

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1847t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- · Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6** "Indirect Addressing" for more information.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation of the PIC16(L)F1847. These registers are listed below:

- INDF0
- INDF1
- PCL
- STATUS
- FSR0 Low
- FSR0 High
- FSR1 Low
- FSR1 High
- BSR
- WREG
- PCLATH
- INTCON

Note: The core registers are the first 12 addresses of every data memory bank.

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 29.0 "Instruction Set Summary").

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

TABLE 3-5: PIC16(L)F1847 MEMORY MAP, BANKS 16-23

	BANK 16	•	, BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch		88Ch	_	90Ch	_	98Ch	—	A0Ch	_	A8Ch	_	B0Ch	_	B8Ch	_
80Dh		88Dh	_	90Dh	_	98Dh	—	A0Dh	_	A8Dh	_	B0Dh	_	B8Dh	_
80Eh	—	88Eh	_	90Eh	—	98Eh	—	A0Eh	—	A8Eh	—	B0Eh	—	B8Eh	_
80Fh		88Fh	_	90Fh	_	98Fh	—	A0Fh	_	A8Fh	_	B0Fh	_	B8Fh	_
810h	—	890h	_	910h	—	990h	—	A10h	—	A90h	—	B10h	—	B90h	_
811h	—	891h	_	911h	—	991h	—	A11h	—	A91h	—	B11h	—	B91h	_
812h	_	892h	_	912h	—	992h	_	A12h	_	A92h	_	B12h	—	B92h	_
813h	_	893h	_	913h	—	993h	_	A13h	_	A93h	_	B13h	—	B93h	_
814h		894h	_	914h	_	994h	—	A14h	_	A94h	_	B14h	_	B94h	_
815h	—	895h	_	915h	—	995h	—	A15h	—	A95h	—	B15h	—	B95h	_
816h	-	896h	—	916h	—	996h	—	A16h	—	A96h	—	B16h	-	B96h	—
817h	-	897h	—	917h	—	997h	—	A17h	_	A97h	—	B17h	—	B97h	—
818h	—	898h	_	918h	_	998h	_	A18h	—	A98h	_	B18h	—	B98h	—
819h	_	899h		919h	-	999h	-	A19h	—	A99h	_	B19h	—	B99h	—
81Ah	_	89Ah		91Ah	_	99Ah		A1Ah	—	A9Ah	_	B1Ah	—	B9Ah	—
81Bh	—	89Bh	_	91Bh	—	99Bh	_	A1Bh	—	A9Bh	_	B1Bh	—	B9Bh	—
81Ch	_	89Ch		91Ch	_	99Ch		A1Ch	—	A9Ch	_	B1Ch	—	B9Ch	—
81Dh	_	89Dh	_	91Dh	_	99Dh	_	A1Dh	_	A9Dh	_	B1Dh	—	B9Dh	—
81Eh	_	89Eh	_	91Eh	_	99Eh	_	A1Eh	_	A9Eh	_	B1Eh	—	B9Eh	—
81Fh	_	89Fh	_	91Fh	—	99Fh	_	A1Fh	_	A9Fh	—	B1Fh	—	B9Fh	—
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BA0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h 87Eb	Accesses 70h – 7Fh	8F0h	Accesses 70h – 7Fh	970h	Accesses 70h – 7Fh	9F0h	Accesses 70h – 7Fh	A70h	Accesses 70h – 7Fh	AF0h	Accesses 70h – 7Fh	B70h	Accesses 70h – 7Fh	BF0h	Accesses 70h – 7Fh
0/1/1				1 97111											

PIC16(L)F1847

3.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-10: LINEAR DATA MEMORY MAP

3.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH MEMORY MAP

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	al		
bit 7	T1OSCR: Tin If T1OSCEN 1 = Timer1 c 0 = Timer1 c I = Timer1 c	ner1 Oscillator = 1: oscillator is rea oscillator is not = 0: clock source is	Ready bit dy ready always ready				
bit 6	PLLR 4x PLL 1 = 4x PLL i 0 = 4x PLL i	Ready bit s ready s not ready	aiwayo roady				
bit 5	OSTS: Oscilla 1 = Running 0 = Running	ator Start-up Ti from the clock from an intern	me-out Status defined by the al oscillator (F	bit e FOSC<2:0> I OSC<2:0> = 1	oits of the Confi 00)	iguration Word	s
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	h Frequency In SC is ready SC is not ready	iternal Oscillat	or Ready bit			
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	h Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit			
bit 2	MFIOFR: Mean 1 = MFINTO 0 = MFINTO	dium Frequenc SC is ready SC is not ready	cy Internal Osc	illator Ready b	it		
bit 1	LFIOFR: Low 1 = LFINTOS 0 = LFINTOS	/ Frequency Int SC is ready SC is not ready	ternal Oscillato	or Ready bit			
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	h Frequency In SC is at least 0 SC is not 0.5%	ternal Oscillato .5% accurate accurate	or Stable bit			

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

NOTES:

