

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1847-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Highlights (Continued):

- SR Latch:
 - Multiple Set/Reset input options
 - Emulates 555 Timer applications

Device	Data Sheet Index	Program Memory Flash (words)	Data EEPROM (bytes)	Data SRAM (bytes)	I/O's ⁽²⁾	10-bit ADC (ch)	CapSense (ch)	Comparators	Timers (8/16-bit)	EUSART	MSSP (I ² C™/SPI)	ECCP (Full-Bridge) ECCP (Half-Bridge) CCP	SR Latch	Debug ⁽¹⁾	ХГР
PIC12(L)F1822	(1)	2K	256	128	6	4	4	1	2/1	1	1	0/1/0	Y	I/H	Y
PIC12(L)F1840	(2)	4K	256	256	6	4	4	1	2/1	1	1	0/1/0	Y	I/H	Y
PIC16(L)F1823	(1)	2K	256	128	12	8	8	2	2/1	1	1	1/0/0	Υ	I/H	Y
PIC16(L)F1824	(3)	4K	256	256	12	8	8	2	4/1	1	1	1/1/2	Y	I/H	Y
PIC16(L)F1825	(4)	8K	256	1024	12	8	8	2	4/1	1	1	1/1/2	Y	I/H	Y
PIC16(L)F1826	(5)	2K	256	256	16	12	12	2	2/1	1	1	1/0/0	Y	I/H	Y
PIC16(L)F1827	(5)	4K	256	384	16	12	12	2	4/1	1	2	1/1/2	Υ	I/H	Y
PIC16(L)F1828	(3)	4K	256	256	18	12	12	2	4/1	1	1	1/1/2	Y	I/H	Υ
PIC16(L)F1829	(4)	8K	256	1024	18	12	12	2	4/1	1	2	1/1/2	Y	I/H	Y
PIC16(L)F1847	(6)	8K	256	1024	16	12	12	2	4/1	1	2	1/1/2	Y	I/H	Y

PIC12(L)F1822/1840/PIC16(L)F182X/1847 FAMILY TYPES

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

1:	DS41413	PIC12(L)F1822/PIC16(L)F1823 Data Sheet. 8/14-Pin Flash Microcontrollers.

2: DS41441 PIC12(L)F1840 Data Sheet, 8-Pin Flash Microcontrollers.

3: DS41419 PIC16(L)F1824/1828 Data Sheet, 28/40/44-Pin Flash Microcontrollers.

- 4: DS41440 PIC16(L)F1825/1829 Data Sheet, 14/20-Pin Flash Microcontrollers.
- 5: DS41391 PIC16(L)F1826/1827 Data Sheet, 18/20/28-Pin Flash Microcontrollers.
- 6: DS41453 PIC16(L)F1847 Data Sheet, 18/20/28-Pin Flash Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

1.0 DEVICE OVERVIEW

The PIC16(L)F1847 are described within this data sheet. They are available in 18/20/28-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1847 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC16(L)F1847
ADC		٠
Capacitive Sensing Module		•
Digital-to-Analog Converter (I	DAC)	•
Digital Signal Modulator (DSN	(N	•
EUSART		•
Fixed Voltage Reference (FV	R)	•
Reference Clock Module	•	
SR Latch	•	
Capture/Compare/PWM Mod		
	ECCP1	•
	ECCP2	•
	CCP3	•
	CCP4	•
Comparators		
	C1	•
	C2	•
Master Synchronous Serial P	Ports	
	MSSP1	•
	MSSP2	•
Timers		
	Timer0	•
	Timer1	•
	Timer2	•
	Timer4	•
	Timer6	•

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 8.5 "Automatic Context Saving"**, for more information.

2.2 16-level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See section **Section 3.5** "**Stack**" for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.5 "Stack"**for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 29.0 "Instruction Set Summary**" for more details.

3.3 Register Definitions: Status

REGISTER 3-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
_		_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7			I			•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4	TO: Time-out	bit					
	1 = After pow	er-up, CLRWDT	instruction of	r sleep instruc	tion		
	0 = A WDT tir	ne-out occurre	d				
bit 3	PD: Power-do	own bit					
	1 = After pow 0 = By execut	er-up or by the tion of the SLE	CLRWDT inst	ruction			
bit 2	Z: Zero bit						
	1 = The result	t of an arithme	ic or logic op	eration is zero			
	0 = The result	t of an arithme	ic or logic op	eration is not z	ero		
bit 1	DC: Digit Car	ry/Digit Borrow	bit ⁽¹⁾				
	1 = A carry-ou	ut from the 4th	low-order bit	of the result of	curred		
	0 = No carry-0	out from the 4th	n low-order b	it of the result			
bit 0	C: Carry/Borr	ow bit ⁽¹⁾					
	1 = A carry-ou	ut from the Mos	st Significant	bit of the result	occurred		
	0 = No carry-0	out from the Me	ost Significan	t bit of the resu	lt occurred		
Note 1. F	or Borrow the po	larity is reverse	d A subtract	tion is executed	hy adding the t	two's complem	ent of the

