

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1847-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

There are three types of memory in PIC16(L)F1847: Data Memory, Program Memory and Data EEPROM Memory⁽¹⁾.

- Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
 - Device Memory Maps
 - Special Function Registers Summary
- Data EEPROM memory⁽¹⁾

Note 1: The Data EEPROM Memory and the method to access Flash memory through the EECON registers is described in Section 11.0 "Data EEPROM and Flash Program Memory Control". The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a $32K \times 14$ program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1847 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address
PIC16(L)F1847	8,192	1FFFh

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
100h ⁽¹⁾	INDF0	Addressing the (not a physic)		es contents of	FSR0H/FSR0)L to address	data memory	/		XXXX XXXX	XXXX XXXX
101h ⁽¹⁾	INDF1	Addressing th (not a physic		es contents of	FSR1H/FSR1	IL to address	data memory	1		XXXX XXXX	XXXX XXXX
102h ⁽¹⁾	PCL	Program Cou	unter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
103h ⁽¹⁾	STATUS	—	_	—	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
105h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
106h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
107h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
108h ⁽¹⁾	BSR	_	_	—			BSR<4:0>			0 0000	0 0000
109h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
10Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	r			-000 0000	-000 0000
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	0000 000x	0000 000u
10Ch	LATA	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	xx-x xxxx	uu-u uuuu
10Dh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX	uuuu uuuu
10Eh	—	Unimplement	ted	•	•	•			•	_	_
10Fh	—	Unimplement	ted							_	_
110h	_	Unimplement	ted							_	_
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH	l<1:0>	_	_	C1NCI	H<1:0>	000000	000000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH	l<1:0>	_	_	C2NCI	H<1:0>	000000	000000
115h	CMOUT	_	_	—		_	_	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	_	—	_	_	_	_	BORRDY	1 q	u u
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFVF	R<1:0>	0qrr 0000	0qrr 0000
118h	DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	000- 00-0	000- 00-0
119h	DACCON1	_	_	—		[DACR<4:0>			0 0000	0 0000
11Ah	SRCON0	SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	—	Unimplement	ted							—	—
11Dh	APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL	CCP2SEL	P1DSEL	P1CSEL	CCP1SEL	0000 0000	0000 0000
	APFCON1	_	_	_	_		_		TXCKSEL	0	0
11Eh	AFICONT								INCOLCE	0	-

TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
400h ⁽¹⁾	INDF0	Addressing th (not a physical		es contents of	FSR0H/FSR0)L to address	data memory	,		XXXX XXXX	XXXX XXXX
401h ⁽¹⁾	INDF1	Addressing th (not a physica		es contents of	FSR1H/FSR1	L to address	data memory	,		XXXX XXXX	XXXX XXXX
402h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
403h ⁽¹⁾	STATUS	_	—	—	TO	PD	Z	DC	С	1 1000	q quuu
404h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poi	nter					0000 0000	uuuu uuuu
405h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	inter					0000 0000	0000 0000
406h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
407h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	inter					0000 0000	0000 0000
408h ⁽¹⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
409h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
40Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
40Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	0000 000x	0000 000u
40Ch	—	Unimplement	ed		•		•			_	—
40Dh	_	Unimplement	ed							_	_
40Eh	_	Unimplement	ed							_	_
40Fh	_	Unimplement	ed							_	_
410h	_	Unimplement	ed							_	_
411h	_	Unimplement	ed							_	_
412h	_	Unimplement	ed							_	_
413h	_	Unimplement	ed							_	_
414h	_	Unimplement	ed							_	_
415h	TMR4	Timer4 Modu	le Register							0000 0000	0000 0000
416h	PR4	Timer4 Perio	d Register							1111 1111	1111 1111
417h	T4CON	_		T4OUTF	PS<3:0>		TMR40N	T4CKP	S<1:0>	-000 0000	-000 0000
418h	_	Unimplement	ed				•			_	_
419h	_	Unimplement	ed							_	_
41Ah	—	Unimplement	ed							_	—
41Bh	—	Unimplement	Unimplemented —						_	—	
41Ch	TMR6	Timer6 Modu	le Register							0000 0000	0000 0000
41Dh	PR6	Timer6 Perio	d Register							1111 1111	1111 1111
41Eh	T6CON	_		T6OUTF	PS<3:0>		TMR6ON	T6CKP	S<1:0>	-000 0000	-000 0000
41Fh		Unimplement	ied				•	•		1	İ

TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

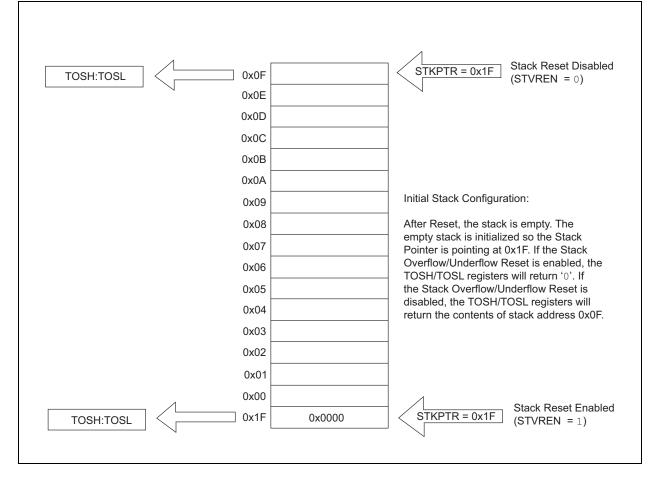
3.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-4 through 3-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

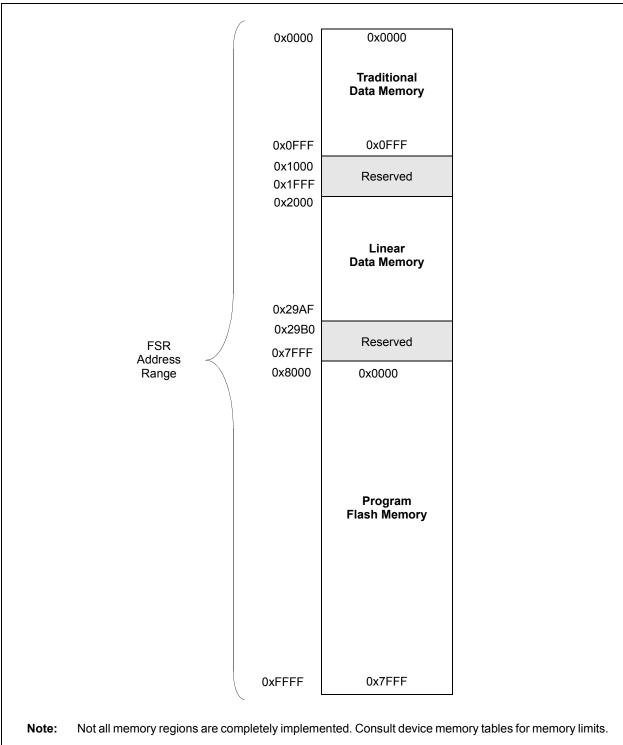
The stack operates as a circular buffer if the STVREN bit = 0 (Configuration Words). This means that after the stack has been PUSHed 16 times, the 17th PUSH overwrites the value that was stored from the first PUSH. The 18th PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.5.1 ACCESSING THE STACK


The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.


During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement STKPTR.

Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack.

FIGURE 3-4: ACCESSING THE STACK EXAMPLE 1

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note:	The DEBUG bit in Configuration Word is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRI	DC<1:0>	C	LKRDIV<2:0>	>	70
Logondi					alla ara natua		l l		

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES

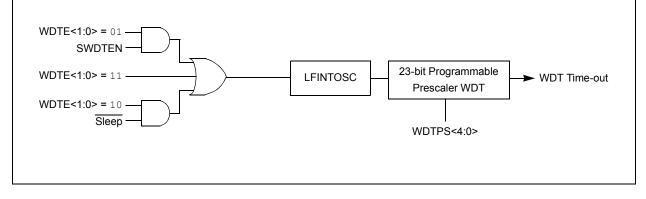
Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	CPD	40
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		FOSC<2:0>		46

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—		CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	CCP4IE: CCF	P4 Interrupt En	able bit				
		the CCP4 inter					
		the CCP4 inter	•				
bit 4		P3 Interrupt En					
		the CCP3 inter					
1.1.0		the CCP3 inter	•				
bit 3		R6 to PR6 Mate					
		the TMR6 to P the TMR6 to P					
bit 2		ted: Read as '					
bit 1	-			nable bit			
	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt						
		the TMR4 to P					
bit 0	Unimplemen	ted: Read as '	0'				
	PEIE of the IN		must bo				

REGISTER 8-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

ote 1: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.


