SR		Ambient temperature under bias	$f_{CPU} \le 48 \text{ MHz}$	-40	85	°C
T _{J C-Grade} Part	SR		Junction temperature under bias		-40	110	
T _{A V-Grade} Part	SR		Ambient temperature under bias		-40	105	
T _{J V} -Grade Part	SR		Junction temperature under bias		-40	130	
T _{A M} -Grade Part	SR		Ambient temperature under bias]	-40	125	
T _{J M} -Grade Part	SR		Junction temperature under bias]	-40	150	

Table 11. Recommended operating conditions (3.3 V) (continued)

 1 100 nF capacitance needs to be provided between each $V_{\text{DD}}/V_{\text{SS}}$ pair.

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair.

³ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 $^4~$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

Symbo	Symbol C		Parameter	Conditions	Va	Unit	
Cymbe			i arameter	Conditions	Min	Мах	
V _{SS}	SR	_	Digital ground on VSS_HV pins	_	0	0	V

 Table 12. Recommended operating conditions (5.0 V)

Symbo	.1	с	Parameter	Conditions	Va	lue	Unit
Symbo	,	C	Falameter	Conditions	Min	Max	Unit
V_{DD}^{1}	SR	_	Voltage on VDD_HV pins with respect to ground	—	4.5	5.5	V
			(V _{SS})	Voltage drop ²	3.0	5.5	
$V_{SS_{LV}}^{3}$	SR		Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V_SS)	_	V _{SS} -0.1	V _{SS} + 0.1	V
$V_{DD_BV}^4$	SR	_	Voltage on VDD_BV pin (regulator supply) with	—	4.5	5.5	V
			respect to ground (V _{SS})	Voltage drop ⁽²⁾	3.0	5.5	
				Relative to V_{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1	
V_{SS_ADC}	SR		Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V $_{\rm SS}$	—	V _{SS} -0.1	V _{SS} + 0.1	V
$V_{DD_ADC}^5$	SR	—	Voltage on VDD_HV_ADC pin (ADC reference) with	—	4.5	5.5	V
			respect to ground (V _{SS})	Voltage drop ⁽²⁾	3.0	5.5	
				Relative to V _{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1	
V _{IN} SF			Voltage on any GPIO pin with respect to ground	—	$V_{SS} - 0.1$	—	V
			(V _{SS})	Relative to V _{DD}	—	V _{DD} + 0.1	
I _{INJPAD}	SR		Injected input current on any pin during overload condition	—	-5	5	mA
I _{INJSUM}	SR	_	Absolute sum of all injected input currents during overload condition		-50	50	mA
TV _{DD}	SR		V _{DD} slope to ensure correct power up ⁶	—	—	0.25	V/µs
T _{A C-Grade} Part	SR	—	Ambient temperature under bias	$f_{CPU} \le 48 \text{ MHz}$	-40	85	°C
T _{J C-Grade} Part	SR	—	Junction temperature under bias		-40	110	
T _{A V-Grade} Part	SR	—	Ambient temperature under bias		-40	105	
T _{J V-Grade} Part	SR		Junction temperature under bias		-40	130	
T _{A M-Grade} Part	SR	—	Ambient temperature under bias	1	-40	125	
T _{J M} -Grade Part	SR		Junction temperature under bias		-40	150	

 $^1\,$ 100 nF capacitance needs to be provided between each V_DD/V_SS pair.

² Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.

 $^3\,$ 330 nF capacitance needs to be provided between each V_{DD_LV}\!/V_{SS_LV} supply pair.

- ⁴ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).
- 5 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.
- ⁶ Guaranteed by device validation

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

 P_{INT} is the product of I_{DD} and V_{DD} , expressed in watts. This is the chip internal power.

P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{D} = K / (T_{J} + 273 °C)$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

4.7 I/O pad electrical characteristics

4.7.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage.

Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance.

4.7.2 I/O input DC characteristics

Table 14 provides input DC electrical characteristics as described in Figure 4.

- Table 16 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 17 provides output driver characteristics for I/O pads when in MEDIUM configuration.

