

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1847-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

There are three types of memory in PIC16(L)F1847: Data Memory, Program Memory and Data EEPROM Memory⁽¹⁾.

- Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
 - Device Memory Maps
 - Special Function Registers Summary
- Data EEPROM memory⁽¹⁾

Note 1: The Data EEPROM Memory and the method to access Flash memory through the EECON registers is described in Section 11.0 "Data EEPROM and Flash Program Memory Control". The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a $32K \times 14$ program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1847 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address
PIC16(L)F1847	8,192	1FFFh

TABLE 3-4: PIC16(L)F1847 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch		48Ch		50Ch	_	58Ch		60Ch	_	68Ch		70Ch	_	78Ch	_
40Dh		48Dh	_	50Dh	_	58Dh	_	60Dh	_	68Dh		70Dh	_	78Dh	_
40Eh	—	48Eh	—	50Eh	—	58Eh	—	60Eh	—	68Eh	_	70Eh	—	78Eh	—
40Fn		48⊢h		50Fh		58⊦h		60Fh		68Fh		70Fh	—	/8⊢h	—
410h		490h		510h		590h		610h		690h		/10h	—	790h	—
411n	_	491h	_	511h	_	591h	_	611n		691h	—	7110		791n	
412h		492h		512h		592h		612h		692h		712h	—	792h	—
413n	_	493h	_	513h	_	593h	_	613h		693h	—	713n		793n	
414n		494n		514n		594n		614n		694N		714n		794n	
415h	TMR4	495h		515h		595h		615h	_	695h	_	715h	_	795h	_
416h	PR4	496h	_	516h	_	596h	_	616h		696h		716h	_	796h	_
417h	T4CON	497h	—	517h	_	597h	_	617h	—	697h	—	717h	—	797h	—
418h	_	498h	_	518h	_	598h	_	618h	—	698h	—	718h	—	798h	—
419h	_	499h	_	519h	_	599h	_	619h	—	699h	_	719h	_	799h	_
41Ah	_	49Ah	—	51Ah	_	59Ah	_	61Ah	—	69Ah	_	71Ah	—	79Ah	—
41Bh	—	49Bh		51Bh		59Bh		61Bh	—	69Bh		71Bh	—	79Bh	—
41Ch	TMR6	49Ch	_	51Ch	_	59Ch	_	61Ch	—	69Ch	—	71Ch	—	79Ch	—
41Dh	PR6	49Dh	_	51Dh		59Dh	_	61Dh	—	69Dh	_	71Dh	—	79Dh	—
41Eh	T6CON	49Eh	_	51Eh	_	59Eh	_	61Eh	_	69Eh	_	71Eh	—	79Eh	_
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh		69Fh	_	71Fh	_	79Fh	_
420h		4A0h		520h		5A0h		620h	General Purpose	6A0h		720h		7A0h	
	General		General		General		General		Register						
	Purpose		Purpose		Purpose		Purpose		48 Bytes		Unimplemented		Unimplemented		Unimplemented
	Register		Register		Register		Register		Unimplemented		Read as '0'		Read as '0'		Read as '0'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4⊢0n		570h		5F0h		670h		6⊢0h		770h		7⊢0h	
	Accesses		Accesses		Accesses		Accesses								
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh								
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

DS40001453E-page 23

Legend: = Unimplemented data memory locations, read as '0'.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

FIGURE 5-8: TWO-SPEED START-UP

7.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 7-3 and Table 7-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	0	х	1	1	Power-on Reset
0	0	1	1	0	x	0	х	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	0	x	х	0	Illegal, PD is set on POR
0	0	1	1	u	0	1	1	Brown-out Reset
u	u	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 7-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 7-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	1u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

8.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 8-1.

FIGURE 8-1: INTERRUPT LOGIC

9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- · If the interrupt occurs before the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- · If the interrupt occurs during or after the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the **SLEEP** instruction completes. To determine whether a **SLEEP** instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

1: XT, HS or LP Oscillator mode assumed.

CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference. 2:

3: TOST = 1024 TOSC (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	130
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	130
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	130
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	-	—	CCP2IE	90
PIE4	_		—	—			BCL2IE	SSP2IE	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	—	CCP2IF	94
PIR4	_		—	—			BCL2IF	SSP2IF	96
STATUS	_	_	—	TO	PD	Z	DC	С	20
WDTCON	_			١	SWDTEN	101			

- = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode. Leaend:

12.3 PORTA Registers

12.3.1 DATA REGISTER

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-4). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA5, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize PORTA.

Reading the PORTA register (Register 12-3) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

12.3.2 DIRECTION CONTROL

The TRISA register (Register 12-4) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSELA register must be initialized					
	to configure an analog channel as a digital					
	input. Pins configured as analog inputs					
	will read '0'.					

EXAMPLE 12-1: INITIALIZING PORTA

BANKSEL PORTA	;
CLRF PORTA	;Init PORTA
BANKSEL LATA	;Data Latch
CLRF LATA	;
BANKSEL ANSELA	;
CLRF ANSELA	;digital I/O
BANKSEL TRISA	;
MOVLW 0Ch	;Set RA<3:2> as inputs
MOVWF TRISA	;and set RA<7:4,1:0>
	;as outputs

12.3.3 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bit WPUA<5> enables or disables the pull-up (see Register 12-6). The weak pull-up is automatically turned off when the port pin is configured as an output. The <u>pull-up is</u> disabled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

12.3.4 ANALOG CONTROL

The ANSELA register (Register 12-7) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

The TRISA register (Register 12-4) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note: The ANSELA register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

21.12 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 21-2, is used to control Timer1 Gate.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cle	eared by hardw	are	
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts second acts function							
bit 6	T1GPOL: Tin	ner1 Gate Pola	rity bit				
	1 = Timer1 g	ate is active-hi	gh (Timer1 cou	unts when gate	is high)		
	0 = Timer1 g	ate is active-lo	w (Timer1 cou	nts when gate is	s low)		
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate f	er1 Gate Toggle Gate Toggle mo Gate Toggle mo Iip-flop toggles	e Mode bit de is enabled de is disabled on every risin	and toggle flip-i g edge.	flop is cleared		
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit			
	1 = Timer1 g 0 = Timer1 g	ate Single-Puls ate Single-Puls	se mode is ena se mode is dis	abled and is cor abled	ntrolling Timer1	gate	
bit 3	T1GGO/DON	IE: Timer1 Gate	e Single-Pulse	Acquisition Sta	itus bit		
	1 = Timer1 g 0 = Timer1 g	ate single-puls ate single-puls	e acquisition is e acquisition h	s ready, waiting as completed o	for an edge or has not been	started	
bit 2	T1GVAL: Tim	ner1 Gate Curr	ent State bit				
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).						
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits			
	 00 = Timer1 Gate pin 01 = Timer0 overflow output 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 						

REGISTER 21-2: T1GCON: TIMER1 GATE CONTROL REGISTER

25.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 25-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 25-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

25.6.10 SLEEP OPERATION

While in Sleep mode, the I²C Slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

25.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

25.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- · Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

25.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 25-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPx-CON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

25.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 25-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 25-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 25-4demonstratesclockratesbasedoninstructioncyclesandtheBRGvalueloadedintoSSPxADD.

EQUATION 25-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 25-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 25-4: MSSPX CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	COMF	Complement f		
Syntax:	[label] CALLW	Syntax:	[<i>label</i>] COMF f,d		
Operands:	None	Operands:	0 ≤ f ≤ 127 d ∈ [0, 1]		
Operation:	$\begin{array}{l} (PC) +1 \rightarrow TOS, \\ (W) \rightarrow PC <7:0>, \end{array}$	Operation:	$(\overline{f}) \rightarrow (destination)$		
	$(PCLATH<6:0>) \rightarrow PC<14:8>$	Status Affected:	Z		
Status Affected: None		Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is		
Status Affected: None Description: Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle			stored in W. If 'd' is '1', the result is stored back in register 'f'.		