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
200h ⁽¹⁾	INDF0	Addressing th (not a physic	nis location us al register)	es contents of	FSR0H/FSR0	L to address	data memory			**** ****	**** ****
201h ⁽¹⁾	INDF1	Addressing th (not a physic	XXXX XXXX	XXXX XXXX							
202h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	Byte					0000 0000	0000 0000
203h ⁽¹⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
204h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
205h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
206h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
207h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
208h ⁽¹⁾	BSR	—	—	_			BSR<4:0>			0 0000	0 0000
209h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
20Ah ⁽¹⁾	PCLATH	—	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	r			-000 0000	-000 0000
20Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	0000 000x	0000 000u
20Ch	WPUA	_	_	WPUA5	_	_	_	_	_	1	1
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	_	Unimplement	ed							—	—
20Fh	—	Unimplement	ed							—	—
210h	—	Unimplement	ed							—	—
211h	SSP1BUF	Synchronous	Serial Port Re	eceive Buffer/T	ransmit Regis	ster				XXXX XXXX	uuuu uuuu
212h	SSP1ADD	Synchronous	Serial Port (I ²	C mode) Addr	ess Register					0000 0000	0000 0000
213h	SSP1MSK	Synchronous	Serial Port (I ²	C mode) Addr	ess Mask Reg	gister				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h	—	Unimplement	ed							—	—
219h	SSP2BUF	2BUF Synchronous Serial Port Receive Buffer/Transmit Register									uuuu uuuu
21Ah	SSP2ADD	SP2ADD Synchronous Serial Port (I ² C mode) Address Register									0000 0000
21Bh	SSP2MSK	Synchronous Serial Port (I ² C mode) Address Mask Register								1111 1111	1111 1111
21Ch	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
21Dh	SSP2CON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
21Eh	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
21Fh	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000

TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

IADLL	J-0. J							, ש			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 7											
380h ⁽¹⁾	INDF0	Addressing the Addres	nis location us al register)	es contents of	FSR0H/FSR0)L to address	data memory	/		XXXX XXXX	XXXX XXXX
381h ⁽¹⁾	INDF1	Addressing the (not a physic	nis location us al register)	es contents of	FSR1H/FSR1	IL to address	data memory	/		XXXX XXXX	****
382h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	ist Significant E	Byte					0000 0000	0000 0000
383h ⁽¹⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
384h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter	•		•	•	0000 0000	uuuu uuuu
385h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
386h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
387h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
388h ⁽¹⁾	BSR	_	_	—			BSR<4:0>			0 0000	0 0000
389h ⁽¹⁾	WREG	Working Reg	ister	•	•					0000 0000	uuuu uuuu
38Ah ⁽¹⁾	PCLATH	_	Write Buffer	for the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
38Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	0000 000x	0000 000u
38Ch	—	Unimplement	ted	•	•	•		•	•	_	—
38Dh	—	Unimplement	ted							_	—
38Eh	—	Unimplement	ted							_	—
38Fh	—	Unimplement	ted							_	_
390h	—	Unimplement	ted							_	_
391h	—	Unimplement	ted							_	—
392h	—	Unimplement	ted							_	—
393h	—	Unimplement	ted							_	—
394h	IOCBP				IOCBP<	7:0>				0000 0000	0000 0000
395h	IOCBN				IOCBN<	7:0>				0000 0000	0000 0000
396h	IOCBF				IOCBF<	7:0>				0000 0000	0000 0000
397h	—	Unimplement	ted							_	—
398h	—	Unimplement	ted							_	—
399h	_	Unimplemented							_	_	
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRE)C<1:0>	(CLKRDIV<2:0	>	0011 0000	0011 0000
39Bh	—	Unimplement	ted	•	•					_	—
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	_	_	_	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	—	—	—		MDMS	6<3:0>		x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS MDCLPOL MDCLSYNC - MDCL<3:0>						xxx- xxxx	uuu- uuuu		
39Fh	MDCARH	MDCHODIS	MDCHPOL	OL MDCHSYNC - MDCH<3:0>					xxx- xxxx	uuu- uuuu	
		•	•	•							•

TABLE 3-8 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

Unimplemented, read as '1'. 2:

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between of -40° C and $+85^{\circ}$ C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See Section TABLE 14-1: "Summary of Registers Associated with the Fixed Voltage Reference" for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register (Register 14-1). When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD vs. Minimum Sensing Temperature

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum VDD vs.range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 16.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

© 2011-2013 Microchip Technology Inc.

19.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 18-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The CMxCON1 registers (see Register 18-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

 The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1shows the output state versus inputconditions, including polarity control.

TABLE 19-1:COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	0
CxVN < CxVP	1	1

19.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

24.4.8 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

FIGURE 24-20: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRxSYNC = 1)

25.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the 9th bit.

Following the ACK, slave hardware clears the CKP bit and the SCLx pin is held low (see Section 25.5.6 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCLx pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the 9th SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the 9th clock pulse.

25.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

25.5.3.2 7-Bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 25-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDAx and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - **Note 1:** If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCLx (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

25.6 I²C MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDAx and SCKx pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDAx and SCLx lines.

The following events will cause the SSPx Interrupt Flag bit, SSPxIF, to be set (SSPx interrupt, if enabled):

- Start condition detected
- Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

25.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCLx. See Section 25.7 "Baud Rate Generator" for more detail.

26.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,										
	the corresponding ANSEL bit must be										
	cleared for the receiver to function.										

26.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

26.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

26.4.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the 9th, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

26.4.1.9 Synchronous Master Reception Setup:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

NOTES:

I²C[™] BUS START/STOP BITS TIMING FIGURE 30-20:

TABLE 30-21: I²C[™] BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Symbol	Characteristic			Тур	Max.	Units	Conditions		
SP90*	Tsu:sta	Start condition	100 kHz mode	4700		—	ns	Only relevant for Repeated		
		Setup time	400 kHz mode	600	_	—		Start condition		
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first		
		Hold time	400 kHz mode	600	_	—		clock pulse is generated		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		—	ns			
		Setup time	400 kHz mode	600	_	—				
SP93	THD:STO	Stop condition	100 kHz mode	4000	_		ns			
		Hold time	400 kHz mode	600	_	—				

* These parameters are characterized but not tested.

NOTES:

FIGURE 31-38: IPD, COMPARATOR, LOW-POWER MODE, CxSP = 0, PIC16F1847 ONLY

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2