

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1847-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLE

1	TAB	LE	1:	1	8/2	0/28-F	PIN SUN	IMAR	Y (PIC1	6(L)F	1847)

0/1	18-Pin PDIP/SOIC	20-Pin SSOP	28-Pin QFN/UQFN	ANSEL	ADC	Reference	Cap Sense	Comparator	SR Latch	Timers	ссР	EUSART	dssm	Interrupt	Modulator	Pull-up	Basic
RA0	17	19	23	Y	AN0	—	CPS0	C12IN0-	-	—	—	—	SDO2	_	-	Ν	_
RA1	18	20	24	Υ	AN1	_	CPS1	C12IN1-	-	_	_	_	SS2	_	-	Ν	_
RA2	1	1	26	Y	AN2	VREF- DACOUT	CPS2	C12IN2- C12IN+	_	_	_	—	_	_	—	N	—
RA3	2	2	27	Y	AN3	VREF+	CPS3	C12IN3- C1IN+ C1OUT	SRQ	_	CCP3	—	_	_	_	N	_
RA4	3	3	28	Υ	AN4	—	CPS4	C2OUT	SRNQ	T0CKI	CCP4	—	—	—	—	Ν	—
RA5	4	4	1	Ν	—	—		—	-	—	—	—	SS1 ⁽¹⁾	_	—	Y ⁽²⁾	MCLR VPP
RA6	15	17	20	N	—	_	_	_	-	_	P1D ⁽¹⁾ P2B ⁽¹⁾	_	SDO1 ⁽¹⁾	_	-	N	OSC2 CLKOUT CLKR
RA7	16	18	21	N	—	_	_	_	-	_	P1C ⁽¹⁾ CCP2 ⁽¹⁾ P2A ⁽¹⁾	_	_	—	-	N	OSC1 CLKIN
RB0	6	7	7	N	_	-	—	—	SRI	T1G	CCP1 ⁽¹⁾ P1A ⁽¹⁾ FLT0	—	-	INT IOC	-	Y	-
RB1	7	8	8	Y	AN11	—	CPS11	—	—	—	—	RX ^(1,3) DT ^(1,3)	SDA1 SDI1	IOC	—	Y	—
RB2	8	9	9	Y	AN10	—	CPS10	_	_	_	_	RX ⁽¹⁾ DT ⁽¹⁾ TX ^(1,3) CK ^(1,3)	SDA2 SDI2 SDO1 ^(1,3)	IOC	MDMIN	Y	
RB3	9	10	10	Y	AN9	-	CPS9	—	_	-	${}^{\rm CCP1^{(1,3)}}_{\rm P1A^{(1,3)}}$	—	-	IOC	MDOUT	Y	—
RB4	10	11	12	Y	AN8	_	CPS8	—	_	_	_	—	SCL1 SCK1	IOC	MDCIN2	Y	_
RB5	11	12	13	Y	AN7	_	CPS7	—	_	_	P1B	TX ⁽¹⁾ CK ⁽¹⁾	SCL2 <u>SC</u> K2 SS1 ^(1,3)	IOC	-	Y	_
RB6	12	13	15	Y	AN5	—	CPS5	_	—	T1CKI T1OSCI	$\begin{array}{c} P1C^{(1,3)} \\ CCP2^{(1,3)} \\ P2A^{(1,3)} \end{array}$	—	—	IOC	_	Y	ICSPCLK
RB7	13	14	16	Y	AN6	—	CPS6	—	-	T1OSCO	P1D ^(1,3) P2B ^(1,3)	—	—	IOC	MDCIN1	Y	ICSPDAT
VDD	14	15, 16	17, 19	_	—	—	-	—	—	—	—	—	—	—	—	_	VDD
Vss	5	5.6	3.5	—	_	I —	_	l —	_		l —	_	I —	—	I —		Vss

Note 1:

Pin functions can be moved using th<u>e APF</u>CON register(s).
 Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.
 Default function location.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<2:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch, which may
	occur from Two-Speed Start-up or
	Fail-Safe Clock Monitor, does not update
	the SCS bits of the OSCCON register. The
	user can monitor the OSTS bit of the
	OSCSTAT register to determine the
	current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the Timer1 Oscillator.

