

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1847-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.4 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 7-2).

TABLE 7-2:	MCLR CONFIGURATION
-------------------	--------------------

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

7.4.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note:	A Reset does not drive the MCLR pin low.

7.4.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See Section 12.3 "PORTA Registers" for more information.

7.5 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See Section 10.0 "Watchdog Timer" for more information.

7.6 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 7-4 for default conditions after a RESET instruction has occurred.

7.7 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2** "Overflow/Underflow **Reset**" for more information.

7.8 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

7.9 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Words.

7.10 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)**" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 7-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.

7.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 7-3 and Table 7-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	0	х	1	1	Power-on Reset
0	0	1	1	0	х	0	х	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	0	х	х	0	Illegal, PD is set on POR
0	0	1	1	u	0	1	1	Brown-out Reset
u	u	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 7-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 7-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	1u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

7.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 7-2.

7.13 Register Definitions: Power Control

REGISTER 7-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR
bit 7 bit						bit 0	

Legend:		
HC = Bit is cleared by hardw	vare	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or set to '0' by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or set to '0' by firmware
bit 5-4	Unimplemented: Read as '0'
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

NOTES:

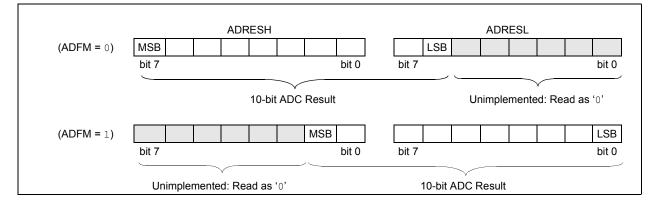
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—		CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	CCP4IE: CCF	P4 Interrupt En	able bit				
		the CCP4 inter					
		the CCP4 inter	•				
bit 4		P3 Interrupt En					
		the CCP3 inter					
1.1.0		the CCP3 inter	•				
bit 3		R6 to PR6 Mate					
		the TMR6 to P the TMR6 to P					
bit 2		ted: Read as '					
bit 1	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit						
1 = Enables the TMR4 to PR4 Match interrupt							
		the TMR4 to P					
bit 0	Unimplemen	ted: Read as '	0'				
	PEIE of the IN		must bo				

REGISTER 8-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

ote 1: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

16.1.5 INTERRUPTS

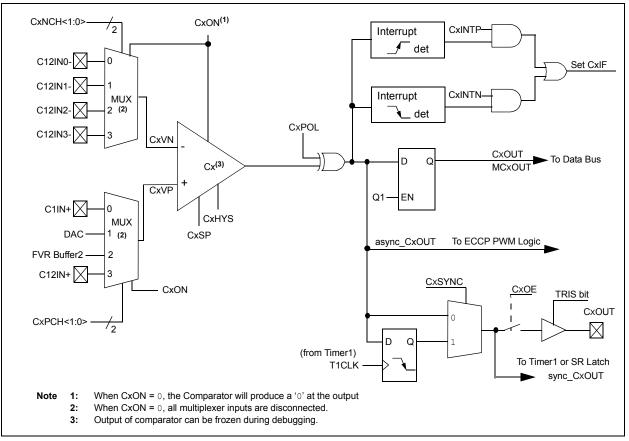
The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.


Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 16.1.5 "Interrupts"** for more information.


FIGURE 16-3: 10-BIT ADC CONVERSION RESULT FORMAT

16.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

FIGURE 19-2: COMPARATOR 1 MODULE SIMPLIFIED BLOCK DIAGRAM

19.7 Comparator Negative Input Selection

The CxNCH<1:0> bits of the CMxCON0 register direct one of four analog pins to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog
	input, the appropriate bits must be set in
	the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Section 30.0 "Electrical Specifications" for more details.

19.9 Interaction with ECCP Logic

The C1 and C2 comparators can be used as general purpose comparators. Their outputs can be brought out to the C1OUT and C2OUT pins. When the ECCP Auto-Shutdown is active it can use one or both comparator signals. If auto-restart is also enabled, the comparators can be configured as a closed loop analog feedback to the ECCP, thereby, creating an analog controlled PWM.

