

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C500
Core Size	8-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	4.25V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	PG-MQFP-44-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c505calmcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C505 C505C C505A C505CA 8-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O *)	Function	
RESET	4	I	RESET A high level on th oscillator is runnin resistor to V _{SS} p external capacitor	his pin for two machine cycle while the g resets the device. An internal diffused permits power-on reset using only an to $V_{\rm DD}$.
P3.0-P3.7	5, 7-13 5 7 8 9 10 11 12 13	I/O	Port 3 is an 8-bit quasi- arrangement. Port pulled high by the state can be used externally pulled characteristics) be The output latch must be programm (except for TxD a assigned to the pir P3.0 / RxD P3.1 / TxD P3.2 / INT0 P3.2 / INT0 P3.3 / INT1 P3.4 / T0 P3.5 / T1 P3.6 / WR P3.7 / RD	bidirectional port with internal pull-up 3 pins that have 1's written to them are e internal pull-up transistors and in that d as inputs. As inputs, port 3 pins being low will source current (<i>I</i> _{IL} , in the DC cause of the internal pullup transistors. corresponding to a secondary function hed to a one (1) for that function to operate and WR). The secondary functions are ns of port 3 as follows: Receiver data input (asynch.) or data input/output (synch.) of serial interface Transmitter data output (asynch.) or clock output (synch.) of serial interface External interrupt 0 input / timer 0 gate control input External interrupt 1 input / timer 1 gate control input Timer 0 counter input WR control output; latches the data byte from port 0 into the external data memory RD control output; enables the external

*) I = Input

O= Output

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O *)	Function
P2.0-P2.7	18-25	Ι/Ο	Port 2 is a an 8-bit quasi-bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1's written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup transistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 issues the contents of the P2 special function register and uses only the internal pullup resistors.
PSEN	26	0	The Program Store Enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every three oscillator periods except during external data memory accesses. Remains high during internal program execution. This pin should not be driven during reset operation.
ALE	27	0	The Address Latch Enable output is used for latching the low-byte of the address into external memory during normal operation. It is activated every three oscillator periods except during an external data memory access. When instructions are executed from internal ROM or OTP (\overline{EA} =1) the ALE generation can be disabled by bit EALE in SFR SYSCON. ALE should not be driven during reset operation.

*) I = Input

O= Output

Figure 7 Recommended Oscillator Circuitries

Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative way to control the execution of C500 MCUs and to gain extensive information on the internal operation of the controllers. Emulation of on-chip ROM based programs is possible, too.

Each production chip has built-in logic for the supprt of the Enhanced Hooks Emulation Concept. Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation and production chips are identical.

The Enhanced Hooks Technology^{TM 1)}, which requires embedded logic in the C500 allows the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate all operating modes of the different versions of the C500 microcontrollers. This includes emulation of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in single step mode and to read the SFRs after a break.

Figure 9

Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks Emulation Concept to control the operation of the device during emulation and to transfer informations about the programm execution and data transfer between the external emulation hardware (ICE-system) and the C500 MCU.

 [&]quot;Enhanced Hooks Technology" is a trademark and patent of Metalink Corporation licensed to Infineon Technologies.

Table 4Contents of the SFRs, SFRs in numeric order of their addresses

Addr	Register	Content	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Reset ¹⁾								
80 _H 2)	P0	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
86 _H	WDTREL	00H	WDT PSEL	.6	.5	.4	.3	.2	.1	.0
87 _H	PCON	00 _H	SMOD	PDS	IDLS	SD	GF1	GF0	PDE	IDLE
88H 2)	TCON	00 _H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
88H 3)	PCON1	0XX0- XXXX _B	EWPD	-	_	WS	_	-	-	-
⁸⁹ H	TMOD	00 _H	GATE	C/T	M1	MO	GATE	C/T	M1	MO
8A _H	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8BH	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8C _H	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8D _H	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
90 _H ²)	P1	FFH	T2	CLK- OUT	T2EX	.4	INT6	INT5	INT4	.INT3
90 _H 3)	P1ANA	FF _H	EAN7	EAN6	EAN5	EAN4	EAN3	EAN2	EAN1	EAN0
91 _H	XPAGE	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
92 _H	DPSEL	XXXX- X000 _B	_	-	-	-	_	.2	.1	.0
98 _H 2)	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
99H	SBUF	хх _Н	.7	.6	.5	.4	.3	.2	.1	.0
A0 _H ²)	P2	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
A8 _H ²)	IEN0	00 _H	EA	WDT	ET2	ES	ET1	EX1	ET0	EX0
A9 _H	IP0	00 _H	OWDS	WDTS	.5	.4	.3	.2	.1	.0
AAH	SRELL	D9 _H	.7	.6	.5	.4	.3	.2	.1	.0

1) X means that the value is undefined and the location is reserved

2) Bit-addressable special function registers

3) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.

