

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Obsolete
Core Processor	C500
Core Size	8-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	4.25V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	PG-MQFP-44-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c505ca4emcakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C505 C505C C505A C505CA 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Figure 3 C505 Pin Configuration P-MQFP-44 Package (Top View)

Memory Organization

The C505 CPU manipulates operands in the following four address spaces:

- On-chip program memory :16K byte ROM (C505(C)(A)-2R) or 32K byte ROM (C505A-4R/C505CA-4R) or 32K byte OTP (C505A-4E/C505CA-4E)
- Totally up to 64K byte internal/external program memory
- up to 64 Kbyte of external data memory
- 256 bytes of internal data memory
- Internal XRAM data memory :256 byte (C505/C505C)
 - 1K byte (C505A/C505CA)
- a 128 byte special function register area

Figure 5 illustrates the memory address spaces of the C505 versions.

Figure 5 C505 Memory Map Memory Map

Table 3Special Function Registers - Functional Blocks

Block	Symbol	Name	Address	Contents after Reset
CPU	ACC	Accumulator	E0 _H ¹⁾	00 _H
	В	B-Register	F0H ¹⁾	00 _H
	DPH	Data Pointer, High Byte	83 _H	00 _H
	DPL	Data Pointer, Low Byte	82 _H	00 _H
	DPSEL	Data Pointer Select Register	92 _H	XXXXX000 _{B³⁾}
	PSW	Program Status Word Register	D0H ¹⁾	00 _H
	SP	Stack Pointer	81 _H	07 _H
	SYSCON ²⁾	System Control Register	B1 _H	XX100X01 _B ^{3) 6)}
				XX100001B ³⁾⁷⁾
	VR0 4)	Version Register 0	FC _H	C5 _H
	VR1 ⁴⁾	Version Register 1	FDH	05 _H
	VR2 ⁴⁾	Version Register 2	FEH	5)
A/D-	ADCON0 ²⁾	A/D Converter Control Register 0	D8 _H ¹⁾	00X00000 _B ³⁾
Converter	ADCON1	A/D Converter Control Register 1	DCH	01XXX000 ⁻³⁾
	ADDAT	A/D Converter Data Reg. (C505/C505C)	D9 _H	00 _H
	ADST	A/D Converter Start Reg. (C505/C505C)	DAH	XX _H ³⁾
	ADDATH	A/D Converter High Byte Data Register (C505A/C505CA)	D9 _H	00 _H
	ADDATL	A/D Converter Low Byte Data Register (C505A/C505CA)	DAH	00XXXXXXB ³⁾
	P1ANA 2) 4)	Port 1 Analog Input Selection Register	90 _H	FF _H
Interrupt	IEN0 ²⁾	Interrupt Enable Register 0	A8 _H ¹⁾	00 _H
System	IEN1 ²⁾	Interrupt Enable Register 1	B8H ¹⁾	00 _H
	IP0 ²⁾	Interrupt Priority Register 0	A9 _H	00 _H
	IP1	Interrupt Priority Register 1	B9 _H	XX000000 _B ³⁾
	TCON ²⁾	Timer Control Register	88H ¹⁾	00 _H
	T2CON ²⁾	Timer 2 Control Register	C8 _H ¹⁾	00X00000 _B
	SCON ²⁾	Serial Channel Control Register	98 _H 1)	00 _H
	IRCON	Interrupt Request Control Register	C0H ¹⁾	00 _H
XRAM	XPAGE	Page Address Register for Extended on-chip XRAM and CAN Controller	91 _H	00 _H
	SYSCON ²⁾	System Control Register	B1 _H	XX100X01B ³⁾⁶⁾ XX100001B ³⁾⁷⁾

1) Bit-addressable special function registers

2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.

3) "X" means that the value is undefined and the location is reserved

4) This SFR is a mapped SFR. For accessing this SFR, bit RMAP in SFR SYSCON must be set.