Note: When the comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.

19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-1. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1:	When reading a PORT register, all pins
	configured as analog inputs will read as a
	'0'. Pins configured as digital inputs will
	convert as an analog input, according to
	the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

21.11 Timer1 Control Register

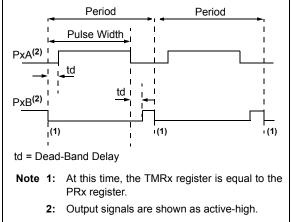
The Timer1 Control register (T1CON), shown in Register 21-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u
TMR1C	:S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N
bit 7							bit 0
l edeny.							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits
	11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)
	10 = Timer1 clock source is pin or oscillator:
	<u>If T1OSCEN = 0</u> : External clock from T1CKI pin (on the rising edge)
	If TIOSCEN = 1:
	Crystal oscillator on T1OSI/T1OSO pins
	01 = Timer1 clock source is system clock (Fosc)
	00 = Timer1 clock source is instruction clock (Fosc/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale value
	10 = 1:4 Prescale value
	01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	TIOSCEN: LP Oscillator Enable Control bit
DIL 3	1 = Dedicated Timer1 oscillator circuit enabled
	0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	$\underline{TMR1CS} = 1X$
	1 = Do not synchronize external clock input
	0 = Synchronize external clock input with system clock (Fosc)
	TMR1CS<1:0> = $0X$
	This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 1x.
bit 1	Unimplemented: Read as '0'
bit 0	TMR1ON: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
	Clears Timer1 Gate flip-flop


NOTES:

24.4.1 HALF-BRIDGE MODE


In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 24-9). This mode can be used for Half-Bridge applications, as shown in Figure 24-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

