

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	C500
Core Size	8-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	4.25V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	PG-MQFP-44-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c505ca4emcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2000-12

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2000. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Figure 3 C505 Pin Configuration P-MQFP-44 Package (Top View)

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O *)	Function			
RESET	4	I	RESET A high level on this pin for two machine cycle while the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits power-on reset using only an external capacitor to V_{DD} .			
P3.0-P3.7	5, 7-13 5 7 8 9 10 11 12 13	I/O	Port 3 is an 8-bit quasi- arrangement. Port pulled high by the state can be used externally pulled characteristics) be The output latch must be programm (except for TxD a assigned to the pir P3.0 / RxD P3.1 / TxD P3.2 / INT0 P3.2 / INT0 P3.3 / INT1 P3.4 / T0 P3.5 / T1 P3.6 / WR P3.7 / RD	bidirectional port with internal pull-up 3 pins that have 1's written to them are e internal pull-up transistors and in that d as inputs. As inputs, port 3 pins being low will source current (<i>I</i> _{IL} , in the DC cause of the internal pullup transistors. corresponding to a secondary function hed to a one (1) for that function to operate and WR). The secondary functions are ns of port 3 as follows: Receiver data input (asynch.) or data input/output (synch.) of serial interface Transmitter data output (asynch.) or clock output (synch.) of serial interface External interrupt 0 input / timer 0 gate control input External interrupt 1 input / timer 1 gate control input Timer 0 counter input WR control output; latches the data byte from port 0 into the external data memory RD control output; enables the external		

*) I = Input

O= Output

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O *)	Function
P2.0-P2.7	18-25	Ι/Ο	Port 2 is a an 8-bit quasi-bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1's written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup transistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 issues the contents of the P2 special function register and uses only the internal pullup resistors.
PSEN	26	0	The Program Store Enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every three oscillator periods except during external data memory accesses. Remains high during internal program execution. This pin should not be driven during reset operation.
ALE	27	0	The Address Latch Enable output is used for latching the low-byte of the address into external memory during normal operation. It is activated every three oscillator periods except during an external data memory access. When instructions are executed from internal ROM or OTP (\overline{EA} =1) the ALE generation can be disabled by bit EALE in SFR SYSCON. ALE should not be driven during reset operation.

*) I = Input

O= Output

Memory Organization

The C505 CPU manipulates operands in the following four address spaces:

- On-chip program memory :16K byte ROM (C505(C)(A)-2R) or 32K byte ROM (C505A-4R/C505CA-4R) or 32K byte OTP (C505A-4E/C505CA-4E)
- Totally up to 64K byte internal/external program memory
- up to 64 Kbyte of external data memory
- 256 bytes of internal data memory
- Internal XRAM data memory :256 byte (C505/C505C)
 - 1K byte (C505A/C505CA)
- a 128 byte special function register area

Figure 5 illustrates the memory address spaces of the C505 versions.

Figure 5 C505 Memory Map Memory Map

Special Function Registers

The registers, except the program counter and the four general purpose register banks, reside in the special function register area. The special function register area consists of two portions : the standard special function register area and the mapped special function register area. Five special function register of the C505 (PCON1,P1ANA, VR0, VR1, VR2) are located in the mapped special function register area. For accessing the mapped special function register area, bit RMAP in special function register SYSCON must be set. All other special function registers are located in the standard special function register area which is accessed when RMAP is cleared ("0").

The registers and data locations of the CAN controller (CAN-SFRs) are located in the external data memory area at addresses $F700_{\text{H}}$ to $F7FF_{\text{H}}$.

Special Function Register SYSCON (Address B1_H) (C505CA only)

Reset Value : XX100X01_B Reset Value : XX100001_B

The functions of the shaded bits are not described here. 1) This bit is only available in the C505CA.

Bit	Function
RMAP	Special function register map bit RMAP = 0 : The access to the non-mapped (standard) special function register area is enabled.
	RMAP = 1: The access to the mapped special function register area is enabled.
CSWO	CAN Controller switch-off bit CSWO = 0 : CAN Controller is enabled (default after reset). CSWO = 1 : CAN Controller is switched off.

As long as bit RMAP is set, mapped special function register area can be accessed. This bit is not cleared by hardware automatically. Thus, when non-mapped/mapped registers are to be accessed, the bit RMAP must be cleared/set respectively by software.