Symt	Symbol		Parameter	Conditions ¹		Value			Unit
Synn	501	C	raiametei	Conditions			Тур	Max	
I _{WPU}	СС	Ρ	Weak pull-up current	$V_{IN} = V_{IL}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10	—	150	μA
		С	absolute value		$PAD3V5V = 1^2$	10	—	250	
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	
$ I_{WPD} $	СС	Ρ	Weak pull-down current	$V_{IN} = V_{IH}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10	—	150	μA
		С	absolute value		$PAD3V5V = 1^{(2)}$	10	—	250	
		Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	

Table 15. I/O pull-up/pull-down DC electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Table 16. SLOW configuration output buffer electrical characteristics

Sym	hal	6	Parameter		Conditions ¹	v	Unit		
Jym	001	C	Farameter		Conditions			Max	Unit
V _{OH}	CC	Ρ	Output high level SLOW configuration	Push Pull $I_{OH} = -2 \text{ mA}$, $V_{DD} = 5.0 \text{ V} \pm 10\%$, PAD3V5V = 0 (recommended)		0.8V _{DD}		_	V
		С			I _{OH} = -2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	0.8V _{DD}	—	_	
		С			I _{OH} = −1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} – 0.8	_	_	
V _{OL}	СС	Ρ	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	—	_	0.1V _{DD}	V
		С			I _{OL} = 2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	_	—	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	—	—	0.5	

 $\overline{}^{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Symbol		с	Parameter	Condi	tions ¹		Value		Unit
Symbol		C	Farameter	Condi	10115	Min	Тур	Max	Onic
I _{SWTSLW} ,2	СС	D	Dynamic I/O current for SLOW	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		_	20	mA
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	16	
I _{SWTMED} ⁽²⁾	СС	D	for MEDIUM	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	—	29	mA
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			17	
I _{RMSSLW}	СС	D	Root mean square	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%,$		—	2.3	mA
			I/O current for SLOW configuration	$10^{\circ} = 25 \text{ pc} = 4 \text{ MHz}$	_	—	3.2		
			3	C _L = 100 pF, 2 MHz		_	—	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,		_	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1		—	2.3	
				C _L = 100 pF, 2 MHz				4.7	
IRMSMED	СС	D	Root mean square	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,			6.6	mA
			I/O current for MEDIUM	C _L = 25 pF, 40 MHz	PAD3V5V = 0			13.4	1
			configuration	C _L = 100 pF, 13 MHz		_	—	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,	_	—	5	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	—	—	8.5	
				C _L = 100 pF, 13 MHz		_	—	11	
I _{AVGSEG}	SR	D		V _{DD} = 5.0 V ± 10%, P	AD3V5V = 0		_	70	mA
		I/O current within a supply segment $V_{DD} = 3.3 \text{ V} \pm 10\%$		V _{DD} = 3.3 V ± 10%, P	AD3V5V = 1	—	—	65	

Table 20. I/O consumption

¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 21 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%.

		100 LQFF	P/64 LQFP		
Pad	Weigl	nt 5 V	Weight 3.3 V		
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	
PC[0]	6%	9%	7%	8%	
PE[2]	7%	10%	8%	9%	
PE[3]	7%	10%	9%	9%	
PC[5]	8%	11%	9%	10%	
PC[4]	8%	11%	9%	10%	
PE[4]	8%	12%	10%	10%	
PE[5]	8%	12%	10%	11%	
PE[6]	9%	12%	10%	11%	
PE[7]	9%	12%	10%	11%	
PC[12]	9%	13%	11%	11%	
PC[13]	9%	9%	11%	11%	
PC[8]	9%	9%	11%	11%	
PB[2]	9%	13%	11%	12%	

Table 21. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ } T_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified}$ ² SRC: "Slew Rate Control" bit in SIU_PCR

RESET electrical characteristics 4.8

The device implements a dedicated bidirectional RESET pin.

