

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1847t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/CPS0/C12IN0-/SDO2	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	—	ADC Channel 0 input.
	CPS0	AN	_	Capacitive sensing input 0.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	SDO2		CMOS	SPI data output.
RA1/AN1/CPS1/C12IN1-/SS2	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	ADC Channel 1 input.
	CPS1	AN	_	Capacitive sensing input 1.
	C12IN1-	AN	—	Comparator C1 or C2 negative input.
	SS2	ST	_	Slave Select input 2.
RA2/AN2/CPS2/C12IN2-/	RA2	TTL	CMOS	General purpose I/O.
C12IN+/VREF-/DACOUT	AN2	AN	_	ADC Channel 2 input.
	CPS2	AN	—	Capacitive sensing input 2.
	C12IN2-	AN	—	Comparator C1 or C2 negative input.
	C12IN+	AN	—	Comparator C1 or C2 positive input.
	VREF-	AN	—	ADC Negative Voltage Reference input.
	DACOUT	—	AN	Voltage Reference output.
RA3/AN3/CPS3/C12IN3-/C1IN+/	RA3	TTL	CMOS	General purpose I/O.
VREF+/C1OUT/CCP3/SRQ	AN3	AN	—	ADC Channel 3 input.
	CPS3	AN	—	Capacitive sensing input 3.
	C12IN3-	AN	—	Comparator C1 or C2 negative input.
	C1IN+	AN	—	Comparator C1 positive input.
	VREF+	AN	—	ADC Voltage Reference input.
	C10UT	—	CMOS	Comparator C1 output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	SRQ	—	CMOS	SR latch non-inverting output.
RA4/AN4/CPS4/C2OUT/T0CKI/C	RA4	TTL	CMOS	General purpose I/O.
CP4/SRNQ	AN4	AN	—	ADC Channel 4 input.
	CPS4	AN	—	Capacitive sensing input 4.
	C2OUT	_	CMOS	Comparator C2 output.
	T0CKI	ST	—	Timer0 clock input.
	CCP4	ST	CMOS	Capture/Compare/PWM4.
	SRNQ	—	CMOS	SR latch inverting output.
RA5/MCLR/Vpp/SS1	RA5	TTL	CMOS	General purpose I/O.
	MCLR	ST	—	Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
	SS1	ST	—	Slave Select input 1.
Legend: AN = Analog input or o TTL = TTL compatible i HV = High Voltage	output CMC nput ST XTAI	OS= CMO = Schi _ = Crys	DS compa mitt Trigg stal	atible input or output OD = Open Drain er input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C levels

TABLE 1-2: PIC16(L)F1847 PINOUT DESCRIPTION

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

2: Default function location.

