

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1847-e-mv

Email: info@E-XFL.COM

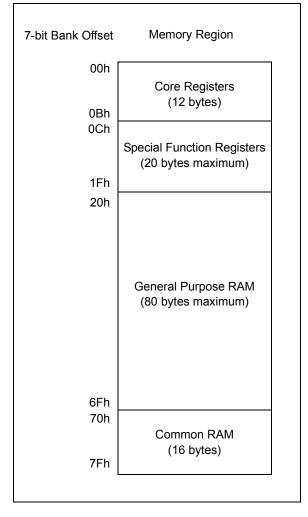
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank.


3.3.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "Linear Data Memory" for more information.

3.3.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

3.3.4 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-2.

TABLE 3-2: MEMORY MAP TABLES

Device	Banks	Table No.
PIC16(L)F1847	0-7	Table 3-3
	8-15	Table 3-4
	16-23	Table 3-5
	24-31	Table 3-6
	31	Table 3-7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 5									-		
280h ⁽¹⁾	INDF0	Addressing th (not a physica		es contents of	FSR0H/FSR0	L to address	data memory	/		XXXX XXXX	XXXX XXXX
281h ⁽¹⁾	INDF1	Addressing th (not a physica		es contents of	FSR1H/FSR1	L to address	data memory	/		XXXX XXXX	XXXX XXXX
282h ⁽¹⁾	PCL	Program Cou	nter (PC) Lea	ast Significant I	Byte					0000 0000	0000 0000
283h ⁽¹⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
284h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ress 0 Low Poi	inter					0000 0000	uuuu uuuu
285h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ress 0 High Po	inter					0000 0000	0000 0000
286h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ress 1 Low Poi	inter					0000 0000	uuuu uuuu
287h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ress 1 High Po	inter					0000 0000	0000 0000
288h ⁽¹⁾	BSR	—	_	_			BSR<4:0>			0 0000	0 0000
289h ⁽¹⁾	WREG	Working Reg	ster							0000 0000	uuuu uuuu
28Ah ⁽¹⁾	PCLATH	_	Write Buffer	for the upper 7	' bits of the Pro	gram Counte	er			-000 0000	-000 0000
28Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	0000 000x	0000 000u
28Ch		Unimplemented								_	_
28Dh		Unimplemented							_	_	
28Eh	_	Unimplemented							_	_	
28Fh	_	Unimplement	ed							_	_
290h	_	Unimplement	ed							_	_
291h	CCPR1L	Capture/Com	pare/PWM Re	egister 1 (LSB))					XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Com	pare/PWM Re	egister 1 (MSB	3)					XXXX XXXX	uuuu uuuu
293h	CCP1CON	P1M	<1:0>	DC1E	3<1:0>		CCP1N	/<3:0>		0000 0000	0000 0000
294h	PWM1CON	P1RSEN			Р	1DC<6:0>				0000 0000	0000 0000
295h	CCP1AS	CCP1ASE		CCP1AS<2:0	>	PSS1A	C<1:0>	PSS1B	D<1:0>	0000 0000	0000 0000
296h	PSTR1CON	_	_	_	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001	0 0001
297h	_	Unimplement	ed							_	_
298h	CCPR2L	Capture/Com	pare/PWM Re	egister 2 (LSB))					XXXX XXXX	սսսս սսսս
299h	CCPR2H	Capture/Com	pare/PWM Re	egister 2 (MSB	3)					XXXX XXXX	սսսս սսսս
29Ah	CCP2CON	P2M•	<1:0>	DC2E	3<1:0>		CCP2N	/<3:0>		0000 0000	0000 0000
29Bh	PWM2CON	P2RSEN			Р	2DC<6:0>				0000 0000	0000 0000
29Ch	CCP2AS	CCP2ASE		CCP2AS<2:0	>	PSS2A	C<1:0>	PSS2B	D<1:0>	0000 0000	0000 0000
29Dh	PSTR2CON	_	_	_	STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001	0 0001
29Eh	CCPTMRS	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	0000 0000	0000 0000
29Fh		Unimplemented									1

TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE
bit 7							bit 0
Legend:							
R = Readable		W = Writable			mented bit, read		
u = Bit is uncl	0	x = Bit is unk		-n/n = Value a	at POR and BOF	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7		llator Fail Interr	unt Enable bit				
		the Oscillator F	•				
		the Oscillator	•				
bit 6	C2IE: Compa	arator C2 Interr	upt Enable bit				
		the Comparato					
	0 = Disables	the Comparate	or C2 interrup	t			
bit 5	•	arator C1 Interr	•				
		the Comparato					
h:+ 4		the Comparate	•				
bit 4		OM Write Com the EEPROM		•			
		the EEPROM					
bit 3		SP1 Bus Collis		•			
		the MSSP1 Bu					
		the MSSP1 B					
bit 2-1	Unimplemer	nted: Read as '	0'				
bit 0	CCP2IE: CC	P2 Interrupt En	able bit				
		the CCP2 inter					
	0 = Disables	the CCP2 inte	rrupt				
	PEIE of the IN to enable any						

PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 REGISTER 8-3:

set to enable any peripheral interrupt.

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
R = Readable	bit	VV = VVritable	bit	U = Unimplen	nented bit, read	as '0'	

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

bit 7-6	LATA<7:6>: RA<7:6> Output Latch Value bits ⁽¹⁾
bit 5	Unimplemented: Read as '0'

'1' = Bit is set

bit 4-0 LATA<4:0>: RA<4:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-6: WPUA: WEAK PULL-UP PORTA REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-1/1	U-0	U-0	U-0	U-0	U-0
—	—	WPUA5	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5	WPUA5: Weak Pull-up RA5 Control bit
	If MCLRE in Configuration Words = 0, MCLR is disabled):
	1 = Weak Pull-up enabled ⁽¹⁾
	0 = Weak Pull-up disabled
	If MCLRE in Configuration Words = 1, MCLR is enabled):
	Weak Pull-up is always enabled.
bit 4-0	Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 16-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	—	—	_		ADRE	S<9:8>	
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared								

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

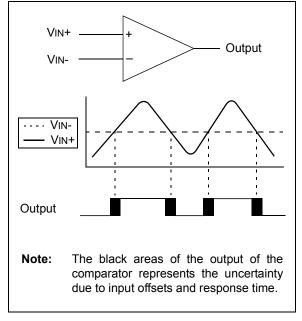
REGISTER 16-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
	ADRES<7:0>							
bit 7 bit 0							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

19.0 COMPARATOR MODULE


Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- Programmable and Fixed Voltage Reference