I/O Ports

The C505 has four 8-bit I/O ports and one 2-bit I/O port. Port 0 is an open-drain bidirectional I/O port, while ports 1 to 4 are quasi-bidirectional I/O ports with internal pullup resistors. That means, when configured as inputs, ports 1 to 4 will be pulled high and will source current when externally pulled low. Port 0 will float when configured as input.

The output drivers of port 0 and 2 and the input buffers of port 0 are also used for accessing external memory. In this application, port 0 outputs the low byte of the external memory address, time multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise, the port 2 pins continue emitting the P2 SFR contents. In this function, port 0 is not an open-drain port, but uses a strong internal pullup FET.

Port 4 is 2-bit I/O port with CAN controller specific alternate functions. The eight analog input lines are realized as mixed digital/analog inputs. The 8 analog inputs, AN0-AN7, are located at the port 1 pins P1.0 to P1.7. After reset, all analog inputs are disabled and the related pins of port 1 are configured as digital inputs. The analog function of a specific port 1 pin is enabled by bits in the SFR P1ANA. Writing a 0 to a bit position of P1ANA assigns the corresponding pin to operate as analog input.

Note : P1ANA is a mapped SFR and can be only accessed if bit RMAP in SFR SYSCON is set.

Timer / Counter 0 and 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 6 :

Table 6

Timer/Counter 0 and 1 Operating Modes

Mode	Node Description		IOD	Input Clock		
		M1	MO	internal	external (max)	
0	8-bit timer/counter with a divide-by-32 prescaler	0	0	f _{osc} /6x32	f _{osc} /12x32	
1	16-bit timer/counter	0	1			
2	8-bit timer/counter with 8-bit autoreload	1	0	f IC	£ /10	
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	1	1	J _{OSC} /O	J _{OSC} /12	

In the "timer" function (C/ \overline{T} = '0') the register is incremented every machine cycle. Therefore the count rate is $f_{OSC}/6$.

In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{OSC}/12$. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. Figure 10 illustrates the input clock logic.

Figure 10 Timer/Counter 0 and 1 Input Clock Logic

Serial Interface (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in Table 7.

Table 7 USART Operating Modes

Mede	SCON		Description		
wode	SM0	SM1			
0	0	0	Shift register mode, fixed baud rate Serial data enters and exits through R×D; T×D outputs the shift clock; 8-bit are transmitted/received (LSB first)		
1	0	1	8-bit UART, variable baud rate 10 bits are transmitted (through T×D) or received (at R×D)		
2	1	0	9-bit UART, fixed baud rate 11 bits are transmitted (through T×D) or received (at R×D)		
3	1	1	9-bit UART, variable baud rate Like mode 2		

For clarification some terms regarding the difference between "baud rate clock" and "baud rate" should be mentioned. In the <u>asynchronous modes</u> the serial interfaces require a clock rate which is 16 times the baud rate for internal synchronization. Therefore, the baud rate generators/timers have to provide a "baud rate clock" (output signal in **Figure 14** to the serial interface which - there divided by 16 - results in the actual "baud rate". Further, the abbreviation f_{OSC} refers to the oscillator frequency (crystal or external clock operation).

The variable baud rates for modes 1 and 3 of the serial interface can be derived either from timer 1 or from a decdicated baud rate generator (see Figure 14).

CAN Controller Software Initialization

The very first step of the initialization is the CAN controller input clock selection. A divide-by-2 prescaler is enabled by default after reset (Figure 16). Setting bit CMOD (SYSCON.3) disables the prescaler. The purpose of the prescaler selection is:

- to ensure that the CAN controller is operable when f_{OSC} is over 10 MHz (bit CMOD =0)
- to achieve the maximum CAN baudrate of 1 Mbaud when fosc is 8 MHz (bit CMOD=1)

Figure 16 CAN controller Input Clock Selection

10-Bit A/D Converter (C505A and C505CA only)

The C505A/C505CA includes a high performance / high speed 10-bit A/D-Converter (ADC) with 8 analog input channels. It operates with a successive approximation technique and uses self calibration mechanisms for reduction and compensation of offset and linearity errors. The A/D converter provides the following features:

- 8 multiplexed input channels (port 1), which can also be used as digital inputs/outputs
- 10-bit resolution
- Single or continuous conversion mode
- Internal start-of-conversion trigger capability
- Interrupt request generation after each conversion
- Using successive approximation conversion technique via a capacitor array
- Built-in hidden calibration of offset and linearity errors

The 10-bit ADC uses two clock signals for operation : the conversion clock f_{ADC} (=1/ t_{ADC}) and the input clock f_{IN} (=1/ t_{IN}). f_{ADC} is derived from the C505 system clock f_{OSC} which is applied at the XTAL pins. The input clock f_{IN} is equal to f_{OSC} The conversion f_{ADC} clock is limited to a maximum frequency of 2 MHz. Therefore, the ADC clock prescaler must be programmed to a value which assures that the conversion clock does not exceed 2 MHz. The prescaler ratio is selected by the bits ADCL1 and ADCL0 of SFR ADCON1.