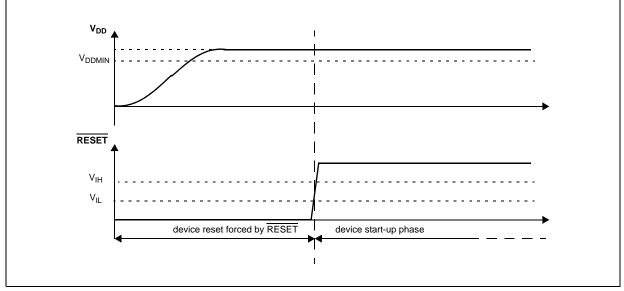


Figure 5. Start-up reset requirements

- LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
- LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
- LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

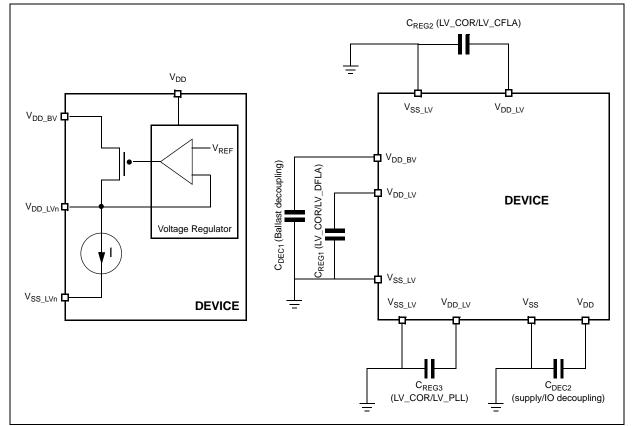


Figure 7. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 4.5, Recommended operating conditions).

Symbol		с	Parameter	Conditions ¹		Unit		
		Ŭ	i arameter	Conditions	Min	Тур	Max	• · · · ·
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	_	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	Ω

Table 23. Voltage regulator electrical characteristics

4.9.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

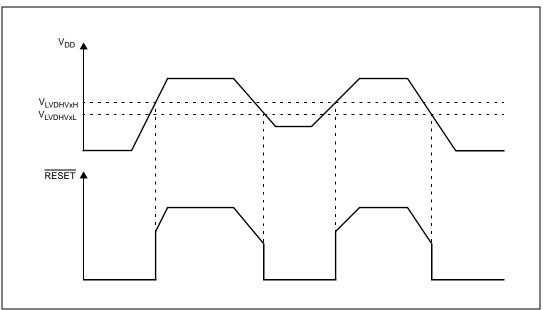


Figure 8. Low voltage detector vs reset

Symbol		С	Ratings	Conditions	Class	Max value	Unit
V _{ESD(HBM)}	CC		Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	CC		Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	V
V _{ESD(CDM)}	CC		Electrostatic discharge voltage	$T_{A} = 25 ^{\circ}C$	C3A	500	V
	(Charged Device Model) conforming to AEC-Q100-011			750 (corners)	V		

Table 33.	ESD	absolute	maximum	ratings ^{1 2}
-----------	-----	----------	---------	------------------------

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

4.12.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 34. Latch-up results

Syn	nbol	С	Parameter	Conditions	Class
LU	CC	Т	Static latch-up class	$T_A = 125 \text{ °C}$ conforming to JESD 78	II level A

4.13 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 35 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