TABLE 3-5: PIC16(L)F1847 MEMORY MAP, BANKS 16-23

	BANK 16	•	, BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch		88Ch	_	90Ch	—	98Ch	—	A0Ch	_	A8Ch	—	B0Ch	_	B8Ch	_
80Dh		88Dh	_	90Dh	—	98Dh	—	A0Dh	_	A8Dh	—	B0Dh	_	B8Dh	_
80Eh	—	88Eh	_	90Eh	—	98Eh	—	A0Eh	—	A8Eh	—	B0Eh	—	B8Eh	_
80Fh		88Fh	_	90Fh	—	98Fh	—	A0Fh	_	A8Fh	—	B0Fh	_	B8Fh	_
810h	—	890h	_	910h	—	990h	—	A10h	—	A90h	—	B10h	—	B90h	_
811h	—	891h	_	911h	—	991h	—	A11h	—	A91h	—	B11h	—	B91h	_
812h	_	892h	_	912h	—	992h	_	A12h	_	A92h	—	B12h	—	B92h	_
813h	_	893h	_	913h	—	993h	_	A13h	_	A93h	—	B13h	—	B93h	_
814h		894h	_	914h	—	994h	—	A14h	_	A94h	—	B14h	_	B94h	_
815h	—	895h	_	915h	—	995h	—	A15h	—	A95h	—	B15h	—	B95h	_
816h	-	896h	—	916h	—	996h	—	A16h	—	A96h	_	B16h	-	B96h	—
817h	-	897h	—	917h	—	997h	—	A17h	—	A97h	—	B17h	—	B97h	—
818h	—	898h	_	918h	_	998h	_	A18h	—	A98h	_	B18h	—	B98h	—
819h	_	899h		919h		999h	-	A19h	—	A99h		B19h	—	B99h	—
81Ah	_	89Ah		91Ah		99Ah	-	A1Ah	—	A9Ah		B1Ah	—	B9Ah	—
81Bh	—	89Bh	_	91Bh	_	99Bh	_	A1Bh	—	A9Bh	_	B1Bh	—	B9Bh	—
81Ch	_	89Ch		91Ch		99Ch		A1Ch	—	A9Ch		B1Ch	—	B9Ch	—
81Dh	_	89Dh	_	91Dh	_	99Dh	_	A1Dh	—	A9Dh	_	B1Dh	—	B9Dh	—
81Eh	_	89Eh	_	91Eh	_	99Eh	_	A1Eh	—	A9Eh	_	B1Eh	—	B9Eh	—
81Fh	_	89Fh	_	91Fh	_	99Fh	_	A1Fh	_	A9Fh	_	B1Fh	—	B9Fh	—
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BA0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h	Accesses 70h – 7Fh	8F0h	Accesses 70h – 7Fh	970h	Accesses 70h – 7Fh	9F0h	Accesses 70h – 7Fh	A70h	Accesses 70h – 7Fh	AF0h	Accesses 70h – 7Fh	B70h	Accesses 70h – 7Fh	BF0h	Accesses 70h – 7Fh
0/1/1				01111								חווס			

PIC16(L)F1847

6.0 REFERENCE CLOCK MODULE

The reference clock module provides the ability to send a divided clock to the clock output pin of the device (CLKR) and provide a secondary internal clock source to the modulator module. This module is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. The reference clock module includes the following features:

- System clock is the source
- Available in all oscillator configurations
- · Programmable clock divider
- Output enable to a port pin
- · Selectable duty cycle
- Slew rate control

The reference clock module is controlled by the CLKRCON register (Register 6-1) and is enabled when setting the CLKREN bit. To output the divided clock signal to the CLKR port pin, the CLKROE bit must be set. The CLKRDIV<2:0> bits enable the selection of eight different clock divider options. The CLKRDC<1:0> bits can be used to modify the duty cycle of the output clock⁽¹⁾. The CLKRSLR bit controls slew rate limiting.

Note 1: If the base clock rate is selected without a divider, the output clock will always have a duty cycle equal to that of the source clock, unless a 0% duty cycle is selected. If the clock divider is set to base clock/2, then 25% and 75% duty cycle accuracy will be dependent upon the source clock.

For information on using the reference clock output with the modulator module, see **Section 23.0 "Data Signal Modulator**".

6.1 Slew Rate

The slew rate limitation on the output port pin can be disabled. The Slew Rate limitation can be removed by clearing the CLKRSLR bit in the CLKRCON register.

6.2 Effects of a Reset

Upon any device Reset, the reference clock module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

6.3 Conflicts with the CLKR pin

There are two cases when the reference clock output signal cannot be output to the CLKR pin, if:

- LP, XT or HS oscillator mode is selected.
- CLKOUT function is enabled.

Even if either of these cases are true, the module can still be enabled and the reference clock signal may be used in conjunction with the modulator module.

6.3.1 OSCILLATOR MODES

If LP, XT or HS oscillator modes are selected, the OSC2/CLKR pin must be used as an oscillator input pin and the CLKR output cannot be enabled. See **Section 5.2 "Clock Source Types"** for more information on different oscillator modes.

6.3.2 CLKOUT FUNCTION

The CLKOUT function has a higher priority than the reference clock module. <u>Therefore</u>, if the CLKOUT function is enabled by the CLKOUTEN bit in Configuration Words, Fosc/4 will always be output on the port pin. Reference **Section 4.0** "Device Configuration" for more information.

