

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	C500
Core Size	8-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	4.25V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	PG-MQFP-44-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c505ca4emcakxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C505/C5050 Revision Hi		5CA Data Sheet Current Version : 2000-12
Previous Re	leases :	08.00, 06.00, 07.99, 12.97
Page (in previous version	Page (in current version)	Subjects (major changes since last revision)
24	24	Version register VR2 for C505A-4R/C505CA-4R BB step is updated.

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

8-Bit Single-Chip Microcontroller C500 Family

C505/C505C/C505A/ C505CA

Advance Information

- Fully compatible to standard 8051 microcontroller
- Superset of the 8051 architecture with 8 datapointers
- Up to 20 MHz operating frequency
 - 375 ns instruction cycle time @16 MHz
 - 300 ns instruction cycle time @20 MHz (50 % duty cycle)
- On-chip program memory (with optional memory protection)
 - C505(C)(A)-2R : 16K byte on-chip ROM
 - C505A-4R/C505CA-4R: 32K byte on-chip ROM
 - C505A-4E/C505CA-4E: 32K byte on-chip OTP
 - alternatively up to 64k byte external program memory
- 256 byte on-chip RAM
- On-chip XRAM
 - C505/C505C : 256 byte
 - C505A/C505CA : 1K byte

(more features on next page)

Module	Oscillator Watchdog	XRAM C505/C505C: 256 byte C505A/C505CA: 1K byte		RAM 256 byte	Port 0
Support I	A/D Converter C505/C505C : 8-bit C505A/C505CA : 10-bit	Timer 0	C500 Core	8-bit USART	Port 1
Emulation	Timer 2	Timer 1	8 Datapointers	USAN	Port 2
	Full-CAN Controller C505C/C505CA only	F	Program Memoi C505(C)(A)-2R :	-	Port 3
On-Chip	Watchdog Timer		4R/C505CÁ-4R : -4E/C505CA-4E	32K ROM	

Figure 1 C505 Functional Units

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O *)	Function
P4.0 P4.1	6 28	I/O I/O	Port 4is a 2-bit quasi-bidirectional port with internal pull-up arrangement. Port 4 pins that have 1's written to them are pulled high by the internal pull-up transistors and in that state can be used as inputs. As inputs, port 4 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup transistors. The output latch corresponding to the secondary function RXDC must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the two pins of port 4 as follows (C505C and C505CA only) : P4.0 / TXDC P4.1 / RXDC
XTAL2	14	0	XTAL2 Output of the inverting oscillator amplifier.
XTAL1	15	I	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. To operate above a frequency of 16 MHz, a duty cycle of the etxernal clock signal of 50 % should be maintained. Minimum and maximum high and low times as well as rise/ fall times specified in the AC characteristics must be observed.

*) I = Input

O= Output

Multiple Datapointers

As a functional enhancement to the standard 8051 architecture, the C505 contains eight 16-bit datapointers instead of only one datapointer. The instruction set uses just one of these datapointers at a time. The selection of the actual datapointer is done in the special function regsiter DPSEL. **Figure 8** illustrates the datapointer addressing mechanism.

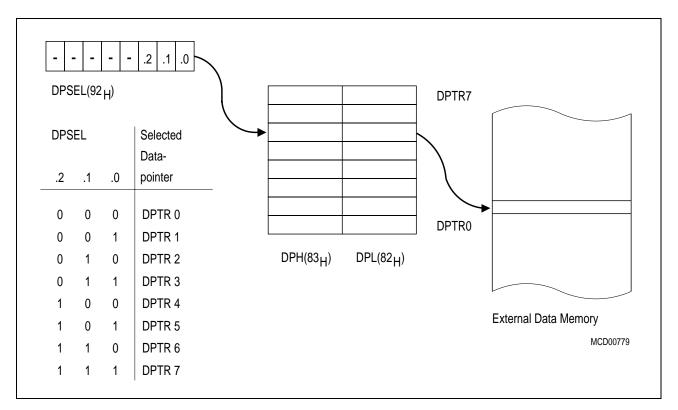


Figure 8 External Data Memory Addressing using Multiple Datapointers

Table 4 Contents of the SFRs, SFRs in numeric order of their addresses (cont'd)

Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В0 _Н ²)	P3	FF _H	RD	WR	T1	то	INT1	INTO	TxD	RxD
B1 _H	SYSCON 3)	XX10- 0X01 _B	_	_	EALE	RMAP	CMOD	_	XMAP1	XMAP0
B1 _H	SYSCON 4)	XX10- 0001 _B	-	_	EALE	RMAP	CMOD	CSWO	XMAP1	XMAP0
B8 _H 2)	IEN1	00 _H	EXEN2	SWDT	EX6	EX5	EX4	EX3	ECAN	EADC
B9 _H	IP1	XX00- 0000 _B	_	_	.5	.4	.3	.2	.1	.0
BA _H	SRELH	xxxx- XX11 _B	_	_	_	_	_	_	.1	.0
C0 _H ²⁾	IRCON	00 _H	EXF2	TF2	IEX6	IEX5	IEX4	IEX3	SWI	IADC
C1 _H	CCEN	00 _H	COCA H3	COCAL 3	COCA H2	COCAL 2	COCA H1	COCAL 1	COCA H0	COCAL 0
C2 _H	CCL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C3 _H	CCH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C4 _H	CCL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C5 _H	CCH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C6 _H	CCL3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C7 _H	ССНЗ	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C8 _H ²)	T2CON	00X0- 0000 _B	T2PS	I3FR	-	T2R1	T2R0	T2CM	T2I1	T2I0
CAH	CRCL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
Св _Н	CRCH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
сс ^н	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CDH	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D0H ²⁾	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
D8 _H ²)	ADCON0	00X0- 0000 _B	BD	CLK	_	BSY	ADM	MX2	MX1	MX0

1) X means that the value is undefined and the location is reserved

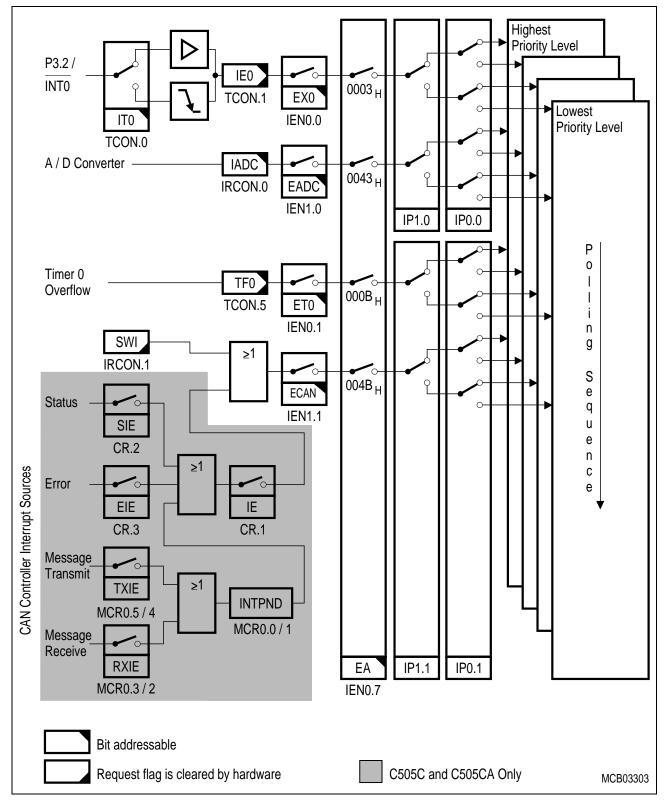
2) Bit-addressable special function registers

3) C505 /C505C/C505A only

4) C505CA only

Timer 2 Operating Modes

The timer 2, which is a 16-bit-wide register, can operate as timer, event counter, or gated timer. A roll-over of the count value in TL2/TH2 from all 1's to all 0's sets the timer overflow flag TF2 in SFR IRCON, which can generate an interrupt. The bits in register T2CON are used to control the timer 2 operation.


<u>Timer Mode</u> : In timer function, the count rate is derived from the oscillator frequency. A prescaler offers the possibility of selecting a count rate of 1/6 or 1/12 of the oscillator frequency.

<u>Gated Timer Mode</u>: In gated timer function, the external input pin T2 (P1.7) functions as a gate to the input of timer 2. If T2 is high, the internal clock input is gated to the timer. T2 = 0 stops the counting procedure. This facilitates pulse width measurements. The external gate signal is sampled once every machine cycle.