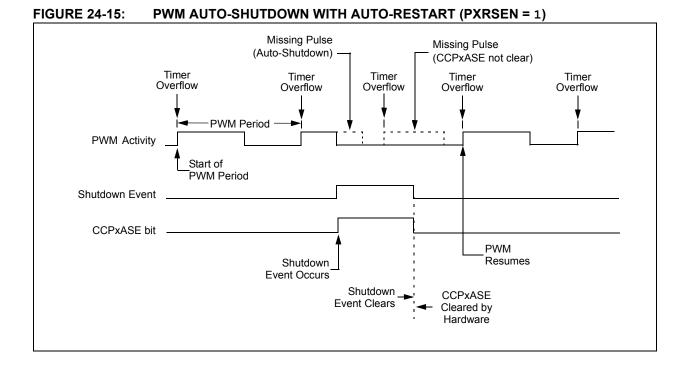
19.1 Comparator Overview

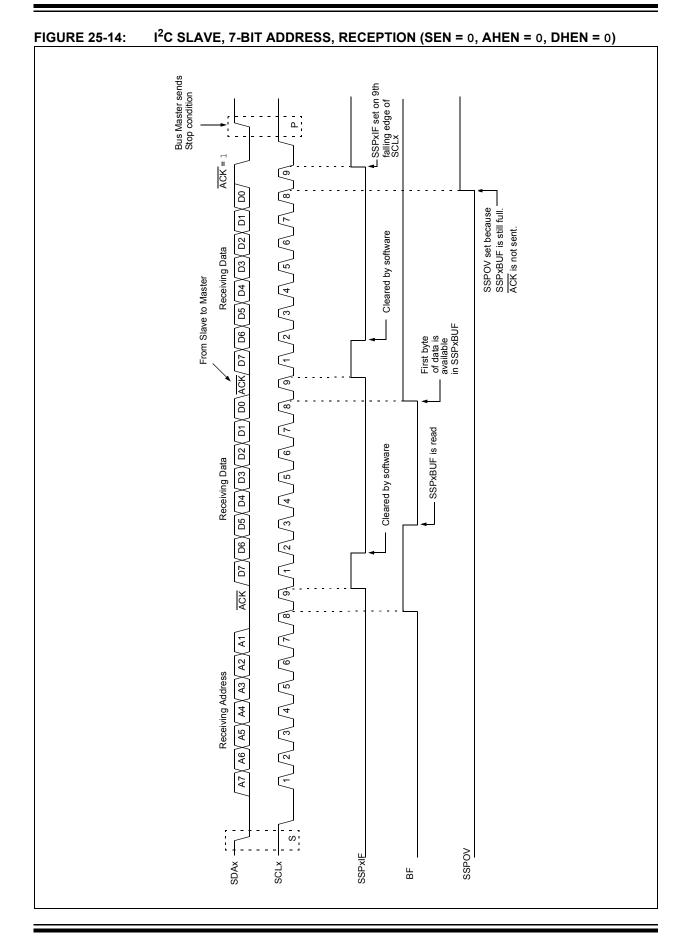
A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

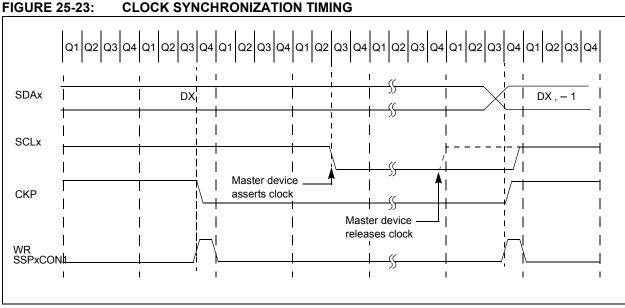
ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD						
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾						
Half-Bridge	10	Yes	Yes	No	No						
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes						
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes						

EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES TABLE 24-9

Note 1: PWM Steering enables outputs in Single mode.


EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH FIGURE 24-6: STATE)


PxM<1:0>	Signal	0 ◀ Pulse Width	PRX+1
			── Period ──►
00 (Single Output)	PxA Modulated	 'Delay	Delay
	PxA Modulated		
10 (Half-Bridge)	PxB Modulated		
	PxA Active	_ <u>'</u> _ '	
(Full-Bridge,	PxB Inactive	_	
⁰¹ Forward)	PxC Inactive		
	PxD Modulated		
	PxA Inactive	:	1 i 1 1 1 1
(Full-Bridge,	PxB Modulated		
Reverse)	PxC Active —		
	PxD Inactive	_	


Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

24.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register. If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