10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM

16.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'
bit 6-2	CHS<4:0>: Analog Channel Select bits
	00000 = ANO
	00001 = AN1
	00010 = AN2
	00011 = AN3
	00100 = AN4
	00101 = AN5
	00110 = AN6
	00111 = AN7
	01000 = AN8
	01001 = AN9
	01010 = AN10
	01011 = AN11
	01100 = Reserved. No channel connected.
	•
	11100 = Reserved. No channel connected.
	11101 = Temperature Indicator
	11110 = DAC output ⁽¹⁾
	11111 = FVR (Fixed Voltage Reference) Buffer 1 Output ⁽²⁾
bit 1	GO/DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. This bit is automatically cleared by hardware when the ADC conversion has completed. 0 = ADC conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current
Note 1:	See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information.
2:	See Section TABLE 14-1: "Summary of Registers Associated with the Fixed Voltage Reference"
	for more information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
CxINTP	CxINTP CXINTN CxPCH<1:0		H<1:0>	_		CxNCI	H<1:0>		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7		nparator Interru	•	0 0					
					ing edge of the				
			•		of the CxOUT b	DIT			
bit 6		mparator Interru		0 0					
	 1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative going edge of the CxOUT bit 								
bit 5-4		 Comparator I 	C C			bit			
		connects to CxII			. 510				
		connects to DAC		erence					
		onnects to FVF	R Voltage Refe	rence					
	For C1:								
	For C2:	connects to C12	in+ pin						
		connects to Vss							
bit 3-2	Unimplemer	nted: Read as '	0'						
bit 1-0	I-0 CxNCH<1:0>: Comparator Negative Input Channel Select bits								
		connects to C12							
		connects to C12							
		connects to C12 connects to C12							
Note 1: Cx		C12IN+ pin wh	•	norator 2					

REGISTER 19-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

Note 1: CxVP connects to C12IN+ pin when using Comparator 2.

REGISTER 19-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
	_	_	_	_	_	MC2OUT	MC1OUT
bit 7							bit 0

Legend:			
R = Reada	ible bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is u	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7-2 Unimplemented: Read as '0'		nented: Read as '0'	
bit 1	MC2OUT	: Mirror Copy of C2OUT bit	

bit 0 MC10UT: Mirror Copy of C10UT bit

© 2011-2013 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
PIE3	_	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	91
PIR3	—	_	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	_	95
PR2	Timer2 Module Period Register								189*
PR4	Timer4 Module Period Register								189*
PR6	Timer6 Module Period Register							189*	
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	191
T4CON	— T4OUTPS<3:0> TMR4ON T4CKPS<1:0>							191	
T6CON								191	
TMR2	Holding Register for the 8-bit TMR2 Time Base							189*	
TMR4	Holding Register for the 8-bit TMR4 Time Base							189*	
TMR6	Holding Reg	ister for the 8	-bit TMR6 Tin	ne Base					189*

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented read as '0'. Shaded cells are not used for Timer2 module. * Page provides register information.

R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R-0/0	U-0	U-0	R/W-0/0		
MDEN	MDOE	MDSLR	MDOPOL	MDOUT		—	MDBIT		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BOP	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	MDEN: Modu	ılator Module E	nable bit						
		or module is en or module is dis		• • •	als				
bit 6	MDOE: Modu	ulator Module F	Pin Output Ena	able bit					
	1 = Modulato	or pin output enabled							
	0 = Modulato	or pin output di	sabled						
bit 5	MDSLR: MD	OUT Pin Slew	Rate Limiting	bit					
		1 = MDOUT pin slew rate limiting enabled							
	0 = MDOUT	pin slew rate li	miting disable	d					
bit 4	MDOPOL: M	odulator Outpu	t Polarity Sele	ect bit					
		1 = Modulator output signal is inverted							
0 = Modulator output signal is not inverted									
bit 3									
	Displays the current output value of the Modulator module. ⁽¹⁾								
bit 2-1	Unimplemented: Read as '0'								
bit 0 MDBIT: Allows software to manually set modulation source input to module ⁽²⁾									
Note 1: The	e modulated ou	tput frequency	can be greate	er and asynchr	onous from the c	lock that upda	ates this		

REGISTER 23-1: MDCON: MODULATION CONTROL REGISTER

register bit, the bit value may not be valid for higher speed modulator or carrier signals.
2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCLx line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDAx line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