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$00h \rightarrow (W)$ 1 $\rightarrow Z$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

30.3 DC Characteristics

TABLE 30-1:SUPPLY VOLTAGE

PIC16LF	1847		Standard Operating Conditions (unless otherwise stated)				
PIC16F1	847						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage					
			VDDMIN 1.8 2.5	_	VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)
D001	Vdd		1.8 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					
			1.5	_	—	V	Device in Sleep mode
D002*	Vdr		1.7		—	V	Device in Sleep mode
D002A*	VPOR	Power-on Reset Release Voltage ⁽³⁾	—	1.6	—	V	
D002B*	VPORR	Power-on Reset Rearm Voltage ⁽³⁾					
			—	0.8	—	V	
D002B*	VPORR		—	1.4	—	V	
D003	VFVR	Fixed Voltage Reference Voltage	—	1.024	—	V	$-40^{\circ}C \leq TA \leq +85^{\circ}C$
D003A	VADFVR	FVR Gain Voltage Accuracy for ADC	-8	_	+6	%	1x VFVR, VDD \ge 2.5V 2x VFVR, VDD \ge 2.5V 4x VFVR, VDD \ge 4.75V
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator and DAC	-11	_	+7	%	$\begin{array}{l} 1x \; \text{VFvr, } \text{Vdd} \geq 2.5 \text{V} \\ 2x \; \text{VFvr, } \text{Vdd} \geq 2.5 \text{V} \\ 4x \; \text{VFvr, } \text{Vdd} \geq 4.75 \text{V} \end{array}$
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

3: See Figure 30-3: POR and POR Rearm with Slow Rising VDD.

TABLE 30-3: PO	OWER-DOWN CURRENTS	(IPD) ^(1,2)
----------------	--------------------	------------------------

PIC16F1847 Low-Power Sleep Mode Param. No. Device Characteristics Min. Typt Max. +85°C Max. +125°C Units Conditions D022 — 0.02 1.0 2.4 µA 1.8 WDT, BOR and TIC all Peripherals Inact D022 — 0.03 1.5 3.0 µA 3.0 all Peripherals Inact D022 — 18 40 48 µA 1.8 WDT, BOR and TIC D023 — 18 40 48 µA 3.0 all Peripherals Inact D023 — 18 40 48 µA 3.0 all Peripherals Inact D023 — 18 40 48 µA 3.0 all Peripherals Inact D023 — 18 40 48 µA 3.0 all Peripherals Inact D023 — 18 2 4 µA 1.8 LPWDT Current (Not D023 — 16 35 44	SC disabled, ve SC disabled, ve
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SC disabled, ve SC disabled, ve
No. Device of analytic states Imm. 'J' product +85°C ++125°C Other Vode Note D022 $-$ 0.02 1.0 2.4 μ A 1.8 WDT, BOR and T1C D022 $-$ 0.03 1.5 3.0 μ A 3.0 all Peripherals Inact D022 $-$ 15 35 44 μ A 3.0 all Peripherals Inact D023 $-$ 18 40 48 μ A 3.0 all Peripherals Inact D023 $-$ 19 45 65 μ A 3.0 all Peripherals Inact D023 $-$ 0.3 1 3 μ A 1.8 LPWDT Current (Note D023 $-$ 0.8 2 4 μ A 3.0 LPWDT Current (Note D023 $-$ 16 35 44 μ A 1.8 LPWDT Current (Note D023A $-$ 20 25 35 μ A 1.8 <td< th=""><th>SC disabled, ve SC disabled, ve</th></td<>	SC disabled, ve SC disabled, ve
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SC disabled, ve SC disabled, ve
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ve SC disabled, ve
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SC disabled, ve
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ve
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	te 1)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	te 1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
- 80 115 120 μA 5.0 D024 - 8.0 14 16 μA 3.0 BOR Current (Note D024 - 24 47 50 μA 3.0 BOR Current (Note - 29 55 70 μA 5.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I)
<u> </u>	1)
D025 - 0.65 3.5 4.0 μA 1.8 T1OSC Current (No	ie 1)
— 2.3 5.0 6.0 μA 3.0	
D025 — 19 39 45 μA 1.8 T1OSC Current (No	:e 1)
— 21 43 59 μA 3.0	
— 28 55 75 μA 5.0	
D026 - 0.03 1.5 3.0 μA 1.8 ADC Current (Note	l , 3) ,
- 0.07 2.0 3.5 μA 3.0 no conversion in pro	gress
D026 — 18 38 45 μA 1.8 ADC Current (Note	Current (Note 1, 3),
$-$ 20 43 49 μ A 3.0 no conversion in pro	gress
— 22 46 65 μA 5.0	
D026A* - 250 - μA 1.8 ADC Current (Note	
$-$ 250 $ \mu$ A 3.0 conversion in progre	l , 3) ,
D026A* - 280 - μA 1.8 ADC Current (Note	I, 3) , SS
— 280 — μA 3.0 conversion in progre	I, 3) , ss 1 , 3) ,
— 280 — μA 5.0	I, 3), ss I, 3), ss