All SFRs with addresses where address bits 0-2 are 0 (e.g. 80_H , 88_H , 90_H , 98_H , ..., $F8_H$, FF_H) are bitaddressable.

The 52 special function registers (SFRs) in the standard and mapped SFR area include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. The SFRs of the C505 are listed in **Table 3** and **Table 4**. In **Table 3** they are organized in groups which refer to the functional blocks of the C505. The CAN-SFRs (applicable for the C505C and C505CA only) are also included in **Table 3**. **Table 4** illustrates the contents of the SFRs in numeric order of their addresses. **Table 5** list the CAN-SFRs in numeric order of their addresses.

36

Figure 21

Interrupt Structure, Overview Part 1

Note: Each of the 15 CAN controller message objects (C505C and C505CA only), shown in the shaded area of **Figure 21** provides the bits/flags.

Pin Configuration in Programming Mode

Figure 27 P-MQFP-44 Pin Configuration of the C505A-4E/C505CA-4E in Programming Mode (Top View)

The following **Table 11** contains the functional description of all C505A-4E/C505CA-4E pins which are required for OTP memory programming.

Table 11

Pin Definitions and Functions in Programming Mode

Symbol	Pin Number	I/O *)	Function					
RESET	4	I	Reset This input must be at static "1" (active) level during the whole programming mode.					
PMSEL0 PMSEL1	5 7	1	Programming mode selection pins These pins are used to select the different access modes in programming mode. PMSEL1,0 must satisfy a setup time to the rising edge of PALE. When the logic level of PMSEL1,0 is changed, PALE must be at low level.					
			PMSEL1	PMSEL0	Access Mode			
			0	0	Reserved			
			0	1	Read version bytes			
			1	0	Program/read lock bits			
			1	1	Program/read OTP memory byte			
PSEL	8	I	Basic programming mode select This input is used for the basic programming mode selection and must be switched according Figure 28 .					
PRD	9	I	Programming mode read strobe This input is used for read access control for OTP memory read, Version Register read, and lock bit read operations.					
PALE	10	I	Programming address latch enable PALE is used to latch the high address lines. The high address lines must satisfy a setup and hold time to/from the falling edge of PALE. PALE must be at low level when the logic level of PMSEL1.0 is changed.					
XTAL2	14	0	XTAL2 Output of the	inverting osc	illator amplifier.			
XTAL1	15	I	XTAL1 Input to the oscillator amplifier.					
V _{SS}	16	-	Circuit ground potential must be applied in programming mode.					
V _{DD}	17	-	Power suppl must be appli	Power supply terminal must be applied in programming mode.				

*) I = Input

O= Output

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values Unit		Notes
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	-
Voltage on V_{DD} pins with respect to ground (V_{SS})	$V_{\rm DD}$	- 0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	<i>V_{DD}</i> + 0.5	V	-
Input current on any pin during overload condition		- 10	10	mA	-
Absolute sum of all input currents during overload condition			100 mA	mA	-
Power dissipation	P _{DISS}		1	W	_

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During absolute maximum rating overload conditions $(V_{IN} > V_{DD} \text{ or } V_{IN} < V_{SS})$ the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Figure 30 I_{DD} Diagram of C505A-4E and C505CA-4E

Power Supply Current Calculation Formulas
Power Supply Current Calculation Formula

Parameter	Symbol	Formula
Active mode	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	1.63 * <i>f</i> _{OSC} + 2.6 1.74 * <i>f</i> _{OSC} + 2.8
Idle mode	I _{DD typ} I _{DD max}	0.69 * <i>f</i> _{OSC} + 3.9 0.74 * <i>f</i> _{OSC} + 4.1
Active mode with slow-down enabled	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	0.6 * <i>f</i> _{OSC} + 0.3 0.7 * <i>f</i> _{OSC} + 1.6
Idle mode with slow-down enabled	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	$0.3 * f_{OSC} + 0.3$ $0.3 * f_{OSC} + 0.8$

*Note: f*_{osc} is the oscillator frequency in MHz. *I*_{DD} values are given in mA.