25.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of Clock Stretching. An addressed slave device may hold the SCLx clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCLx line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCLx connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

25.3.2 ARBITRATION

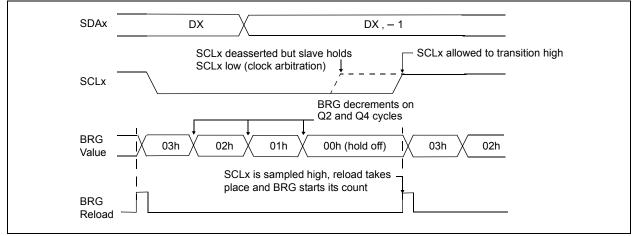
Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDAx data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDAx line.

For example, if one transmitter holds the SDAx line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDAx line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDAx line. If this transmitter is also a master device, it also must stop driving the SCLx line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDAx line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.


If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

25.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCLx pin is actually sampled high. When the SCLx pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 25-25).

25.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not Idle.

Note:	Because queueing of events is not
	allowed, writing to the lower five bits of
	SSPxCON2 is disabled until the Start
	condition is complete.

26.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 26-3 contains the formulas for determining the baud rate. Example 26-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 26-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 26-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SPBRGH:SPBRGL:

$X = \frac{FOSC}{\frac{Desired Baud Rate}{64} - 1}$
$=\frac{\frac{16000000}{9600}}{64}-1$
= [25.042] = 25
Calculated Baud Rate = $\frac{16000000}{64(25+1)}$
= 9615
Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$
$=\frac{(9615-9600)}{9600} = 0.16\%$

26.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

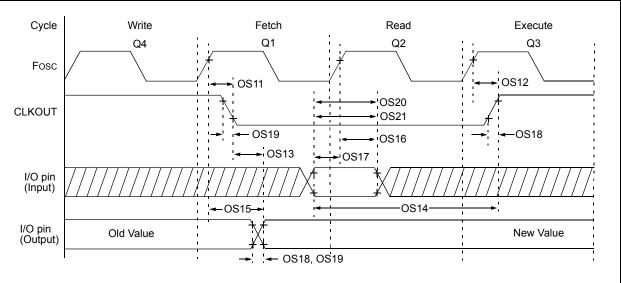
26.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 26.4.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 26.4.2.2 Synchronous Slave Transmission Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 26-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

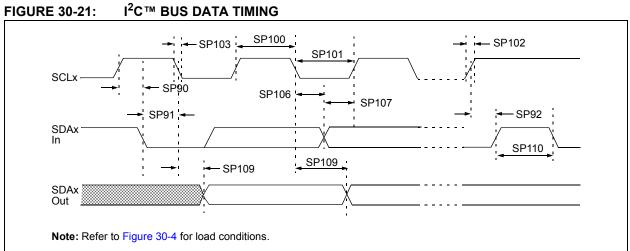
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL	CCP2SEL	P1DSEL	P1CSEL	CCP1SEL	118
APFCON1	_	_	_	_	_	_	_	TXCKSEL	118
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	298
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	297
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	126
TXREG	EUSART Transmit Data Register						289*		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	296


Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Slave Transmission. * Page provides register information.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

TRIS	Load TRIS Register with W	XORWF	Exclusive OR W with f		
Syntax:	[<i>label</i>] TRIS f	Syntax:	[<i>label</i>] XORWF f,d		
Operands:	$5 \le f \le 7$	Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation: Status Affected:			(W) .XOR. (f) \rightarrow (destination)		
Description:	Move data from W register to TRIS	Status Affected:	Z		
	register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		


Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions	
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	$3.3V \leq V\text{DD} \leq 5.0V$	
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	_	—	72	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns		
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	—	—	ns		
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \leq V\text{DD} \leq 5.0V$	
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	_	_	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns		
OS18*	TioR	Port output rise time		40 15	72 32	ns	$\begin{array}{l} VDD\texttt{D}\texttt{=}1.8V\\ 3.3V \leq VDD \leq 5.0V \end{array}$	
OS19*	TioF	Port output fall time	—	28 15	55 30	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$	
OS20*	Tinp	INT pin input high or low time	25			ns		
OS21*	Tioc	Interrupt-on-change new input level time	25	—		ns		

Standard Operating Conditions (unless otherwise stated)
Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