25.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 25-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0				
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7	·						bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'					
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets				
'1' = Bit is set '0' = Bit is cleared HC = Cleared by hardware S = User s						S = User set					
bit 7		eral Call Enable		.,							
		terrupt when a call address dis	•	ddress (0x00 d	or 00h) is receiv	ed in the SSP	SR				
bit 6	ACKSTAT: A	cknowledge St	atus bit (in I ² C	mode only)							
		edge was not r									
		edge was recei									
bit 5		nowledge Data	bit (in I ² C mo	de only)							
	In Receive m										
	1 = Not Ackn		ed when the user initiates an Acknowledge sequence at the end of a receive vledge								
	0 = Acknowle	•									
bit 4	ACKEN: Ack	nowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)						
	In Master Re	n Master Receive mode:									
		Initiate Acknowledge sequence on SDAx and SCLx pins, and transmit ACKDT data bit. Automatically cleared by hardware.									
		edge sequence									
bit 3	RCEN: Recei	ive Enable bit	(in I ² C Master	mode only)							
	1 = Enables I 0 = Receive i	Receive mode	for I ² C								
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	y)						
	SCKx Releas	e Control:									
	1 = Initiate St 0 = Stop cond		n SDAx and S	CLx pins. Auto	matically cleare	ed by hardware					
bit 1	RSEN: Repe	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)						
		epeated Start d Start conditio		DAx and SCL>	c pins. Automati	cally cleared b	y hardware.				
bit 0	-	ondition Enable		le hit							
	In Master mo										
		art condition o	n SDAx and S	CLx pins. Auto	matically cleare	ed by hardware					
	In Slave mod	<u>e:</u>									
		etching is enat etching is disal		ave transmit ar	nd slave receive	e (stretch enabl	ed)				
Note 1: Fo	or bits ACKEN, F	RCEN, PEN. R	SEN, SEN: If t	he I ² C module	is not in the IdI	e mode, this bi	t may not be				

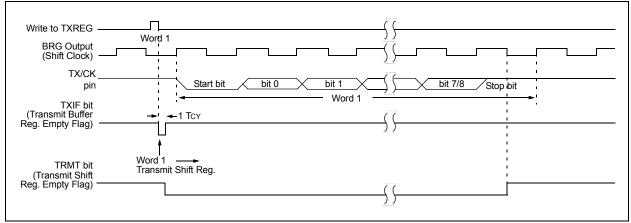
REGISTER 25-3: SSPxCON2: SSPx CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

26.1.1.4 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.


26.1.1.5 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTA register is the 9th, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 26.1.2.7** "Address **Detection**" for more information on the address mode.

26.1.1.6 Asynchronous Transmission Setup:

- 1. Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set 9th data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 6. If 9-bit transmission is selected, the 9th bit should be loaded into the TX9D data bit.
- 7. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 26-3: ASYNCHRONOUS TRANSMISSION

TABLE 26-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL	CCP2SEL	P1DSEL	P1CSEL	CCP1SEL	118
APFCON1	_	—	-	—	—	—	_	TXCKSEL	118
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	298
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	297
SPBRGL	BRG<7:0>								299*
SPBRGH				BRG	<15:8>				299*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	126
TXREG			EU	SART Transr	nit Data Regis	ster			289*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	296
Lawawali				0				- · ·	_

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

* Page provides register information.

28.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP™ refer to the "*PIC16193X/PIC16LF193X Memory Programming Specification*" (DS41360A).

28.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

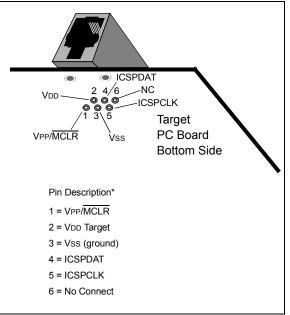
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

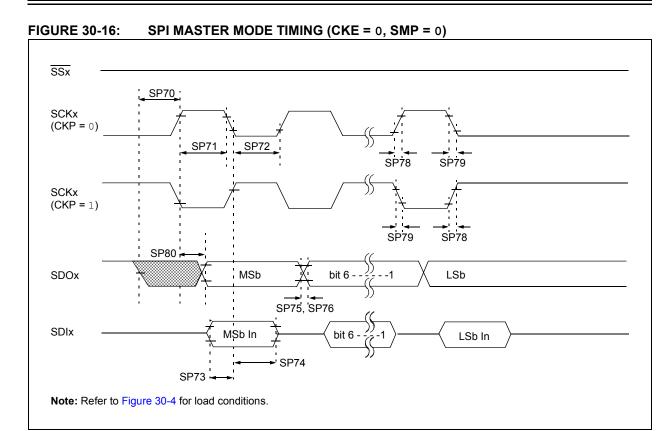

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 7.4 "MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