6.4 Operation During Sleep

As the reference clock module relies on the system clock as its source, and the system clock is disabled in Sleep, the module does not function in Sleep, even if an external clock source or the Timer1 clock source is configured as the system clock. The module outputs will remain in their current state until the device exits Sleep.

8.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 9.0 "Power-Down Mode (Sleep)" for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI : PROG ADDR LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSELEEADRL; Select Bank for EEPROM registersMOVLWPROG_ADDR_LO;MOVWFEEADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWLEEADRH; Store MSB of address
            EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
            EECON1,CFGS
    BSF
              INTCON,GIE ; Disable interrupts
    BCF
                                ; Initiate read
    BSF
              EECON1,RD
    NOP
                                  ; Executed (Figure 11-1)
   NOP
                                  ; Ignored (Figure 11-1)
    BSF
             INTCON, GIE
                                ; Restore interrupts
             EEDATL,W
    MOVF
                                ; Get LSB of word
    MOVWF
           PROG_DATA_LO ; Store in user location
            EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
    MOVE
    MOVWF
```

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is c	leared by hardw	are	
6.4.7					L 11		
DIL 7	$1 = \Delta ccesses$	n Program/Dai	a EEPROIVI IVI Se Elash memo	emory Select	DIL		
	0 = Accesses	s data EEPRO	M memory	лу			
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration	Select bit		
	1 = Accesses	s Configuration	, User ID and	Device ID Re	gisters		
1.1. E	0 = Accesses	s Flash Progra	m or data EEP	ROM Memor	у		
DIT 5	LWLO: Load	VVrite Latches		2S = 0 and E	EPCD = 1 (proc	ram Elash):	
	1 = The	next WR com	mand does not	ot initiate a v	vrite: only the p	program memor	v latches are
	upda	ated.			,	- 3	,
	0 = The	next WR comn	nand writes a v	alue from EE	DATH:EEDATL	into program me	emory latches
	anu	initiales a write			programmento	i y lateries.	
	<u>If CFGS = 0 a</u>	and EEPGD =	<u>o:</u> (Accessing o	data EEPRON	Л)		
	LWLO is igno	red. The next \	NR command	initiates a wri	te to the data EE	EPROM.	
DIT 4	FREE: Progra	am Flash Erase		3S = 0 and E	EPGD = 1 (proc	ram Flash).	
	$1 = \operatorname{Perf}$	orms an eras	e operation o	n the next	WR command	(cleared by h	ardware after
	com	pletion of erase	e).			(
	0 = Perf	orms a write op	peration on the	next WR cor	nmand.		
	If EEPGD = 0	and CFGS =	0: (Accessing of	data EEPRON	Л)		
	FREE is ignor	red. The next V	VR command	will initiate bo	th a erase cycle	and a write cyc	le.
bit 3	WRERR: EE	PROM Error FI	ag bit				
	1 = Condition	n indicates an	improper prog	ram or erase	e sequence atter	mpt or terminat	ion (bit is set
	0 = The prog	ram or erase c	peration comp	leted normall	Υ. ΟΙ(). Υ.		
bit 2	WREN: Progr	ram/Erase Ena	ble bit		-		
	1 = Allows pr	rogram/erase c	ycles				
	0 = Inhibits p	rogramming/er	asing of progra	am Flash and	data EEPROM		
bit 1	WR: Write Co	ontrol bit	h ar data FFD		alaraaa anaratia		
	The oper	a program rias	ned and the bit	is cleared by	hardware operatio	operation is co	mplete.
	The WR	bit can only be	set (not cleare	ed) in software	Э.	•	I
	0 = Program	/erase operatio	on to the Flash	or data EEPF	ROM is complete	e and inactive.	
bit 0	KD: Read Co		loop or data r		d Dood takes		in alcored in
	hardware	e. The RD bit c	asir or data E an only be set	(not cleared)	in software.	one cycle. RD	is cleared IN
	0 = Does not	initiate a prog	ram Flash or d	ata EEPROŃ	data read.		

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

16.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 16-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 16-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 16-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier$ Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number *of bits of the ADC.*