<u>Event Counter Mode</u>: In the event counter function. the timer 2 is incremented in response to a 1to-0 transition at its corresponding external input pin T2 (P1.7). In this function, the external input is sampled every machine cycle. Since it takes two machine cycles (12 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is 1/6 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it must be held for at least one full machine cycle.

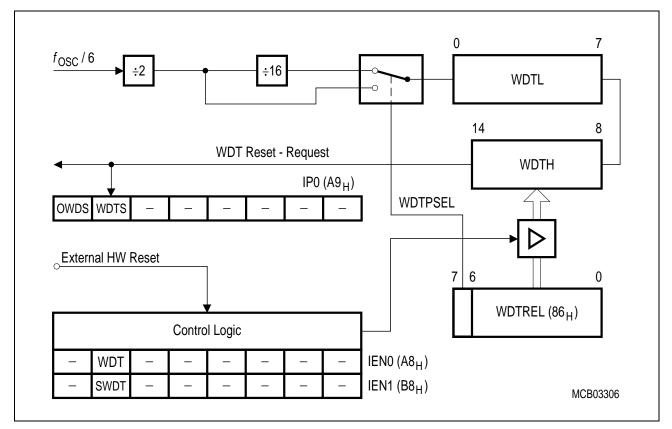
Reload of Timer 2 : Two reload modes are selectable:

In mode 0, when timer 2 rolls over from all 1's to all 0's, it not only sets TF2 but also causes the timer 2 registers to be loaded with the 16-bit value in the CRC register, which is preset by software. In mode 1, a 16-bit reload from the CRC register is caused by a negative transition at the corresponding input pin P1.5/T2EX. This transition will also set flag EXF2 if bit EXEN2 in SFR IEN1 has been set.

Figure 21

Interrupt Structure, Overview Part 1

Note: Each of the 15 CAN controller message objects (C505C and C505CA only), shown in the shaded area of **Figure 21** provides the bits/flags.



Fail Save Mechanisms

The C505 offers enhanced fail safe mechanisms, which allow an automatic recovery from software upset or hardware failure :

- a programmable watchdog timer (WDT), with variable time-out period from 192 μ s up to approx. 393.2 ms at 16 MHz (314.5 ms at 20 MHz).
- an oscillator watchdog (OWD) which monitors the on-chip oscillator and forces the microcontroller into reset state in case the on-chip oscillator fails; it also provides the clock for a fast internal reset after power-on.

The watchdog timer in the C505 is a 15-bit timer, which is incremented by a count rate of $f_{OSC}/12$ upto $f_{OSC}/192$. The system clock of the C505 is divided by two prescalers, a divide-by-two and a divide-by-16 prescaler. For programming of the watchdog timer overflow rate, the upper 7 bits of the watchdog timer can be written. Figure 24 shows the block diagram of the watchdog timer unit.

Figure 24

Block Diagram of the Programmable Watchdog Timer

The watchdog timer can be started by software (bit SWDT in SFR IEN1) but it cannot be stopped during active mode of the device. If the software fails to refresh the running watchdog timer an internal reset will be initiated on watchdog timer overflow. For refreshing of the watchdog timer the content of the SFR WDTREL is transfered to the upper 7-bit of the watchdog timer. The refresh sequence consists of two consequtive instructions which set the bits WDT and SWDT each. The reset cause (external reset or reset caused by the watchdog) can be examined by software (flag WDTS). It must be noted, however, that the watchdog timer is halted during the idle mode and power down mode of the processor.

Table 12Access Modes Selection

A access Made	EA/	DDOO	000	PN	ISEL	Address	Data
Access Mode	V _{PP}	PROG	PRD	1	0	(Port 2)	(Port 0)
Program OTP memory byte	V _{PP}		Н	Н	Н	A0-7	D0-7
Read OTP memory byte	V _{IH}	Н				A8-14	
Program OTP lock bits	V _{PP}		Н	Н	L	_	D1,D0 see
Read OTP lock bits	V _{IH}	Н					Table 13
Read OTP version byte	V _{IH}	Н	Ţ	L	Н	Byte addr. of sign. byte	D0-7

Lock Bits Programming / Read

The C505A-4E/C505CA-4E has two programmable lock bits which, when programmed according to **Table 13**, provide four levels of protection for the on-chip OTP code memory. The state of the lock bits can also be read.

Table 13Lock Bit Protection Types

Lock Bi	Bits at D1,D0 Protection		Protection Type
D1	D0	Level	
1	1	Level 0	The OTP lock feature is disabled. During normal operation of the C505A-4E/C505CA-4E, the state of the \overline{EA} pin is not latched on reset.
1	0	Level 1	During normal operation of the C505A-4E/C505CA-4E, MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory. EA is sampled and latched on reset. An OTP memory read operation is only possible using the ROM/OTP verification mode 2 for protection level 1. Further programming of the OTP memory is disabled (reprogramming security).
0	1	Level 2	Same as level 1, but also OTP memory read operation using OTP verification mode is disabled.
0	0	Level 3	Same as level 2; but additionally external code execution by setting EA=low during normal operation of the C505A-4E/ C505CA-4E is no more possible. External code execution, which is initiated by an internal program (e.g. by an internal jump instruction above the ROM boundary), is still possible.

Operating Conditions

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Supply voltage	V _{DD}	4.25	5.5	V	Active mode,
					f _{osc max} = 20 MHz
		2	5.5	V	PowerDown mode
Ground voltage	V _{SS}	0		V	Reference voltage
Ambient temperature				°C	-
SAB-C505	T _A	0	70		
SAF-C505	T _A	-40	85		
SAH-C505	T _A	-40	110		
SAK-C505	T _A	-40	125		
Analog reference voltage	V_{AREF}	4	V _{DD} + 0.1	V	-
Analog ground voltage	$V_{\rm AGND}$	$V_{\rm SS} - 0.1$	V _{SS} + 0.2	V	-
Analog input voltage	V_{AIN}	V_{AGND} -0.2	V _{AREF} +0.2	V	-
XTAL clock	f _{osc}	2	20 (with 50% duty cycle)	MHz	1)

1) For the extended temperature range -40 °C to 110 °C (SAH) and -40 °C to 125 °C (SAK), the devices C505-2R, C505-L, C505C-2R and C505C-L have the max. operating frequency of 16MHz with 50% clock duty cycle.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C505 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C505 will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the C505.

Power Supply Currents

Parameter		Symbol	Limit	Values	Unit	Test Condition	
				typ.12)	max. ¹³⁾		
C505 / C505C	Active Mode	12 MHz 20 MHz	I _{DD} I _{DD}	19.3 31.3	27.0 39	mA	7)
	Idle Mode	12 MHz 20 MHz	I _{DD} I _{DD}	10.3 16.2	13.0 21.0	mA	8)
	Active Mode with slow-down enabled	12 MHz 20 MHz	I _{DD} I _{DD}	3.9 4.8	5.5 7.5	mA	9)
	Idle Mode with slow-down enabled	12 MHz 20 MHz	I _{DD} I _{DD}	3.2 4.0	5.0 7.0	mA	10)
	Power down mode		I _{PD}	10	50	μA	$V_{\rm DD}$ = 25.5 V ¹¹⁾
C505A-4E /C505CA-4E	Active Mode	16 MHz 20 MHz	$I_{\rm DD}$ $I_{\rm DD}$	28.7 35.2	30.7 37.6	mA	7)
	Idle Mode	16 MHz 20 MHz	I _{DD} I _{DD}	14.9 17.7	15.9 18.9	mA	8)
	Active Mode with slow-down enabled	16 MHz 20 MHz	I _{DD} I _{DD}	9.9 12.3	12.8 15.6	mA	9)
	Idle Mode with slow-down enabled	16 MHz 20 MHz	I _{DD} I _{DD}	5.1 6.3	5.6 6.8	mA	10)
	Power down mode		I _{PD}	5.6	20	μA	$V_{\rm DD}$ = 25.5 V ¹¹⁾
C505A-4R / C505CA-4R	Active Mode	16 MHz 20 MHz	I _{DD} I _{DD}	22.8 27.6	29.2 35.3	mA	7)
/C505A-2R / C505CA-2R /C505A-L /	Idle Mode	16 MHz 20 MHz	$I_{\rm DD}$ $I_{\rm DD}$	12.7 15.0	16.3 19.3	mA	8)
C505CA-L	Active Mode with slow-down enabled	16 MHz 20 MHz	$I_{\rm DD}$ $I_{\rm DD}$	6.6 7.3	8.2 9.3	mA	9)
	Idle Mode with slow-down enabled	16 MHz 20 MHz	I _{DD} I _{DD}	5.0 5.3	5.9 6.5	mA	10)
	Power down mode		I _{PD}	5.3	30	μA	$V_{\rm DD}$ = 25.5 V ¹¹⁾

Notes see Page 60

Note:

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be 00_H or FF_H, respectively.
- 2) During the sample time the input capacitance C_{AIN} must be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.
- 3) This parameter includes the sample time t_S, the time for determining the digital result. Values for the conversion clock t_{ADC} depend on programming and can be taken from the table on the previous page.
- 4) T_{UE} (max.) is tested at $-40 \le T_A \le 125 \text{ °C}$; $V_{DD} \le 5.5 \text{ V}$; $V_{AREF} \le V_{DD} + 0.1 \text{ V}$ and $V_{SS} \le V_{AGND}$. It is guaranteed by design characterization for all other voltages within the defined voltage range. If an overload condition occurs on maximum 2 unused analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is permissible.
- 5) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference source must allow the capacitance to reach their final voltage level within the indicated time. The maximum internal resistance results from the programmed conversion timing.
- 6) Not 100% tested, but guaranteed by design characterization.

Note:

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 2) During the sample time the input capacitance C_{AIN} must be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.
- 3) This parameter includes the sample time t_S, the time for determining the digital result and the time for the calibration. Values for the conversion clock t_{ADC} depend on programming and can be taken from the table on the previous page.
- 4) T_{UE} is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DD} = 4.9 V. It is guaranteed by design characterization for all other voltages within the defined voltage range.
 If an overload condition occurs on maximum 2 unused analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is permissible.
- 5) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference source must allow the capacitance to reach their final voltage level within the indicated time. The maximum internal resistance results from the programmed conversion timing.
- 6) Not 100% tested, but guaranteed by design characterization.

AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle)

(Operating Conditions apply)

(C_{L} for port 0, ALE and \overline{PSEN} outputs = 100 pF; C_{L} for all other outputs = 80 pF)

Program Memory Characteristics

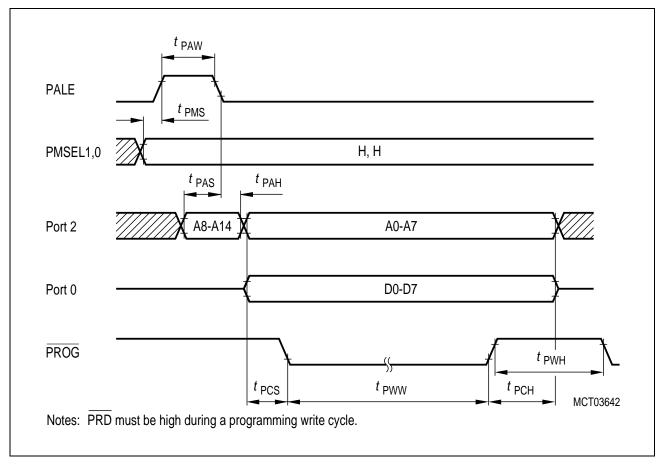
Parameter	Symbol	Limit Values				
	16-MHz clock Duty Cycle 0.4 to 0.6		Variabl 1/CLP= 2 Mł	-		
		min.	max.	min.	max.	
ALE pulse width	t _{LHLL}	48	_	CLP - 15	-	ns
Address setup to ALE	<i>t</i> _{AVLL}	10	_	TCL _{Hmin} -15	-	ns
Address hold after ALE	t _{LLAX}	10	_	TCL _{Hmin} -15	-	ns
ALE to valid instruction in	t _{LLIV}	_	75	_	2 CLP - 50	ns
ALE to PSEN	t _{LLPL}	10	-	TCL _{Lmin} -15	-	ns
PSEN pulse width	t _{PLPH}	73	-	CLP+ TCL _{Hmin} -15	_	ns
PSEN to valid instruction in	t _{PLIV}	_	38	-	CLP+ TCL _{Hmin} - 50	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} *)	_	15	_	TCL _{Lmin} -10	ns
Address valid after PSEN	t _{PXAV} *)	20	-	TCL _{Lmin} - 5	-	ns
Address to valid instruction in	t _{AVIV}	_	95	-	2 CLP + TCL _{Hmin} -55	ns
Address float to PSEN	t _{AZPL}	-5	-	-5	-	ns

*) Interfacing the C505 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle, cont'd)

External Data Memory Characteristics

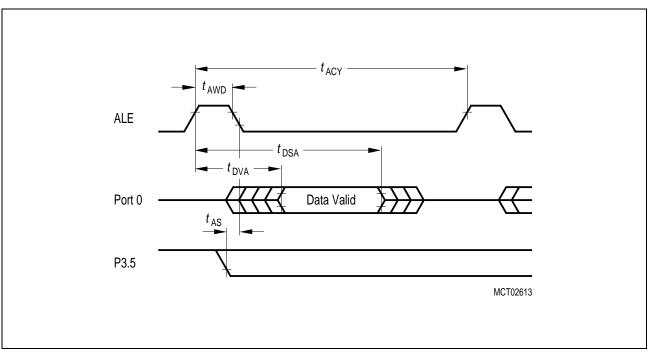
Parameter	Symbol	Limit Values				
		Duty	Iz clock Cycle to 0.6	Variab 1/CLP= 2 M		
		min.	max.	min.	max.	
RD pulse width	t _{RLRH}	158	-	3 CLP - 30	-	ns
WR pulse width	t _{wLwH}	158	-	3 CLP - 30	-	ns
Address hold after ALE	t _{LLAX2}	48	-	CLP - 15	-	ns
RD to valid data in	t _{RLDV}	-	100	-	2 CLP+ TCL _{Hmin} - 50	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	_	51	_	CLP - 12	ns
ALE to valid data in	t _{LLDV}	_	200	-	4 CLP - 50	ns
Address to valid data in	t _{AVDV}	-	200	_	4 CLP + TCL _{Hmin} -75	ns
ALE to WR or RD	t _{LLWL}	73	103	CLP + TCL _{Lmin} - 15	CLP+ TCL _{Lmin} + 15	ns
Address valid to WR	<i>t</i> _{AVWL}	95	-	2 CLP - 30	-	ns
$\overline{\text{WR}}$ or $\overline{\text{RD}}$ high to ALE high	t _{WHLH}	10	40	TCL _{Hmin} - 15	TCL _{Hmin} + 15	ns
Data valid to WR transition	<i>t</i> _{QVWX}	5	-	TCL _{Lmin} - 20	-	ns
Data setup before \overline{WR}	t _{QVWH}	163	-	3 CLP + TCL _{Lmin} - 50	-	ns
Data hold after WR	t _{WHQX}	5	-	TCL _{Hmin} - 20	-	ns
Address float after RD	t _{RLAZ}	_	0	_	0	ns



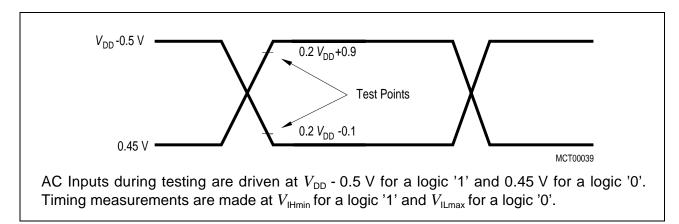
AC Characteristics of Programming Mode (C505A-4E and C505CA-4E only)

 $V_{\rm DD}$ = 5 V ± 10 %; $V_{\rm PP}$ = 11.5 V ± 5 %; $T_{\rm A}$ = 25 °C ± 10 °C

Parameter	Symbol	L	Limit Values			
		min.	max.			
PALE pulse width	t _{PAW}	35	_	ns		
PMSEL setup to PALE rising edge	t _{PMS}	10	_			
Address setup to PALE, PROG, or PRD falling edge	t _{PAS}	10	-	ns		
Address hold after PALE, PROG, or PRD falling edge	t _{PAH}	10	-	ns		
Address, data setup to PROG or PRD	t _{PCS}	100	_	ns		
Address, data hold after PROG or PRD	t _{PCH}	0	_	ns		
PMSEL setup to PROG or PRD	t _{PMS}	10	_	ns		
PMSEL hold after PROG or PRD	t _{PMH}	10	_	ns		
PROG pulse width	t _{PWW}	100	_	μs		
PRD pulse width	t _{PRW}	100	_	ns		
Address to valid data out	t _{PAD}	-	75	ns		
PRD to valid data out	t _{PRD}	_	20	ns		
Data hold after PRD	t _{PDH}	0	_	ns		
Data float after PRD	t _{PDF}	_	20	ns		
PROG high between two consecutive PROG low pulses	t _{PWH1}	1	-	μs		
PRD high between two consecutive PRD low pulses	t _{PWH2}	100		ns		
XTAL clock period	t _{CLKP}	83.3	500	ns		


Figure 36 Programming Code Byte - Write Cycle Timing

ROM/OTP Verification Characteristics for C505 (cont'd)


ROM/OTP Verification Mode 2

Parameter	Symbol	Limit Values			Unit
		min.	typ	max.	
ALE pulse width	t _{AWD}	_	CLP	-	ns
ALE period	t _{ACY}	-	6 CLP	-	ns
Data valid after ALE	t _{DVA}	_	-	2 CLP	ns
Data stable after ALE	t _{DSA}	4 CLP	-	-	ns
P3.5 setup to ALE low	t _{AS}	-	t _{CL}	-	ns
Oscillator frequency	1/ CLP	4	-	6	MHz

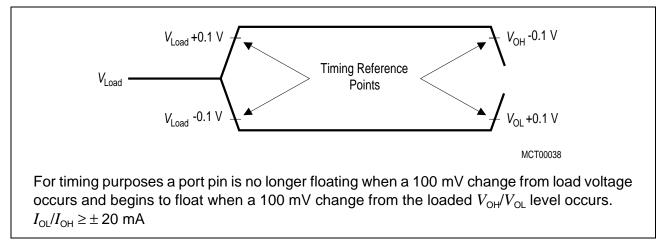


Figure 41 ROM/OTP Verification Mode 2

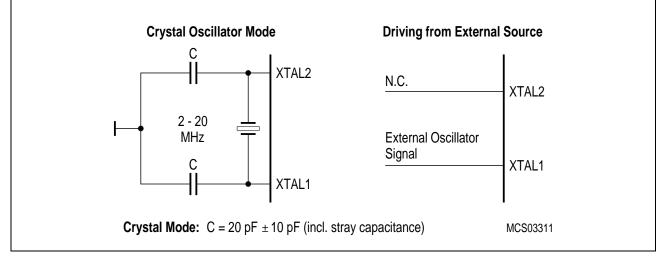


Figure 42 AC Testing: Input, Output Waveforms

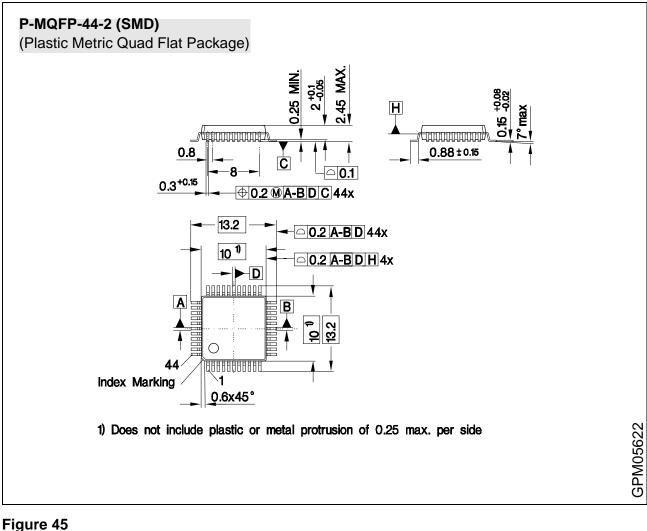

Figure 43 AC Testing : Float Waveforms

Figure 44

Recommended Oscillator Circuits for Crystal Oscillator

P-MQFP-44 Package Outline

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information" SMD = Surface Mounted Device

Dimensions in mm