5) The content of this SFR varies with the actual step of the C505 (eg. 01_{H} for the first step)

6) C505 / C505A/C505C only

7) C505CA only

Table 4 Contents of the SFRs, SFRs in numeric order of their addresses (cont'd)

Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В0 _Н ²)	P3	FF _H	RD	WR	T1	то	INT1	INTO	TxD	RxD
B1 _H	SYSCON 3)	XX10- 0X01 _B	_	_	EALE	RMAP	CMOD	_	XMAP1	XMAP0
B1 _H	SYSCON 4)	XX10- 0001 _B	-	_	EALE	RMAP	CMOD	CSWO	XMAP1	XMAP0
B8 _H 2)	IEN1	00 _H	EXEN2	SWDT	EX6	EX5	EX4	EX3	ECAN	EADC
B9 _H	IP1	XX00- 0000 _B	_	_	.5	.4	.3	.2	.1	.0
BA _H	SRELH	xxxx- XX11 _B	_	_	_	_	_	_	.1	.0
C0 _H ²⁾	IRCON	00 _H	EXF2	TF2	IEX6	IEX5	IEX4	IEX3	SWI	IADC
C1 _H	CCEN	00 _H	COCA H3	COCAL 3	COCA H2	COCAL 2	COCA H1	COCAL 1	COCA H0	COCAL 0
C2 _H	CCL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C3 _H	CCH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C4 _H	CCL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C5 _H	CCH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C6 _H	CCL3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C7 _H	ССНЗ	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C8 _H ²)	T2CON	00X0- 0000 _B	T2PS	I3FR	-	T2R1	T2R0	T2CM	T2I1	T2I0
CAH	CRCL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
Св _Н	CRCH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
сс ^н	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CDH	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D0H ²⁾	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
D8 _H ²)	ADCON0	00X0- 0000 _B	BD	CLK	_	BSY	ADM	MX2	MX1	MX0

1) X means that the value is undefined and the location is reserved

2) Bit-addressable special function registers

3) C505 /C505C/C505A only

4) C505CA only

Timer / Counter 0 and 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 6 :

Table 6

Timer/Counter 0 and 1 Operating Modes

Mode	ode Description		OD	Input Clock		
		M1	MO	internal	external (max)	
0	8-bit timer/counter with a divide-by-32 prescaler	0	0	f _{osc} /6x32	f _{osc} /12x32	
1	16-bit timer/counter	0	1			
2	8-bit timer/counter with 8-bit autoreload	1	0	f l6	6 40	
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	1	1	f _{osc} /6	f _{osc} /12	

In the "timer" function (C/ \overline{T} = '0') the register is incremented every machine cycle. Therefore the count rate is $f_{OSC}/6$.

In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{OSC}/12$. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. Figure 10 illustrates the input clock logic.

Figure 10 Timer/Counter 0 and 1 Input Clock Logic

Timer 2 Compare Modes

The compare function of a timer/register combination operates as follows : the 16-bit value stored in a compare or compare/capture register is compared with the contents of the timer register; if the count value in the timer register matches the stored value, an appropriate output signal is generated at a corresponding port pin and an interrupt can be generated.

Compare Mode 0

In compare mode 0, upon matching the timer and compare register contents, the output signal changes from low to high. It goes back to a low level on timer overflow. As long as compare mode 0 is enabled, the appropriate output pin is controlled by the timer circuit only and writing to the port will have no effect. Figure 12 shows a functional diagram of a port circuit when used in compare mode 0. The port latch is directly controlled by the timer overflow and compare match signals. The input line from the internal bus and the write-to-latch line of the port latch are disconnected when compare mode 0 is enabled.

Figure 12 Port Latch in Compare Mode 0

36

Figure 21

Interrupt Structure, Overview Part 1

Note: Each of the 15 CAN controller message objects (C505C and C505CA only), shown in the shaded area of **Figure 21** provides the bits/flags.

Oscillator Watchdog

The oscillator watchdog unit serves for three functions:

- Monitoring of the on-chip oscillator's function

The watchdog supervises the on-chip oscillator's frequency; if it is lower than the frequency of the auxiliary RC oscillator in the watchdog unit, the internal clock is supplied by the RC oscillator and the device is brought into reset; if the failure condition disappears (i.e. the on-chip oscillator has a higher frequency than the RC oscillator), the part, in order to allow the oscillator to stabilize, executes a final reset phase of typ. 1 ms; then the oscillator watchdog reset is released and the part starts program execution from address 0000_H again.