Solving for TC:

$$TC = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.37\mu s$

Therefore:

$$TACQ = 2\mu s + 1.37\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

20.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

20.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

20.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Section 30.0 "Electrical Specifications".

20.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

22.1 Timer2/4/6 Operation

The clock input to the Timer2/4/6 modules is the system instruction clock (Fosc/4).

TMRx increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, TxCKPS<1:0> of the TxCON register. The value of TMRx is compared to that of the Period register, PRx, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMRx to 00h on the next cycle and drives the output counter/postscaler (see Section 22.2 "Timer2/4/6 Interrupt").

The TMRx and PRx registers are both directly readable and writable. The TMRx register is cleared on any device Reset, whereas the PRx register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMRx register
- · a write to the TxCON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- · Stack Underflow Reset
- RESET Instruction

22.2 Timer2/4/6 Interrupt

Timer2/4/6 can also generate an optional device interrupt. The Timer2/4/6 output signal (TMRx-to-PRx match) provides the input for the 4-bit counter/postscaler. This counter generates the TMRx match interrupt flag which is latched in TMRxIF of the PIRx register. The interrupt is enabled by setting the TMRx Match Interrupt Enable bit, TMRxIE of the PIEx register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, TxOUTPS<3:0>, of the TxCON register.

22.3 Timer2/4/6 Output

The unscaled output of TMRx is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSPx modules operating in SPI mode. Additional information is provided in Section 25.0 "Master Synchronous Serial Port (MSSP1 and MSSP2) Module".

22.4 Timer2/4/6 Operation During Sleep

The Timer2/4/6 timers cannot be operated while the processor is in Sleep mode. The contents of the TMRx and PRx registers will remain unchanged while the processor is in Sleep mode.

PIC16(L)F1847

EXAMPLE 23-1: NO SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 23-3: CARRIER HIGH SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 0)

Carrier High (CARH)	
Carrier Low (CARL)	mminnin
Modulator (MOD)	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	CARH / both CARL CARH / both CARL

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
MDCLODIS	MDCLPOL	MDCLSYNC			MDCL	<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	MDCLODIS: 1 = Output s is disable 0 = Output s is enable	Modulator Low ignal driving the ed ignal driving the ed	Carrier Outp peripheral o peripheral o	ut Disable bit utput pin (select utput pin (select	ed by MDCL<3 ed by MDCL<3	:0> of the MD0 :0> of the MD0	CARL register) CARL register)
bit 6	MDCLPOL:	Modulator Low (Carrier Polari	ty Select bit			
	1 = Selected 0 = Selected	l low carrier sigr l low carrier sigr	nal is inverted nal is not inve	erted			
bit 5	MDCLSYNC	: Modulator Low	Carrier Syn	chronization En	able bit		
	1 = Modulato	or waits for a falli rier	ing edge on t	he low time carr	ier signal before	e allowing a swi	itch to the high
	0 = Modulate	or Output is not	synchronize	d to the low time	carrier signal ⁽¹	1)	
bit 4	Unimplemen	nted: Read as 'o)'				
bit 3-0	MDCL<3:0>	Modulator Data	High Carrier	Selection bits (1)		
	1111 = Res	erved. No chan	inel connecte	ed.			
	•						
	•						
	1000 = Res 0111 = CCF 0110 = CCF 0101 = CCF 0100 = CCF 0011 = Refe 0010 = MDC 0001 = MDC 0000 = Vss	erved. No char 24 output (PWM 23 output (PWM 22 output (PWM 21 output (PWM erence Clock mo CIN2 port pin CIN1 port pin	Inel connecte Output moc Output moc Output moc Output moc odule signal	ed. le only) le only) le only) le only)			

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

|--|