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared								
bit 7	TMR1GIE: Tir	mer1 Gate Inte	rrupt Enable I	bit							
	1 = Enables t	he Timer1 Gate	e Acquisition i	nterrupt							
	0 = Disables f	the Timer1 Gat	e Acquisition	interrupt							
bit 6	ADIE: Analog	-to-Digital Con	verter (ADC)	Interrupt Enab	le bit						
	1 = Enables the0 = Disables the	he ADC interru the ADC interru	pt ıpt								
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it							
	1 = Enables t	he USART rece	eive interrupt								
	0 = Disables f	the USART rec	eive interrupt								
bit 4	TXIE: USART	Transmit Inter	rupt Enable b	oit							
	1 = Enables t	he USART tran	smit interrupt								
h:+ 0											
DIT 3	SSPIIE: Synd	chronous Seria	runt	P1) Interrupt E	Enable bit						
	1 = Enables ti0 = Disables t	the MSSP1 inte	errupt								
bit 2	CCP1IE: CCF	P1 Interrupt Ena	able bit								
	1 = Enables t	he CCP1 interr	upt								
	0 = Disables f	the CCP1 inter	rupt								
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Ei	nable bit							
1 = Enables the Timer2 to PR2 match interrupt											
hit 0											
DILU	1 = Enables t	er i Overnow in he Timer1 over	flow interrunt	e bit							
	0 = Disables t	the Timer1 over	rflow interrupt	t							
			·· ··								
Notes D'											
NOTE: Bit	THE OF THE IN	I CON register	must be								
301			apt.								

REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVR<1:0>		134
DACCON0	DACEN	DACLPS	DACOE	—	DACPSS<1:0>		—	DACNSS	154
DACCON1	—	—	—		154				

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused with the DAC module.

NOTES:

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- · Address masking
- Address Hold and Data Hold modes
- · Selectable SDAx hold times

Figure 25-2 is a block diagram of the I^2C interface module in Master mode. Figure 25-3 is a diagram of the I^2C interface module in Slave mode.

The PIC16F1827 has two MSSP modules, MSSP1 and MSSP2, each module operating independently from the other.

- Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSP1CON1 and SSP1CON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 25-2: MSSPx BLOCK DIAGRAM (I²C™ MASTER MODE)

25.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSPx module configured as an I^2C Slave in 10-bit Addressing mode.

Figure 25-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching high address with R/W bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the Slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data <u>byte</u> to the slave and clocks out the slaves ACK on the 9th SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

25.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 25-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 25-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

25.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 25-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SDAx bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

FIGURE 25-26: FIRST START BIT TIMING

by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - The Philips I²C[™] Specification states that a bus collision cannot occur on a Start.

25.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 25-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the Master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be

automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 25-27: REPEAT START CONDITION WAVEFORM

FIGURE 25-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

25.6.10 SLEEP OPERATION

While in Sleep mode, the I²C Slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

25.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

25.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- · Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

25.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 25-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPx-CON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

R/\\/_0/0	R/M/_0/0	11-0	11-0	R/M/_0/0	R/\\/_0/0	R-0/0	R/W/-0/0				
CPSON	CPSRM			CPSRN	IG<1:0>	CPSOUT	TOXCS				
bit 7	OF OT W			01014		010001	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	as '0'							
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all of	ther Resets				
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared								
bit 7 CPSON: CPS Module Enable bit 1 = CPS module is enabled 0 = CPS module is disabled											
bit 6	CPSRM: Cap 1 = CPS mod 0 = CPS mod	acitive Sensing dule is in high r dule is in the lo	g Reference M ange. DAC ar w range. Inter	Node bit nd FVR provide mal oscillator vo	oscillator volta oltage reference	ge references. es are used.					
bit 5-4	Unimplemen	ted: Read as '	0'								
bit 3-2	bit 3-2 CPSRNG<1:0>: Capacitive Sensing Current Range bits If CPSRM = 0 (low range): 11 = Oscillator is in High Range. Charge/Discharge Current is nominally 18 μA 10 = Oscillator is in Medium Range. Charge/Discharge Current is nominally 1.2 μA 01 = Oscillator is in Low Range. Charge/Discharge Current is nominally 0.1 μA 00 = Oscillator is off										
	If CPSRM = 1 (high range): 11 = Oscillator is in High Range. Charge/Discharge Current is nominally 100 μA 10 = Oscillator is in Medium Range. Charge/Discharge Current is nominally 30 μA 01 = Oscillator is in Low Range. Charge/Discharge Current is nominally 9 μA 00 = Oscillator is on. Noise Detection mode. No Charge/Discharge current is supplied.										
bit 1	CPSOUT: Ca 1 = Oscillator 0 = Oscillator	pacitive Sensir r is sourcing cu r is sinking curr	ng Oscillator S rrent (Current rent (Current f	Status bit t flowing out of lowing into the	the pin) pin)						
bit 0	TOXCS: Timer0 External Clock Source Select bit <u>If TMR0CS = 1:</u> The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0: 1 = Timer0 clock source is the capacitive sensing oscillator 0 = Timer0 clock source is the T0CKI pin <u>If TMR0CS = 0:</u> Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4										

REGISTER 27-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)

I²C[™] BUS START/STOP BITS TIMING FIGURE 30-20:

TABLE 30-21: I²C[™] BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Symbol	Charact	Min.	Тур	Max.	Units	Conditions			
SP90*	Tsu:sta	Start condition	100 kHz mode	4700		—	ns	Only relevant for Repeated		
		Setup time	400 kHz mode	600	_	—		Start condition		
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first		
		Hold time	400 kHz mode	600	_	—		clock pulse is generated		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		—	ns			
		Setup time	400 kHz mode	600	_	—				
SP93	THD:STO	Stop condition	100 kHz mode	4000	_		ns			
		Hold time	400 kHz mode	600	_	—				

* These parameters are characterized but not tested.

FIGURE 31-12: IDD, LFINTOSC MODE, FOSC = 31 kHz, PIC16F1847 ONLY

FIGURE 31-61: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE, PIC16F1847 ONLY