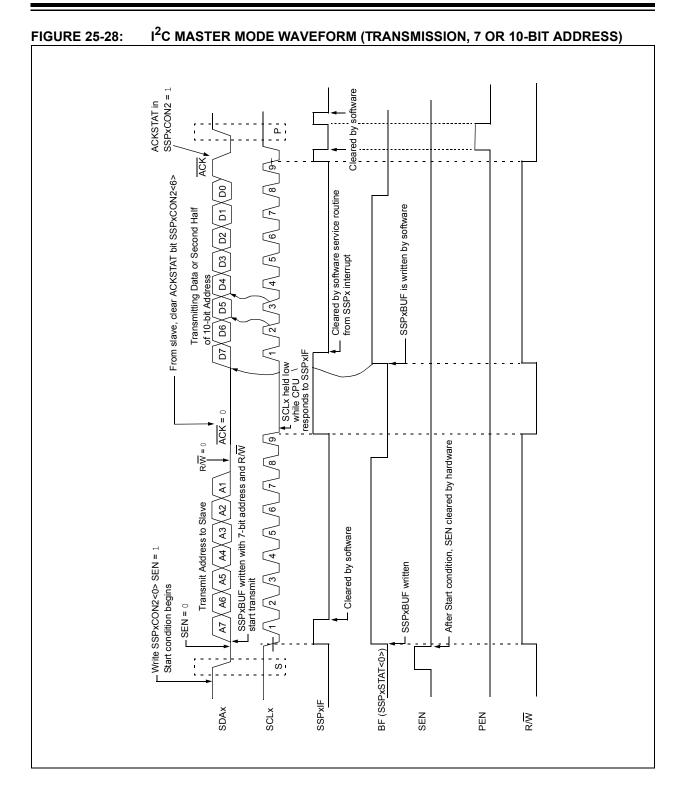

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 24.4.5 "Programmable Dead-Band Delay Mode" for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 24-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 24-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7		eral Call Enable		.,			
		terrupt when a call address dis	•	ddress (0x00 d	or 00h) is receiv	ed in the SSP	SR
bit 6	ACKSTAT: A	cknowledge St	atus bit (in I ² C	mode only)			
		edge was not r					
1.1.F		edge was recei		1 1			
bit 5		nowledge Data	bit (in I ² C mo	de only)			
	In Receive m		user initiates a	an Acknowledg	e sequence at	the end of a re	ceive
	1 = Not Ackn						
		0 = Acknowledge					
bit 4	ACKEN: Ack	nowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)		
	In Master Re						
		Acknowledge sequence on SDAx and SCLx pins, and transmit ACKDT data bit. tically cleared by hardware.					
		edge sequence					
bit 3		ive Enable bit		mode only)			
		Receive mode	· _	5,			
	0 = Receive idle						
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	y)		
	SCKx Releas						
	1 = Initiate St 0 = Stop cond		n SDAx and S	CLx pins. Auto	matically cleare	d by hardware	
bit 1	RSEN: Repe	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)		
		epeated Start d Start conditio		DAx and SCL>	cpins. Automati	cally cleared b	y hardware.
bit 0	-						
	In Master mo	de:					
	1 = Initiate St 0 = Start cond		n SDAx and S	CLx pins. Auto	matically cleare	ed by hardware	
	In Slave mod						
		etching is enat etching is disal		ave transmit ar	nd slave receive	e (stretch enabl	ed)
Note 1: Fo	r bits ACKEN, F	RCEN, PEN, R	SEN, SEN: If t	he I ² C module	is not in the Idl	e mode, this bi	t may not be

REGISTER 25-3: SSPxCON2: SSPx CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x
SPEN	RX9	SREN ⁽¹⁾	CREN ⁽¹⁾	ADDEN	FERR	OERR	RX9D
bit 7						·	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, reac	l as '0'	
u = Bit is unchanged		x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	SPEN: Serial	Port Enable bi	t				
			-	T and TX/CK p	oins as serial po	rt pins)	
	0 = Serial po	rt disabled (he	d in Reset)				
bit 6	RX9: 9-bit Re	eceive Enable b	bit				
		-bit reception -bit reception					
bit 5	SREN: Single	e Receive Enal	ole bit				
	Asynchronou	<u>s mode</u> :					
	Don't care						
		mode – Maste	<u>r</u> :				
		single receive					
	 Disables single receive This bit is cleared after reception is complete. 						
		mode – Slave					
	Don't care						
bit 4	CREN: Conti	nuous Receive	Enable bit				
	<u>Asynchronou</u>	<u>s mode</u> :					
	1 = Enables						
	0 = Disables						
	Synchronous		oivo until ono	hla hit CDEN i	s cleared (CREN	l overrides SP	
		continuous red			S CIEdreu (CREI	N OVEITIGES SR	
bit 3	ADDEN: Add	ress Detect Er	able bit				
	-	<u>s mode 9-bit (F</u>	-				
					d the receive bu		
		address detec s mode 8-bit (F		are received a	ind 9th bit can b	e used as parit	y dit
	Don't care		<u>vvo – 0j</u> .				
bit 2	FERR: Frami	na Error bit					
5.1.2		•	odated by rea	ading RCREG	register and rec	eive next valid	bvte)
	0 = No frami						- , - ,
bit 1	OERR: Over	run Error bit					
	1 = Overrun 0 = No overr	error (can be c un error	leared by clea	aring bit CREN)		
bit 0		bit of Received	Data				
	This can be a	ddress/data bi	t or a parity bi	t and must be	calculated by us	er firmware.	
Note 1: SR	EN/CREN overric				2		