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1		Bit 0	Register on Page		
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		MDCH<3:0>				
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	—		MDCL<3:0>				
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT MDBIT			MDBIT	198	
MDSRC	MDMSODIS	_	—	—		199				

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

^{© 2011-2013} Microchip Technology Inc.

24.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

24.2.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL	CCP2SEL	P1DSEL	P1CSEL	CCP1SEL	118			
CCP1CON	P1M•	P1M<1:0> DC1B<1:0> CCP1M<3:0>										
CCPR1L	Capture/Cor	mpare/PWM	Register Lov	v Byte (LSB)	•				204*			
CCPR1H	Capture/Cor	mpare/PWM	Register Hig	h Byte (MSB)				204*			
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	170			
CM1CON1	C1INTP	C1INTN	C1PCH	H<1:0>	—	_	C1NCI	H<1:0>	171			
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	170			
CM2CON1	C2INTP	C2INTN	C2PCH	H<1:0>	—	_	C2NCI	H<1:0>	171			
CCP2CON	P2M	<1:0>	DC2B	<1:0>		CCP2M<	<3:0>		226			
CCPR2L	Capture/Cor	mpare/PWM	Register Lov	v Byte (LSB)					226			
CCPR2H	Capture/Cor	mpare/PWM	Register Hig	h Byte (MSB)				226			
CCP3CON	_	_	DC3B	<1:0>		CCP3M<	<3:0>		226			
CCPR3L	Capture/Cor	mpare/PWM	Register Lov	v Byte (LSB)					226			
CCPR3H	Capture/Cor	mpare/PWM	Register Hig	h Byte (MSB)				226			
CCP4CON	—	_	DC4B	<1:0>		CCP4M<	3:0)>		226			
CCPR4L	Capture/Cor	mpare/PWM	Register Lov	v Byte (LSB)					226			
CCPR4H	Capture/Cor	mpare/PWM	Register Hig	h Byte (MSB)				226			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88			
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89			
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	—	CCP2IE	90			
PIE3	—	_	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	91			
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93			
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF		—	CCP2IF	94			
PIR3	—	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	95			
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	185			
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	186			
TMR1L	Holding Reg	gister for the	Least Signific	cant Byte of t	he 16-bit TMR1 F	Register			177*			
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit TMR1 R	legister			177*			
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	120			
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	126			

TABLE 24-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by Compare mode. * Page provides register information. When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCLx line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDAx line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

25.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of Clock Stretching. An addressed slave device may hold the SCLx clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCLx line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCLx connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

25.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDAx data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDAx line.

For example, if one transmitter holds the SDAx line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDAx line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDAx line. If this transmitter is also a master device, it also must stop driving the SCLx line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDAx line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

25.5.3.3 7-Bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 25-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- 7. Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

25.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0					
SMP	CKE	D/A	Р	S	R/W	UA	BF					
bit 7							bit C					
Legend:												
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, read as	· 'O'						
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at	POR and BOR/V	alue at all other f	Resets					