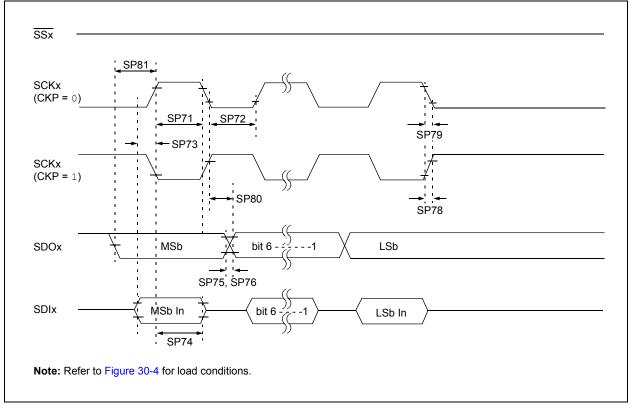
28.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 28-1.

PIC16LF	1847	Standard Operating Conditions (unless otherwise stated)							
PIC16F18	847								
Param. Device		Min.	Тур†	Max.	Units	Conditions			
No.	Characteristics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			VDD	Note		
D014		_	260	338	μΑ	1.8	Fosc = 4 MHz		
		—	415	540	μA	3.0	EC Oscillator Medium-power mode		
D014		—	300	325	μA	1.8	Fosc = 4 MHz		
		—	486	515	μA	3.0	EC Oscillator Medium-power mode		
		_	520	550	μA	5.0			
D015		_	10	16	μA	1.8	Fosc = 32 kHz		
		—	12	18	μA	3.0	LFINTOSC		
D015		—	21	28	μA	1.8	Fosc = 32 kHz		
		_	25	34	μA	3.0	LFINTOSC		
		—	28	36	μA	5.0			
D016		—	175	215	μΑ	1.8	Fosc = 500 kHz		
		—	216	245	μA	3.0	MFINTOSC		
D016		_	175	200	μA	1.8	Fosc = 500 kHz		
		_	195	225	μA	3.0	MFINTOSC		
		—	215	245	μA	5.0			
D017		_	0.80	1.10	mA	1.8	Fosc = 8 MHz		
		—	1.36	1.80	mA	3.0	HFINTOSC		
D017			0.80	1.10	mA	1.8	Fosc = 8 MHz		
		_	1.40	1.60	mA	3.0	HFINTOSC		
		_	1.55	1.80	mA	5.0			
D018			1.20	1.60	mA	1.8	Fosc = 16 MHz		
			2.10	2.90	mA	3.0	HFINTOSC		
D018			1.20	1.60	mA	1.8	Fosc = 16 MHz		
			2.20	2.30	mA	3.0	HFINTOSC		
		—	2.30	2.60	mA	5.0			
D019			3.40	3.60	mA	3.0	Fosc = 32 MHz		
			4.10	4.20	mA	3.6	HFINTOSC (Note 3)		


TABLE 30-2: SUF	PLY CURRENT (IDD) ^(1,2) (CONTINUED)
-----------------	------------------	--------------------------------

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- **2:** The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3: 8 MHz internal oscillator with 4x PLL enabled.
- **4:** 8 MHz crystal oscillator with 4x PLL enabled.
- 5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 30-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

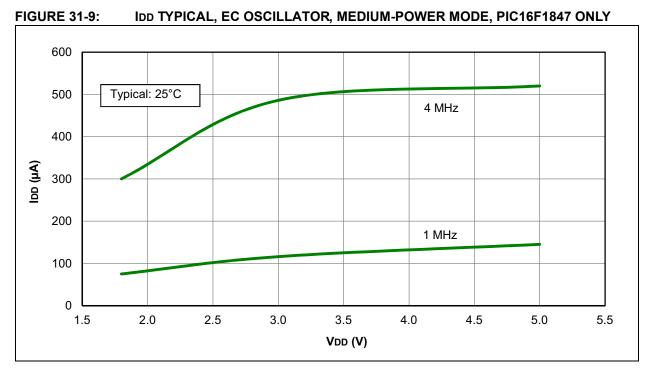


FIGURE 31-31: IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE, CPSRM = 0, CPSRNG = 01, PIC16LF1847 ONLY