5.3.3 TIMER1 OSCILLATOR

The Timer1 Oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 oscillator is enabled using the T1OSCEN control bit in the T1CON register. See Section 21.0 "Timer1 Module with Gate Control" for more information about the Timer1 peripheral.

5.3.4 TIMER1 OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the Timer1 Oscillator is ready to be used before it is selected as a system clock source. The Timer1 Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the Timer1 oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the Timer1 oscillator.

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0			
			_	_		BCL2IF	SSP2IF			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared	HS = Bit is set by hardware						
bit 7-2	Unimplemen	ted: Read as '	כ'							
bit 1	BCL2IF: MSS	SP2 Bus Collisi	on Interrupt F	ag bit						
	1 = A Bus Co	ollision was det	ected (must b	e cleared in so	ftware)					
	0 = No Bus c	ollision was de	tected							
bit 0	SSP2IF: Mas	ter Synchronou	is Serial Port	2 (MSSP2) Inte	errupt Flag bit					
	1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software)									
0 = Waiting to Transmit/Receive/Bus Condition in progress										

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	88
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		175
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	89
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE			CCP2IE	90
PIE3	_		CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	91
PIE4	_	-	_	_	_	_	BCL2IE	SSP2IE	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	93
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF	94
PIR3	_	—	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	95
PIR4	_						BCL2IF	SSP2IF	96

TABLE 8-1:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
------------	---

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by interrupts.

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The Data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EEDATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Words, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when the write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

12.6.1 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-4.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

TABLE 12-4: PORTB OUTPUT PRIORITY

Pin Name	Function Priority ⁽¹⁾
RB0	P1A RB0
RB1	SDA1 RX/DT RB1
RB2	SDA2 TX/CK RX/DT SDO1 RB2
RB3	MDOUT CCP1/P1A RB3
RB4	SCL1 SCK1 RB4
RB5	SCL2 TX/CK SCK2 P1B RB5
RB6	ICSPCLK T1OSI P1C CCP2 P2A RB6
RB7	ICSPDAT T1OSO P1D P2B RB7

Note 1: Priority listed from highest to lowest.

TABLE 12-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	127
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	126
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		175
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	126
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	126
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	127

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)							
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
FRC	x11	1.0-6.0 μs ^(1,4)							

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of $1.6 \ \mu s$ for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

REGISTE	ER 16-2: ADC	ON1: ADC CO	NTROL RE	GISTER 1					
R/W-0/	/0 R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
ADFM	1	ADCS<2:0>			ADNREF	ADPRE	EF<1:0>		
bit 7							bit 0		
Legend:									
R = Read	able bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
u = Bit is	unchanged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all	other Resets		
'1' = Bit is	set	'0' = Bit is clea	ared						
bit 7	ADFM: AD 1 = Right junct loaded 0 = Left junct loaded	C Result Format : ustified. Six Most stified. Six Least	Select bit Significant bi Significant bit	its of ADRESH	are set to '0' w are set to '0' w	when the conve	ersion result is ersion result is		
bit 6-4	ADCS<2:00 000 = Fosc 001 = Fosc 010 = Fosc 011 = Fosc 100 = Fosc 101 = Fosc 110 = Fosc 111 = Frec	>: ADC Conversion :/2 :/8 :/32 (clock supplied from :/4 :/16 :/64 (clock supplied from	on Clock Sele om a dedicate om a dedicate	ect bits ed RC oscillato ed RC oscillato	r) r)				
bit 3	Unimplem	ented: Read as ')'						
bit 2	ADNREF: 0 = VREF- 1 = VREF-	ADC Negative Vo	ltage Referen /ss external VREF	ice Configuratio - pin ⁽¹⁾	on bit				
bit 1-0	ADPREF<1 00 = VREF- 01 = Reset 10 = VREF- 11 = VREF-	I:0>: ADC Positiv ← is connected to rved ← is connected to ← is connected to	e Voltage Re VDD external VREF internal Fixed	ference Config -+ pin ⁽¹⁾ I Voltage Refer	uration bits ence (FVR) mo	dule			
Note 1:	When selecting minimum voltage	the FVR or the Vi e specification ex	REF+ pin as th ists. See <mark>Sec</mark>	ne source of the tion 30.0 "Ele	e positive refere ctrical Specific	nce, be aware ations" for de	that a tails.		