Fast internal reset after power-on
 The oscillator watchdog unit provides a clock supply for the reset before the on-chip oscillator has started. The oscillator watchdog unit also works identically to the monitoring function.

- Control of external wake-up from software power-down mode

When the power-down mode is left by a low level at the P3.2/INTO pin or the P4.1/RXDC pin, the oscillator watchdog unit assures that the microcontroller resumes operation (execution of the power-down wake-up interrupt) with the nominal clock rate. In the power-down mode the RC oscillator and the on-chip oscillator are stopped. Both oscillators are started again when power-down mode is released. When the on-chip oscillator has a higher frequency than the RC oscillator, the microcontroller starts program execution by processing a power down interrupt after a final delay of typ. 1 ms in order to allow the on-chip oscillator to stabilize.

Power Saving Modes

The C505 provides two basic power saving modes, the idle mode and the power down mode. Additionally, a slow down mode is available. This power saving mode reduces the internal clock rate in normal operating mode and it can be also used for further power reduction in idle mode.

- Idle mode

In the idle mode the main oscillator of the C505 continues to run, but the CPU is gated off from the clock signal. All peripheral units are further provided with the clock. The CPU status is preserved in its entirety. The idle mode can be terminated by any enabled interrupt of a peripheral unit or by a hardware reset.

- Power down mode

The operation of the C505 is completely stopped and the oscillator is turned off. This mode is used to save the contents of the internal RAM with a very low standby current. Power down mode is entered by software and can be left by reset or by a short low pulse at pin P3.2/ INT0.or P4.1/RXDC.

- Slow down mode

The controller keeps up the full operating functionality, but its normal clock frequency is internally divided by 32. This slows down all parts of the controller, the CPU and all peripherals, to 1/32-th of their normal operating frequency. Slowing down the frequency significantly reduces power consumption.

In the power down mode of operation, V_{DD} can be reduced to minimize power consumption. It must be ensured, however, that V_{DD} is not reduced before the power down mode is invoked, and that V_{DD} is restored to its normal operating level, before the power down mode is terminated. Table 10 gives a general overview of the entry and exit procedures of the power saving modes.

Mode	Entering (Instruction Example)	Leaving by	Remarks
Idle Mode	ORL PCON, #01H ORL PCON, #20H	Ocurrence of an interrupt from a peripheral unit	CPU clock is stopped; CPU maintains their data; peripheral units are active (if
		Hardware Reset	enabled) and provided with clock
Power Down Mode	ORL PCON, #02H	Hardware Reset	Oscillator is stopped;
	ORL PCON, #40H	Short low pulse at pin P3.2/INT0 or P4.1/RXDC	contents of on-chip RAM and SFR's are maintained;
Slow Down Mode	ORL PCON,#10H	ANL PCON,#0EFH or Hardware Reset	Oscillator frequency is reduced to 1/32 of its nominal frequency

Table 10 Power Saving Modes Overview

Operating Conditions

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Supply voltage	V _{DD}	4.25	5.5	V	Active mode,
					f _{osc max} = 20 MHz
		2	5.5	V	PowerDown mode
Ground voltage	V _{SS}	0		V	Reference voltage
Ambient temperature				°C	-
SAB-C505	T _A	0	70		
SAF-C505	T _A	-40	85		
SAH-C505	T _A	-40	110		
SAK-C505	T _A	-40	125		
Analog reference voltage	V_{AREF}	4	<i>V_{DD}</i> + 0.1	V	-
Analog ground voltage	V_{AGND}	$V_{\rm SS} - 0.1$	V _{SS} + 0.2	V	-
Analog input voltage	V_{AIN}	V _{AGND} -0.2	<i>V_{AREF}</i> +0.2	V	-
XTAL clock	f _{osc}	2	20 (with 50% duty cycle)	MHz	1)

1) For the extended temperature range -40 °C to 110 °C (SAH) and -40 °C to 125 °C (SAK), the devices C505-2R, C505-L, C505C-2R and C505C-L have the max. operating frequency of 16MHz with 50% clock duty cycle.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C505 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C505 will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the C505.

Figure 31 I_{DD} Diagram of C505A-4R/C505A-2R/C505A-L/C505CA-4R/C505CA-2R/C505CA-L

Parameter	Symbol	Formula
Active mode	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	1.19 * f_{OSC} + 3.77 1.54 * f_{OSC} + 4.47
Idle mode	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	$0.57 * f_{OSC}$ + 3.55 0.75 * f_{OSC} + 4.26
Active mode with slow-down enabled	I _{DD typ} I _{DD max}	$\begin{array}{c} 0.18 * f_{\rm OSC} + 3.74 \\ 0.28 * f_{\rm OSC} + 3.67 \end{array}$
Idle mode with slow-down enabled	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	$0.07 * f_{OSC} + 3.91$ $0.14 * f_{OSC} + 3.64$

C505A-4R/C505A-2R/C505A-L/C505CA-4R/C505CA-2R/C505CA-L : Power Supply Current Calculation Formulas

Note: f_{osc} is the oscillator frequency in MHz. I_{DD} values are given in mA.

A/D Converter Characteristics of C505 and C505C

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
Analog input voltage	V_{AIN}	V _{AGND} - 0.2	V _{AREF} + 0.2	V	1)
Sample time	ts	-	$64 \times t_{\rm IN}$ $32 \times t_{\rm IN}$ $16 \times t_{\rm IN}$ $8 \times t_{\rm IN}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ²⁾
Conversion cycle time	t _{ADCC}	-	$\begin{array}{c} 320 \ \text{x} \ t_{\text{IN}} \\ 160 \ \text{x} \ t_{\text{IN}} \\ 80 \ \text{x} \ t_{\text{IN}} \\ 40 \ \text{x} \ t_{\text{IN}} \end{array}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ³⁾
Total unadjusted error	T _{UE}	_	± 2	LSB	V_{SS} +0.5V $\leq V_{AIN} \leq V_{DD}$ -0.5V $^{4)}$
Internal resistance of reference voltage source	R _{AREF}	-	<i>t</i> _{ADC} / 500 - 1	kΩ	<i>t</i> _{ADC} in [ns] ^{5) 6)}
Internal resistance of analog source	R _{ASRC}	-	<i>t</i> _S / 500 - 1	kΩ	$t_{\rm S}$ in [ns] ^{2) 6)}
ADC input capacitance	C_{AIN}	_	50	pF	6)

Notes see next page.

Clock calculation table :

Clock Prescaler Ratio	ADCL	.1, 0	tADC	ts	^t ADCC
÷ 32	1	1	32 x t _{IN}	64 x t _{IN}	320 x t _{IN}
÷ 16	1	0	16 x t _{IN}	32 x t _{IN}	160 x t _{IN}
÷8	0	1	8 x t _{IN}	16 x t _{IN}	80 x t _{IN}
÷ 4	0	0	4 x t _{IN}	8 x t _{IN}	40 x t _{IN}

Further timing conditions : $t_{ADC} min = 800 ns$ $t_{IN} = 1 / f_{OSC} = t_{CLP}$

Note:

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be 00_H or FF_H, respectively.
- 2) During the sample time the input capacitance C_{AIN} must be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.
- 3) This parameter includes the sample time t_S, the time for determining the digital result. Values for the conversion clock t_{ADC} depend on programming and can be taken from the table on the previous page.
- 4) T_{UE} (max.) is tested at $-40 \le T_A \le 125 \text{ °C}$; $V_{DD} \le 5.5 \text{ V}$; $V_{AREF} \le V_{DD} + 0.1 \text{ V}$ and $V_{SS} \le V_{AGND}$. It is guaranteed by design characterization for all other voltages within the defined voltage range. If an overload condition occurs on maximum 2 unused analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is permissible.
- 5) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference source must allow the capacitance to reach their final voltage level within the indicated time. The maximum internal resistance results from the programmed conversion timing.
- 6) Not 100% tested, but guaranteed by design characterization.

AC Characteristics (16 MHz, 0.4 to 0.6 Duty Cycle, cont'd)

External Clock Drive Characteristics

Parameter	Symbol	Symbol CPU Cloc Duty Cyc		Variable (1/CLP = 2	Unit	
		min.	max.	min.	max.	
Oscillator period	CLP	62.5	62.5	62.5	500	ns
High time	TCL _H	25	-	25	CLP - TCL _L	ns
Low time	TCL	25	-	25	CLP - TCL _H	ns
Rise time	t _R	_	10	_	10	ns
Fall time	t _F	_	10	_	10	ns
Oscillator duty cycle	DC	0.4	0.6	25 / CLP	1 - 25 / CLP	-
Clock cycle	TCL	25	37.5	CLP * DC _{min}	CLP * DC _{max}	ns

Note: The 16 MHz values in the tables are given as an example for a typical duty cycle variation of the oscillator clock from 0.4 to 0.6.