Figure 19 10-Bit A/D Converter Clock Selection

Figure 22 Interrupt Structure, Overview Part 2

Basic Programming Mode Selection

The basic programming mode selection scheme is shown in Figure 28.

Figure 28 Basic Programming Mode Selection

Figure 30 I_{DD} Diagram of C505A-4E and C505CA-4E

t Calculation Formulas
t Calculation Formula

Parameter	Symbol	Formula
Active mode	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	1.63 * <i>f</i> _{OSC} + 2.6 1.74 * <i>f</i> _{OSC} + 2.8
Idle mode	I _{DD typ} I _{DD max}	0.69 * <i>f</i> _{OSC} + 3.9 0.74 * <i>f</i> _{OSC} + 4.1
Active mode with slow-down enabled	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	0.6 * <i>f</i> _{OSC} + 0.3 0.7 * <i>f</i> _{OSC} + 1.6
Idle mode with slow-down enabled	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	$0.3 * f_{OSC} + 0.3$ $0.3 * f_{OSC} + 0.8$

*Note: f*_{osc} is the oscillator frequency in MHz. *I*_{DD} values are given in mA.

A/D Converter Characteristics of C505 and C505C

(Operating Conditions apply)

Parameter	Symbol	Limit	Limit Values		Test Condition
		min.	max.		
Analog input voltage	V_{AIN}	V _{AGND} - 0.2	V _{AREF} + 0.2	V	1)
Sample time	t _S	-	$64 \times t_{\rm IN}$ $32 \times t_{\rm IN}$ $16 \times t_{\rm IN}$ $8 \times t_{\rm IN}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ²⁾
Conversion cycle time	t _{ADCC}	-	$\begin{array}{c} 320 \ \text{x} \ t_{\text{IN}} \\ 160 \ \text{x} \ t_{\text{IN}} \\ 80 \ \text{x} \ t_{\text{IN}} \\ 40 \ \text{x} \ t_{\text{IN}} \end{array}$	ns	Prescaler \div 32 Prescaler \div 16 Prescaler \div 8 Prescaler \div 4 ³⁾
Total unadjusted error	$T_{\sf UE}$	-	± 2	LSB	V_{SS} +0.5V $\leq V_{AIN} \leq V_{DD}$ -0.5V $^{4)}$
Internal resistance of reference voltage source	R_{AREF}	_	<i>t</i> _{ADC} / 500 - 1	kΩ	<i>t</i> _{ADC} in [ns] ^{5) 6)}
Internal resistance of analog source	R _{ASRC}	_	<i>t</i> _S / 500 - 1	kΩ	<i>t</i> _s in [ns] ^{2) 6)}
ADC input capacitance	C_{AIN}	-	50	pF	6)

Notes see next page.

Clock calculation table :

Clock Prescaler Ratio	ADCL	.1, 0	t _{ADC}	t _S	tADCC
÷ 32	1	1	32 x t _{IN}	64 x t _{IN}	320 x t _{IN}
÷ 16	1	0	16 x t _{IN}	32 x t _{IN}	160 x t _{IN}
÷8	0	1	8 x t _{IN}	16 x t _{IN}	80 x t _{IN}
÷ 4	0	0	4 x t _{IN}	8 x t _{IN}	40 x t _{IN}

Further timing conditions : $t_{ADC} min = 800 ns$ $t_{IN} = 1 / f_{OSC} = t_{CLP}$

Figure 34 Data Memory Write Cycle

Figure 37 Verify Code Byte - Read Cycle Timing

Figure 38 Lock Bit Access Timing

Figure 39 Version Byte Read Timing

ROM/OTP Verification Characteristics for C505

ROM Verification Mode 1 (C505(C)(A)-2R and C505(C)A-4R only)

Parameter	Symbol	Limit	Unit	
		min.	max.	
Address to valid data	<i>t</i> _{AVQV}	-	5 CLP	ns

Figure 40 ROM Verification Mode 1

Figure 42 AC Testing: Input, Output Waveforms

Figure 43 AC Testing : Float Waveforms

Figure 44

Recommended Oscillator Circuits for Crystal Oscillator