A/D Converter Characteristics of C505A and C505CA

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		min.	max.			
Analog input voltage	V_{AIN}	V_{AGND}	V_{AREF}	V	1)	
Sample time	t _S	_	$64 \times t_{\rm IN}$ $32 \times t_{\rm IN}$ $16 \times t_{\rm IN}$ $8 \times t_{\rm IN}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ²⁾	
Conversion cycle time	t _{ADCC}	-	$\begin{array}{c} 384 \ {\rm x} \ t_{\rm IN} \\ 192 \ {\rm x} \ t_{\rm IN} \\ 96 \ {\rm x} \ t_{\rm IN} \\ 48 \ {\rm x} \ t_{\rm IN} \end{array}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ³⁾	
Total unadjusted error	$T_{\sf UE}$	_	± 2	LSB	V_{SS} +0.5V $\leq V_{AIN} \leq V_{DD}$ -0.5V $^{4)}$	
		-	± 4	LSB	$V_{SS} < V_{AIN} < V_{DD}$ +0.5V V_{DD} - 0.5 V < $V_{AIN} < V_{DD}$ ⁴⁾	
Internal resistance of reference voltage source	R _{AREF}	-	t _{ADC} / 250 - 0.25	kΩ	<i>t</i> _{ADC} in [ns] ^{5) 6)}	
Internal resistance of analog source	R _{ASRC}	-	t _s / 500 - 0.25	kΩ	<i>t</i> _S in [ns] ^{2) 6)}	
ADC input capacitance	C_{AIN}	-	50	pF	6)	

Notes see next page.

Clock calculation table :

Clock Prescaler Ratio	ADCL	.1, 0	^t ADC	t _S	tADCC
÷ 32	1	1	32 x t _{IN}	64 x t _{IN}	384 x t _{IN}
÷ 16	1	0	16 x t _{IN}	32 x t _{IN}	192 x t _{IN}
÷8	0	1	8 x t _{IN}	16 x t _{IN}	96 x t _{IN}
÷ 4	0	0	4 x t _{IN}	8 x t _{IN}	48 x t _{IN}

Further timing conditions : $t_{ADC} min = 500 ns$ $t_{IN} = 1 / f_{OSC} = t_{CLP}$

Note:

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 2) During the sample time the input capacitance C_{AIN} must be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.
- 3) This parameter includes the sample time t_S, the time for determining the digital result and the time for the calibration. Values for the conversion clock t_{ADC} depend on programming and can be taken from the table on the previous page.
- 4) T_{UE} is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DD} = 4.9 V. It is guaranteed by design characterization for all other voltages within the defined voltage range.
 If an overload condition occurs on maximum 2 unused analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is permissible.
- 5) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference source must allow the capacitance to reach their final voltage level within the indicated time. The maximum internal resistance results from the programmed conversion timing.
- 6) Not 100% tested, but guaranteed by design characterization.

AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle, cont'd)

External Clock Drive Characteristics

Parameter	Symbol	CPU Clock = 16 MHz Duty Cycle 0.4 to 0.6		Variable (1/CLP = 2	Unit	
		min.	max.	min.	max.	
Oscillator period	CLP	62.5	62.5	62.5	500	ns
High time	TCL _H	25	-	25	CLP - TCL _L	ns
Low time	TCL	25	-	25	CLP - TCL _H	ns
Rise time	t _R	-	10	-	10	ns
Fall time	t _F	-	10	-	10	ns
Oscillator duty cycle	DC	0.4	0.6	25 / CLP	1 - 25 / CLP	_
Clock cycle	TCL	25	37.5	CLP * DC _{min}	CLP * DC _{max}	ns

Note: The 16 MHz values in the tables are given as an example for a typical duty cycle variation of the oscillator clock from 0.4 to 0.6.

Figure 32 Program Memory Read Cycle

Figure 33 Data Memory Read Cycle

Figure 34 Data Memory Write Cycle

Figure 36 Programming Code Byte - Write Cycle Timing

ROM/OTP Verification Characteristics for C505 (cont'd)

ROM/OTP Verification Mode 2

Parameter	Symbol		Unit		
		min.	typ	max.	
ALE pulse width	t _{AWD}	_	CLP	-	ns
ALE period	t _{ACY}	_	6 CLP	-	ns
Data valid after ALE	t _{DVA}	_	_	2 CLP	ns
Data stable after ALE	t _{DSA}	4 CLP	_	-	ns
P3.5 setup to ALE low	t _{AS}	_	t _{CL}	-	ns
Oscillator frequency	1/ CLP	4	_	6	MHz

Figure 41 ROM/OTP Verification Mode 2