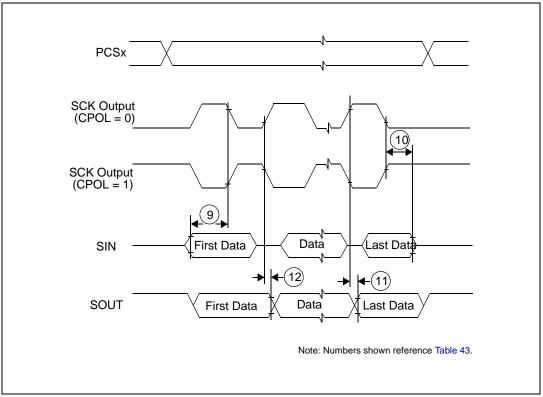



Figure 9. Crystal oscillator and resonator connection scheme

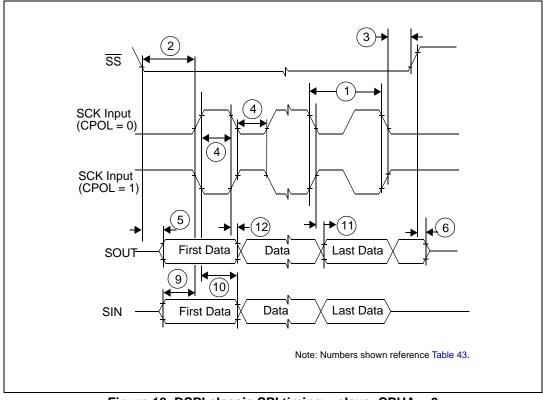
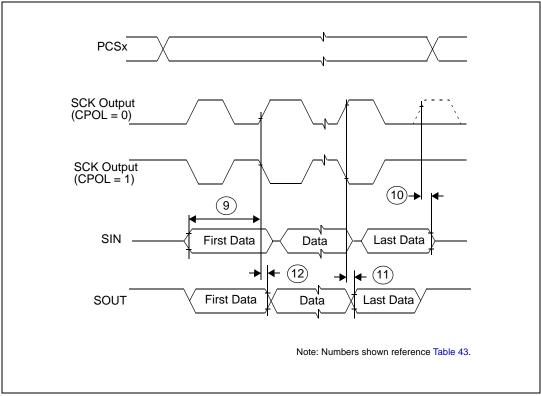
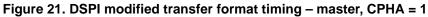
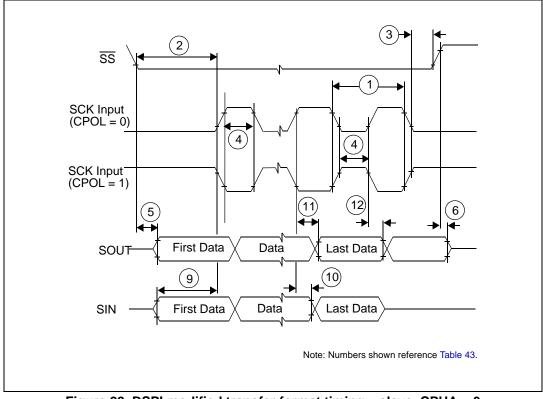





Figure 18. DSPI classic SPI timing – slave, CPHA = 0

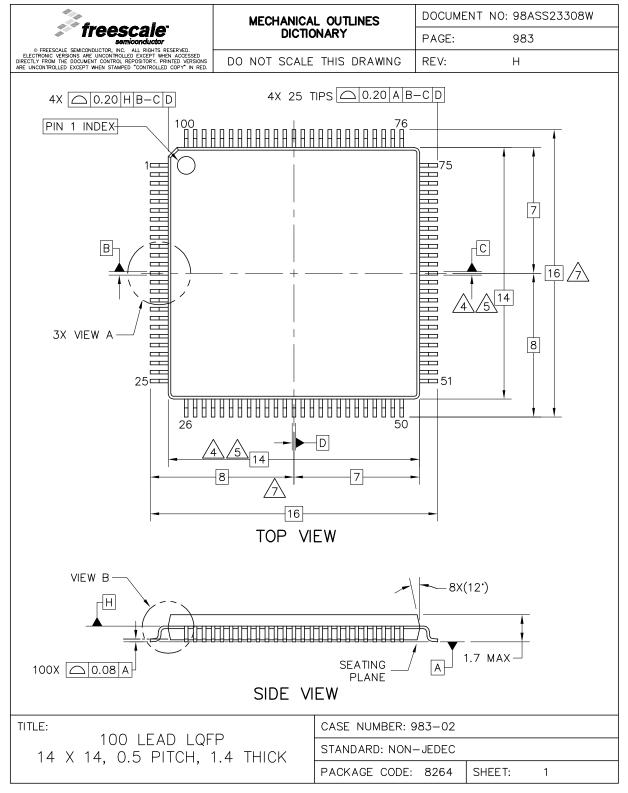


Figure 26. 100 LQFP package mechanical drawing (Part 1 of 3)

Abbreviations

Abbreviation	Meaning
OPWMCB	Center aligned output pulse width modulation buffered with dead time
OPWMT	Output pulse width modulation trigger
PWM	Pulse width modulation
SAIC	Single action input capture
SAOC	Single action output compare
SCK	Serial communications clock
SOUT	Serial data out
TBD	To be defined
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

Table A-1. Abbreviations (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5602D Rev. 6 01/2013 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2009–2013. All rights reserved.