REGISTER 26-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

TABLE 30-2:	SUPPLY CURRENT (IDD) ^(1,2)
-------------	---------------------------------------

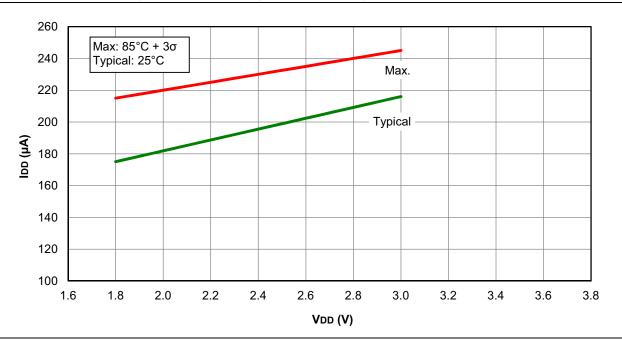
PIC16LF1847		Standard Operating Conditions (unless otherwise stated)					
PIC16F1	847						
Param. No.	Device Characteristics	Min.	Тур†	Max.	Units	Conditions	
						Vdd	Note
D010		—	9.5	14	μA	1.8	Fosc = 32 kHz LP Oscillator -40°C \leq TA \leq +85°C
		_	12.5	17	μA	3.0	
D010		_	22	29	μA	1.8	Fosc = 32 kHz LP Oscillator $-40^{\circ}C \le TA \le +85^{\circ}C$
			27	35	μA	3.0	
			30	38	μA	5.0	
D010A		_	9.5	14	μA	1.8	Fosc = 32 kHz LP Oscillator -40°C \leq TA \leq +125°C
		_	12.5	17	μΑ	3.0	
D010A		_	22	29	μA	1.8	Fosc = 32 kHz LP Oscillator $-40^{\circ}C \le TA \le +125^{\circ}C$
		_	27	35	μA	3.0	
			30	38	μA	5.0	
D011		—	105	110	μA	1.8	Fosc = 1 MHz XT Oscillator
		_	160	190	μA	3.0	
D011		_	132	154	μA	1.8	Fosc = 1 MHz XT Oscillator
		—	186	220	μA	3.0	
		—	216	290	μA	5.0	
D012			264	370	μA	1.8	Fosc = 4 MHz XT Oscillator
			491	620	μA	3.0	
D012			285	300	μA	1.8	Fosc = 4 MHz XT Oscillator
			408	600	μA	3.0	
		_	490	700	μA	5.0	
D013			55	160	μA	1.8	Fosc = 1 MHz EC Oscillator Medium-Power mode
		—	90	230	μA	3.0	
D013			75	95	μA	1.8	Fosc = 1 MHz EC Oscillator Medium-Power mode
			116	130	μA	3.0	
			145	185	μA	5.0	

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance + only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

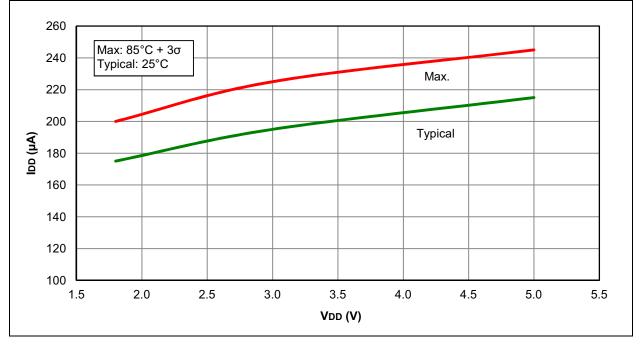
- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3: 8 MHz internal oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.

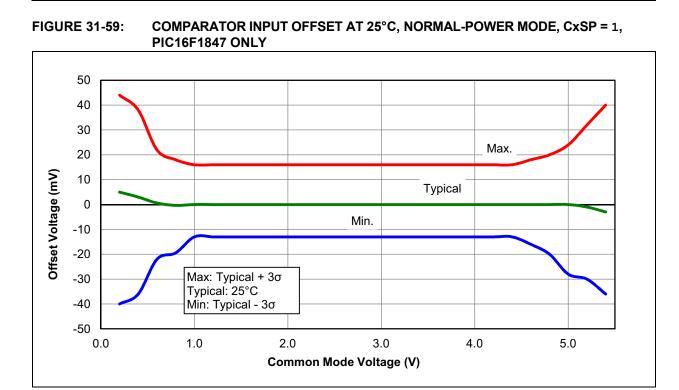
5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .


31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

NOTES: