

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1847t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.4 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 7-2).

TABLE 7-2: MCLR CO	ONFIGURATION
--------------------	--------------

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
х	1	Enabled

7.4.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

7.4.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See Section 12.3 "PORTA Registers" for more information.

7.5 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See Section 10.0 "Watchdog Timer" for more information.

7.6 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 7-4 for default conditions after a RESET instruction has occurred.

7.7 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.5.2** "**Overflow/Underflow Reset**" for more information.

7.8 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

7.9 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Words.

7.10 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)**" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 7-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	-	—	—	BCL2IE	SSP2IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-2	Unimplemen	ted: Read as ')'				
bit 1	1 BCL2IE: MSSP2 Bus Collision Interrupt Enable bit						
	1 = Enables the MSSP2 Bus Collision Interrupt						
	 Disables the MSSP2 Bus Collision Interrupt 						
bit 0	bit 0 SSP2IE: Master Synchronous Serial Port 2 (MSSP2) Interrupt Enable bit						
	1 = Enables the MSSP2 interrupt						
	0 = Disables	the MSSP2 int	errupt				

REGISTER 8-5: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

Note 1: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is c	leared by hardw	are	
6.4.7					L 11		
DIL 7	$1 = \Delta ccesses$	n Program/Dai	a EEPROIVI IVI Se Elash memo	emory Select	DIL		
	0 = Accesses	s data EEPRO	M memory	лу			
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration	Select bit		
	1 = Accesses	s Configuration	, User ID and	Device ID Re	gisters		
1.1. E	0 = Accesses	s Flash Progra	m or data EEP	ROM Memor	у		
DIT 5	LWLO: Load	VVrite Latches		2S = 0 and E	EPCD = 1 (proc	ram Elash):	
	1 = The	next WR com	mand does not	ot initiate a v	vrite: only the p	program memor	v latches are
	upda	ated.			,	- 3	,
	0 = The	next WR comn	nand writes a v	alue from EE	DATH:EEDATL	into program me	emory latches
	anu	initiales a write			programmento	i y lateries.	
	<u>If CFGS = 0 a</u>	and EEPGD =	<u>o:</u> (Accessing o	data EEPRON	Л)		
	LWLO is igno	red. The next \	NR command	initiates a wri	te to the data EE	EPROM.	
DIT 4	FREE: Progra	am Flash Erase		3S = 0 and E	EPGD = 1 (proc	ram Flash).	
	1 = Performs an erase operation on the next WR command (cleared by hardware after						
	completion of erase).						
	0 = Perf	orms a write op	peration on the	next WR cor	nmand.		
	If EEPGD = 0	and CFGS =	0: (Accessing of	data EEPRON	Л)		
	FREE is ignor	red. The next V	VR command	will initiate bo	th a erase cycle	and a write cyc	le.
bit 3	WRERR: EE	PROM Error FI	ag bit				
	1 = Condition	n indicates an	improper prog	ram or erase	e sequence atter	mpt or terminat	ion (bit is set
	0 = The prog	ram or erase c	peration comp	leted normall	Υ. ΟΙ(). Υ.		
bit 2	WREN: Progr	ram/Erase Ena	ble bit		-		
	1 = Allows pr	rogram/erase c	ycles				
	0 = Inhibits p	rogramming/er	asing of progra	am Flash and	data EEPROM		
bit 1	WR: Write Co	ontrol bit	h ar data FFD		alaraaa anaratia		
	The oper	a program rias	ned and the bit	is cleared by	hardware operatio	operation is co	mplete.
	The WR	bit can only be	set (not cleare	ed) in software	Э.	•	I
	0 = Program	/erase operatio	on to the Flash	or data EEPF	ROM is complete	e and inactive.	
bit 0	KD: Read Co		loop or data r		d Dood takes		in alcored in
	hardware	e. The RD bit c	asir or data E an only be set	(not cleared)	in software.	one cycle. RD	is cleared IN
	0 = Does not	initiate a prog	ram Flash or d	ata EEPROŃ	data read.		

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

News	D'4 7	D ¹ 0	D'' 5	D '4 4	D !! 0	D14 0	Dit d	D'4 0	Register
Name	Bit /	BIT 6	BIT 5	Bit 4	Bit 3	Bit 2	Bit 1	BIt U	on Page
ADCON0				CHS<4:0>	_		GO/DONE	ADON	143
ADCON1	ADFM		ADCS<2:0>			ADNREF	ADPRE	F<1:0>	144
ADRESH	ADC Result	Register Hig	h						145, 146
ADRESL	ADC Result	Register Lov	V						145, 146
ANSELA	—	—	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	122
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	127
CCP4CON	—	—	DC4B	3<1:0>		CCPxI	M<3:0>		226
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	126
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF∖	/R<1:0>	ADFVI	R<1:0>	134
DACCON0	DACEN	DACLPS	DACOE	—	DACPS	SS<1:0>	—	DACNSS	154
DACCON1		_	_			DACR<4:0>			154

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

FIGURE 21-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	← Set by software Counting enabled of rising edge of T10	Cleared by hardware on falling edge of T1GVAL
T1G_IN		
т1СКІ		
T1GVAL		
Timer1	Ν	<u>N + 1</u> <u>N + 2</u> <u>N + 3</u> <u>N + 4</u>
TMR1GIF	- Cleared by software	Set by hardware on falling edge of T1GVAL —

21.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 21-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u
TMR1C	:S<1:0>	T1CKP	'S<1:0>	T1OSCEN	T1SYNC	_	TMR10N
bit 7							bit 0
Logond:							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits
	11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC) 10 = Timer1 clock source is pin or oscillator:
	$\frac{\text{If T1OSCEN} = 0}{2}$
	External clock from T1CKI pin (on the rising edge) <u>If T1OSCEN = 1</u> :
	Crystal oscillator on 110SI/110SO pins
	00 = Timer1 clock source is instruction clock (Fosc/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale value
	10 = 1:4 Prescale value
	01 = 1:2 Prescale value
	00 = 1:1 Prescale value
bit 3	T1OSCEN: LP Oscillator Enable Control bit
	 1 = Dedicated Timer1 oscillator circuit enabled 0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	$\underline{TMR1CS} = 1X$
	1 = Do not synchronize external clock input
	0 = Synchronize external clock input with system clock (Fosc)
	$\underline{TMR1CS} = 0X$
	This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = $1x$.
bit 1	Unimplemented: Read as '0'
bit 0	TMR10N: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
	Clears Timer1 Gate flip-flop

24.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- 1. Disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PRx register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2/4/6:
 - Select the Timer2/4/6 resource to be used for PWM generation by setting the CxTSEL<1:0> bits in the CCPTMRS register.
 - Clear the TMRxIF interrupt flag bit of the PIRx register. See Note below.
 - Configure the TxCKPS bits of the TxCON register with the Timer prescale value.
 - Enable the Timer by setting the TMRxON bit of the TxCON register.
- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMRxIF bit of the PIRx register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
- **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

24.3.3 TIMER2/4/6 TIMER RESOURCE

The PWM standard mode makes use of one of the 8-bit Timer2/4/6 timer resources to specify the PWM period.

Configuring the CxTSEL<1:0> bits in the CCPTMRS register selects which Timer2/4/6 timer is used.

24.3.4 PWM PERIOD

The PWM period is specified by the PRx register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 24-1.

EQUATION 24-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet TOSC \bullet$ (TMRx Prescale Value)

Note 1: Tosc = 1/Fosc

When TMRx is equal to PRx, the following three events occur on the next increment cycle:

- TMRx is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 22.1 "Timer2/4/6 Operation") is not used in the determination of the PWM frequency.

24.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PRx and TMRx registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 24-2 is used to calculate the PWM pulse width.

Equation 24-3 is used to calculate the PWM duty cycle ratio.

EQUATION 24-2: PULSE WIDTH

$$Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$$

TOSC • (TMRx Prescale Value)

EQUATION 24-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PRx + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMRx register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 24-4).

25.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Control Register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in Section 25.7 "Baud Rate Generator".

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

25.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C Slave in 10-bit Addressing mode.

Figure 25-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching high address with R/W bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the Slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data <u>byte</u> to the slave and clocks out the slaves ACK on the 9th SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

25.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 25-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 25-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

27.5 Timer Resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.6 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated
	by the timer resource that the capacitive
	sensing oscillator is clocking.

27.6.1 TIMER0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.6.2 TIMER1

To select Timer1 as the timer resource for the CPS module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommended that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 Gate, be used to develop the fixed time base required by the software portion of the CPS module. Refer to **Section 21.12 "Timer1 Gate Control Register**" for additional information.

TABLE 27-2: TIMER1 ENABLE FUNCTION

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

27.7 Software Control

The software portion of the CPS module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1.
- Establishing the nominal frequency for the capacitive sensing oscillator.
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load.
- Set the frequency threshold.

27.7.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

27.7.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin.
- Use the same fixed time base as the nominal frequency measurement.
- At the start of the fixed time base, clear the timer resource.
- At the end of the fixed time base save the value in the timer resource.

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

REGISTER 27-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_		CPSCH	1<3:0>	
bit 7	•	•					bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value at	POR and BOR	Value at all oth	ner Resets
'1' = Bit is set	-	'0' = Bit is clea	red				
bit 7-4	Unimplement	ed: Read as '0'					
bit 3-0	CPSCH<3:0>:	Capacitive Sens	sing Channel S	Select bits			
	If CPSON = 0:		5				
	These bit	s are ignored. No	channel is se	lected.			
	If CPSON = 1:	-					
	1111 =	Reserved. Do no	ot use.				
	1110 =	Reserved. Do no	ot use.				
	1101 =	Reserved. Do no	ot use.				
	1100 =	Reserved. Do no	ot use.				
	1011 =	channel 11, (CPS	S11)				
	1010 =	channel 10, (CP	S10)				
	1001 =	channel 9, (CPS	9)				
	1000 =	channel 8, (CPS	8)				
	0111 =	channel 7, (CPS	7)				
	0110 =	channel 6, (CPS	6)				
	0101 =	channel 5, (CPS	5)				
	0100 =	channel 4, (CPS	4)				
	0011 =	channel 3, (CPS	3)				
	0010 =	channel 2, (CPS	2)				
	0001 =	channel 1, (CPS	1)				
	0000 =	channel 0, (CPS	0)				

NOTES:

29.0 INSTRUCTION SET SUMMARY

Each PIC16 instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of four oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description					
PC	Program Counter					
TO	Time-out bit					
С	Carry bit					
DC	Digit carry bit					
Z	Zero bit					
PD	Power-down bit					

Mnemonic,		Description	Cycles		14-Bit Opcode			Status	Natas
Oper	ands	Description		MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP (OPERATIO	ONS					
DECESZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCE	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP O	PERATIO	NS					
BTESC	f. b	Bit Test f. Skip if Clear	1 (2)	- 01	10bb	bfff	ffff		1.2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERATIO	NS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
L			· · · · · ·	· · · · · ·				L	· · · ·

TABLE 29-3: DEVICE(S) ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

TABLE 30-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%	-	16.0	_	MHz	$0^{\circ}C \leq TA \leq +60^{\circ}C, V\text{DD} \geq 2.5V$	
			±3%		16.0	_	MHz	$60^{\circ}C \leq TA \leq \textbf{+85}^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±5%		16.0	_	MHz	$-40^\circ C \le T_A \le +125^\circ C$	
OS08A	MFosc	Internal Calibrated MFINTOSC Frequency ⁽¹⁾	±2%		500	_	MHz	$0^{\circ}C \leq TA \leq \text{+}60^{\circ}C, V\text{DD} \geq 2.5V$	
			±3%		500	_	kHz	$60^{\circ}C \leq TA \leq \textbf{+85}^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±5%		500	—	kHz	$-40^\circ C \le T A \le +125^\circ C$	
OS09	LFosc	Internal LFINTOSC Frequency ⁽²⁾	_		31	_	kHz		
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	_		5	8	μS		
		MFINTOSC Wake-up from Sleep Start-up Time	—		20	30	μS		
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	_	_	0.5	_	ms	$-40^\circ C \le T_A \le +125^\circ C$	

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 31-60: LFINTOSC Frequency over Vdd and Temperature, PIC16LF1847 only and Figure 31-61: LFINTOSC Frequency over Vdd and Temperature, PIC16F1847 only.

FIGURE 30-6: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic		Min.	Typ†	Max.	Units	Conditions	
CS01*	ISRC	Current Source	High	—	-8	—	μA	(Note 1)	
			Medium	_	-1.5	_	μA	(Note 1)	
			Low	—	-0.3	_	μA	(Note 1)	
CS02*	Isnk	Current Sink	High	_	7.5	_	μA	(Note 1)	
			Medium	_	1.5	_	μA	(Note 1)	
			Low	_	0.25	_	μA	(Note 1)	
CS03*	VСтн	Cap Threshold		_	0.8	_	V		
CS04*	VCTL	Cap Threshold		_	0.4	—	V		
CS05*	VCHYST	ST CAP HYSTERESIS (VCTH - VCTL)	High	—	525	_	mV		
			Medium	_	375	_	mV		
			Low	_	300	_	mV		

TABLE 30-23: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: See Figure 31-62: Cap Sense Current Sink/Source Characteristics Fixed Voltage Reference (CPSRM = 0), High Current Range (CPSRNG = 11),

Figure 31-63: Cap Sense Current Sink/Source Characteristics Fixed Voltage Reference (CPSRM = 0), Medium Current Range (CPSRNG = 10) and

Figure 31-64: Cap Sense Current Sink/Source Characteristics Fixed Voltage Reference (CPSRM = 0), Low Current Range (CPSRNG = 01)

FIGURE 31-8: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1847 ONLY

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
Dimension	MIN	NOM	MAX					
Contact Pitch	ontact Pitch E			0.65 BSC				
Optional Center Pad Width	W2	4.2						
Optional Center Pad Length	T2			4.25				
Contact Pad Spacing	C1		5.70					
Contact Pad Spacing	C2							
Contact Pad Width (X28)	X1			0.37				
Contact Pad Length (X28)	Y1			1.00				
Distance Between Pads	0.20							

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A