AC Characteristics (20 MHz, 0.5 Duty Cycle)

(Operating Conditions apply)

(C_{L} for port 0, ALE and \overline{PSEN} outputs = 100 pF; C_{L} for all other outputs = 80 pF)

Program Memory Characteristics

Parameter	Symbol	Limit Values				Unit
		-	lz clock ty Cycle	Variable Clock 1/CLP = 2 MHz to 20 MHz		
		min.	max.	min.	max.	
ALE pulse width	t _{LHLL}	35	-	CLP - 15	-	ns
Address setup to ALE	t _{AVLL}	10	-	CLP/2 - 15	-	ns
Address hold after ALE	t _{LLAX}	10	-	CLP/2 - 15	-	ns
ALE to valid instruction in	t _{LLIV}	-	55	-	2 CLP - 45	ns
ALE to PSEN	t _{LLPL}	10	-	CLP/2 - 15	-	ns
PSEN pulse width	t _{PLPH}	60	-	3/2 CLP - 15	-	ns
PSEN to valid instruction in	t _{PLIV}	_	25	_	3/2 CLP - 50	ns
Input instruction hold after PSEN	t _{PXIX}	0	_	0	-	ns
Input instruction float after PSEN	t _{PXIZ} *)	_	20	-	CLP/2 - 5	ns
Address valid after PSEN	t _{PXAV} *)	20	_	CLP/2 - 5	-	ns
Address to valid instruction in	t _{AVIV}	-	65	_	5/2 CLP - 60	ns
Address float to PSEN	t _{AZPL}	- 5	-	- 5	-	ns

*) Interfacing the C505 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

AC Characteristics (20 MHz, 0.5 Duty Cycle, cont'd)

External Data Memory Characteristics

Parameter	Symbol			Limit Values		Unit
		20 MHz clock 0.5 Duty Cycle			e Clock Hz to 20 MHz	
		min.	max.	min.	max.	
RD pulse width	t _{RLRH}	120	-	3 CLP - 30	-	ns
WR pulse width	t _{wLwH}	120	-	3 CLP - 30	_	ns
Address hold after ALE	t _{LLAX2}	35	-	CLP - 15	-	ns
RD to valid data in	t _{RLDV}	_	75	-	5/2 CLP- 50	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	_	38	-	CLP - 12	ns
ALE to valid data in	t _{LLDV}	_	150	_	4 CLP - 50	ns
Address to valid data in	<i>t</i> _{AVDV}	_	150	-	9/2 CLP - 75	ns
ALE to WR or RD	t _{LLWL}	60	90	3/2 CLP - 15	3/2 CLP + 15	ns
Address valid to WR	<i>t</i> _{AVWL}	70	-	2 CLP - 30	-	ns
$\overline{\text{WR}}$ or $\overline{\text{RD}}$ high to ALE high	t _{WHLH}	10	40	CLP/2 - 15	CLP/2 + 15	ns
Data valid to WR transition	<i>t</i> _{QVWX}	5	-	CLP/2 - 20	-	ns
Data setup before WR	t _{QVWH}	125	-	7/2 CLP - 50	_	ns
Data hold after WR	t _{WHQX}	5	-	CLP/2 - 20	-	ns
Address float after RD	t _{RLAZ}	_	0	-	0	ns

External Clock Drive Characteristics

Parameter	Symbol	Limit Values Variable Clock Freq. = 2 MHz to 20 MHz		Unit
		Oscillator period	CLP	50
High time	TCL _H	15	CLP-TCL	ns
Low time	TCL	15	CLP-TCL _H	ns
Rise time	t _R	_	10	ns
Fall time	t _F	_	10	ns
Oscillator duty cycle	DC	0.5	0.5	_

Figure 32 Program Memory Read Cycle

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com