'1' = Bit is set		'0' = Bit is clea	red									
hit 7	SMD: SPI Dat	ta Innut Sample h	.i+									
	SPI Master m	a input Sample t ode:	nt -									
	1 = Input data	sampled at end	of data output ti	me								
	0 = Input data	sampled at mide	lle of data outpu	ıt time								
	SMP must be	<u>de:</u> cloared when SE	l is used in Sla	vo modo								
	In I ² C Master	or Slave mode:	nis used in Sia	ve mode								
	1 = Slew rate	control disabled	for standard sp	eed mode (100 k	Hz and 1 MHz)							
	0 = Slew rate	control enabled	for high speed i	mode (400 kHz)								
bit 6	CKE: SPI Clo	ck Edge Select b	it (SPI mode on	ly)								
	In SPI Master	or Slave mode:	on from active t	h Idle clock state								
	0 = Transmit c	occurs on transition	curs on transition from Idle to active clock state									
	<u>In I²C™ mode</u>	only:										
	1 = Enable inp	out logic so that t	hresholds are c	ompliant with SM	Bus specification							
	0 = Disable SI	MBus specific inp	outs									
bit 5	D/A: Data/Add	dress bit (I ² C mo	de only) received or tran	transmitted was data								
	0 = Indicates 1	that the last byte	received or tran	smitted was data	ress							
bit 4	P: Stop bit	,										
	(I ² C mode onl	y. This bit is clea	red when the M	SSPx module is (disabled, SSPEN	is cleared.)						
	1 = Indicates	that a Stop bit ha	at a Stop bit has been detected last (this bit is '0' on Reset)									
	0 = Stop bit w	as not detected la	ast									
bit 3	S: Start bit											
	(I ² C mode onl	y. This bit is clea	red when the M	SSPx module is (disabled, SSPEN	is cleared.)						
	1 = Indicates 1 0 = Start bit w	that a Start bit ha	s been detecteo ast	l last (this bit is '0	o' on Reset)							
hit 2	B/W: Read/W	rite bit informatio	n (I ² C mode on	V)								
bit 2	This bit holds	the R/W bit inform	nation following	the last address r	match. This bit is c	only valid from the	e address match					
	to the next Sta	art bit, Stop bit, or	not ACK bit.			,						
	$\frac{\ln I^2 C \text{ Slave n}}{1 = \text{Read}}$	node:										
	0 = Write											
	In I ² C Master	mode:										
	1 = Transmit	is in progress	_									
	0 = Transmit	is not in progres	S RSEN PEN P		will indicate if the	MSSPy is in Idle	mode					
bit 1	IIA· Indate A	ddress hit $(10-bit)$	1^2 C mode only				mouc.					
	1 = Indicates 1	that the user nee	ds to update the	, e address in the S	SSPxADD register	r						
	0 = Address d	loes not need to I	be updated		0							

REGISTER 25-1: SSPxSTAT: SSPx STATUS REGISTER

TABLE 30-2:	SUPPLY CURRENT	(IDD) ^(1,2)
-------------	----------------	------------------------

PIC16LF1847		Standard Operating Conditions (unless otherwise stated)							
PIC16F1	847								
Param.	Device	Min.	Typ†	Max.	Units	Conditions			
No.	Characteristics					VDD	Note		
D010		—	9.5	14	μA	1.8	Fosc = 32 kHz		
		—	12.5	17	μA	3.0	LP Oscillator -40°C ≤ TA ≤ +85°C		
D010		_	22	29	μA	1.8	Fosc = 32 kHz LP Oscillator		
			27	35	μA	3.0			
		_	30	38	μA	5.0	-40 C \leq IA \leq $+00$ C		
D010A			9.5	14	μA	1.8	Fosc = 32 kHz		
		_	12.5	17	μA	3.0	LP Oscillator -40°C \leq TA \leq +125°C		
D010A		_	22	29	μA	1.8	Fosc = 32 kHz		
		_	27	35	μA	3.0	LP Oscillator		
		_	30	38	μA	5.0	-40 C \leq IA \leq \pm 123 C		
D011		_	105	110	μA	1.8	Fosc = 1 MHz XT Oscillator		
		_	160	190	μA	3.0			
D011			132	154	μA	1.8	Fosc = 1 MHz XT Oscillator		
			186	220	μA	3.0			
		_	216	290	μA	5.0			
D012		_	264	370	μA	1.8	Fosc = 4 MHz XT Oscillator		
		—	491	620	μA	3.0			
D012			285	300	μA	1.8	Fosc = 4 MHz		
			408	600	μA	3.0			
			490	700	μA	5.0			
D013		_	55	160	μA	1.8	Fosc = 1 MHz EC Oscillator Medium-Power mode		
		_	90	230	μA	3.0			
D013			75	95	μA	1.8	Fosc = 1 MHz		
			116	130	μA	3.0	EC Oscillator Medium-Power mode		
			145	185	μA	5.0			
*	Th		a si a al la s						

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance + only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3: 8 MHz internal oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 31-15: IDD TYPICAL, HFINTOSC MODE, PIC16LF1847 ONLY

PIC16(L)F1847

PIC16(L)F1847