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: ADC oscillator source is FRC.

TABLE 30-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

PIC16LF1847		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode								
PIC16F1847		Low-Power Sleep Mode								
Param. Device Characteristics		Min	Trent	Max.	Max.	Unite	Conditions			
No.	Device Characteristics	WIIII.	Typt	+85°C	+125°C	Units	Vdd	Note		
D027		—	2.0	6.0	8.0	μA	1.8	Cap Sense, Low Power,		
		_	5.0	9.0	12.0	μA	3.0	CPSRM = 0, CPSRNG = 01 (Note 1)		
D027		—	21	41	45	μA	1.8	Cap Sense, Low Power,		
			23	47	55	μA	3.0	CPSRM = 0, CPSRNG = 01		
		—	29	55	68	μA	5.0	(Note 1)		
D027A			6.0	9.0	10	μA	1.8	Cap Sense, Medium Power,		
		—	8.0	13	14	μA	3.0	CPSRM = 0, CPSRNG = 10 (Note 1)		
D027A		—	21	44	47	μA	1.8	Cap Sense, Medium Power		
			24	53	60	μA	3.0	CPSRM = 0, CPSRNG = 10		
			27	57	71	μA	5.0			
D027B		_	13	22	24	μA	1.8	Cap Sense, High Power,		
		—	35	65	70	μA	3.0	CPSRM = 0, CPSRNG = 11 (Note 1)		
D027B			21	44	50	μA	1.8	Cap Sense, High Power,		
			40	68	80	μA	3.0	CPSRM = 0, CPSRNG = 11		
			50	78	90	μA	5.0			
D028			8.0	16	17	μA	1.8	Comparator,		
		—	9.0	18	19	μA	3.0	Low Power, CXSP = 0 (Note 1)		
D028			28	45	50	μA	1.8	Comparator,		
			30	56	61	μA	3.0	Low Power, $CxSP = 0$		
			32	60	80	μA	5.0			
D028B			28	46	48	μA	1.8	Comparator,		
		_	29	48	50	μA	3.0	Normal Power, CxSP = 1 (Note 1)		
D028B		_	60	80	85	μA	1.8	Comparator,		
		_	62	85	90	μA	3.0	Low Power, CxSP = 1		
		_	64	90	105	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: ADC oscillator source is FRC.

TABLE 30-12. TIMERU AND TIMERT EXTERNAL CLOCK REQUIREMENT	TABLE 30-12:	TIMER0 AND TIMER1	EXTERNAL	CLOCK REQUIREMENT
---	--------------	-------------------	----------	--------------------------

Standar	rd Operating	Conditions (u	nless otherwis	e stated)					
Param. No.	Sym.		Characteristic	C	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width No Prescaler		0.5 Tcy + 20		_	ns	
			With Prescaler		10	—	_	ns	
41*	T⊤0L	T0CKI Low F	ulse Width No Prescaler		0.5 Tcy + 20	—	—	ns	
			With Prescaler		10	_	—	ns	
42*	Тт0Р	T0CKI Period	t		Greater of: 20 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
		Time	Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_	_	ns	
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
		Time	Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30		_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		—	ns	N = prescale value
			Asynchronous		60		_	ns	
48	Ft1	Secondary O (Oscillator er	scillator Input Frequency Range nabled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

FIGURE 31-64: CAP SENSE CURRENT SINK/SOURCE CHARACTERISTICS FIXED VOLTAGE REFERENCE (CPSRM = 0), LOW CURRENT RANGE (CPSRNG = 01)