19.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- Programmable and Fixed Voltage Reference

19.1 Comparator Overview

A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

21.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with CCP/ECCP)
- · Selectable Gate Source Polarity

- Gate Toggle Mode
- Gate Single-pulse Mode
- Gate Value Status
- Gate Event Interrupt
- Figure 21-1 is a block diagram of the Timer1 module.

FIGURE 21-1: TIMER1 BLOCK DIAGRAM

FIGURE 24-11: **EXAMPLE OF FULL-BRIDGE PWM OUTPUT**

25.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 25-4.

An MSSPx interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See Section 25.2.3 "SPI Master Mode" for more detail.

25.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSPx module configured as an I^2C Slave in 7-bit Addressing mode. Figure 25-14 and Figure 25-15 are used as visual references for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCLx line.
- 8. The master clocks out a data byte.
- Slave drives SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

25.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCLx. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 25-16 displays a module using both address and data holding. Figure 25-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the 8th falling edge of SCLx.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPx-CON3 register to determine if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an \overline{ACK} , not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the 9th falling edge of SCLx even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after 8th falling edge of SCLx for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSPSTAT register.

© 2011-2013 Microchip Technology Inc.

25.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 25-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

25.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 25-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 25-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 25-4demonstratesclockratesbasedoninstructioncyclesandtheBRGvalueloadedintoSSPxADD.

EQUATION 25-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 25-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 25-4: MSSPX CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

26.3 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 26-3 contains the formulas for determining the baud rate. Example 26-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 26-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 26-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SPBRGH:SPBRGL:

$X = \frac{FOSC}{\frac{Desired Baud Rate}{64} - 1}$
$=\frac{\frac{16000000}{9600}}{\frac{9600}{64}}-1$
= [25.042] = 25
Calculated Baud Rate = $\frac{16000000}{64(25+1)}$
= 9615
Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$
$=\frac{(9615-9600)}{9600} = 0.16\%$

Note 1: If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.

FIGURE 31-15: IDD TYPICAL, HFINTOSC MODE, PIC16LF1847 ONLY

32.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

32.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

32.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

32.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO	<u>. [X]</u> ⁽¹⁾ - T	×	<u>/xx</u>	<u>xxx</u>	Exa	mple	is:	
Device Device: Tape and Reel	Tape and Reel Option PIC16F1847 PIC16LF1847 Blank = Stand	Temperature Range	Package tube or tray)	Pattern	a) b) c)	 PIC16F1847 - I/ML 301 Industrial temp., QFN package, QTP pattern #301 PIC16F1847 - I/P Industrial temp., PDIP package PIC16F1847 - E/SS Extended temp., SSOP package 		
Option: Temperature Range:	T = Tape I = -40° E = -40°	and Reel ⁽¹⁾ C to +85°C C to +125°C	(Industrial) (Extended)		d)	PIC1 Tape Exte SOI0	I6LF1847T - E/SO e and Reel, nded Temp., C package	
Package: ⁽²⁾	ML = Micr MV = Micr P = Plas SO = SOH SS = SSC	o Lead Frame ((o Lead Frame () tic DIP C P	QFN) 6x6 JQFN) 4x4		Note	1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.	
Pattern:	QTP, SQTP, Cc (blank otherwis	nde or Special R e)	equirements			2:	For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.	