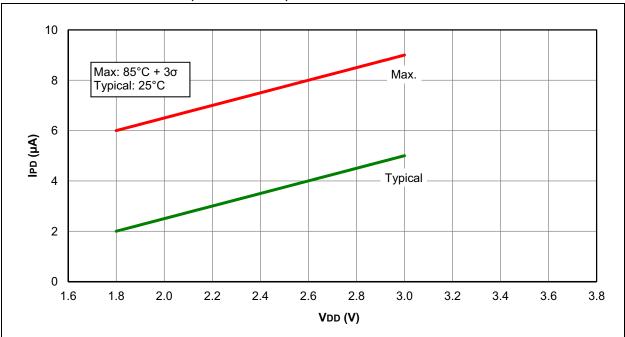
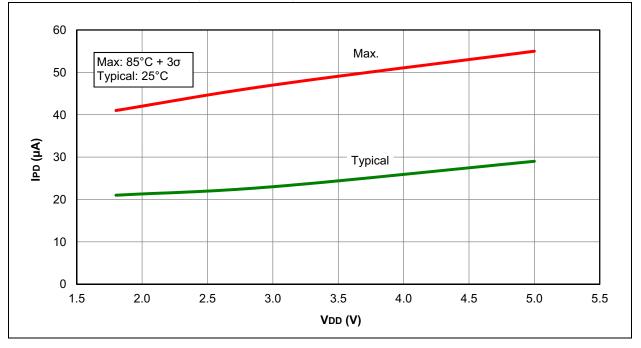
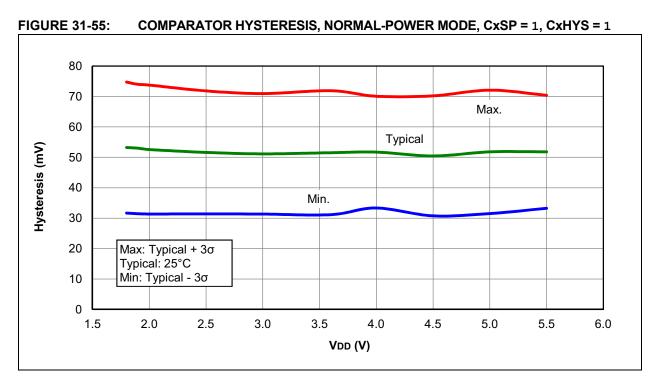
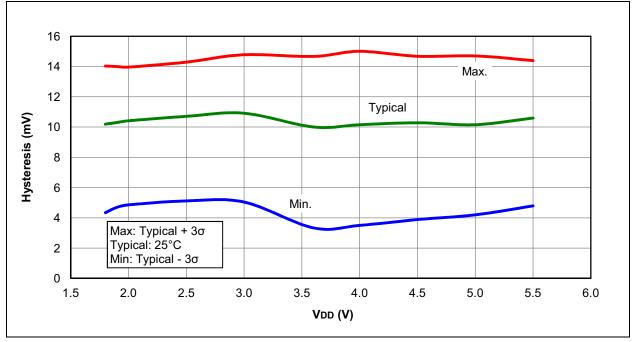
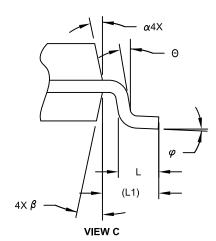
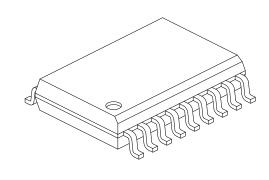



FIGURE 31-32: IPD, CAPACITIVE SENSING (CPS) MODULE, LOW-CURRENT RANGE, CPSRM = 0, CPSRNG = 01, PIC16F1847 ONLY


FIGURE 31-56: COMPARATOR HYSTERESIS, LOW-POWER MODE, CxSP = 0, CxHYS = 1

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Li	nits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	_	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2