E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1847t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLE

TABLE 1:	18/20/28-	PIN SUM	IMARY	(PIC1	6(L)F	1847)

								•	• •	,							
O/I	18-Pin PDIP/SOIC	20-Pin SSOP	28-Pin QFN/UQFN	ANSEL	ADC	Reference	Cap Sense	Comparator	SR Latch	Timers	ссР	EUSART	dSSM	Interrupt	Modulator	Pull-up	Basic
RA0	17	19	23	Y	AN0	—	CPS0	C12IN0-	-	_		—	SDO2	I	—	Ν	—
RA1	18	20	24	Y	AN1	—	CPS1	C12IN1-	—	—	_	_	SS2	-	—	Ν	—
RA2	1	1	26	Y	AN2	VREF- DACOUT	CPS2	C12IN2- C12IN+	_	—	—	—	—	_	—	Ν	—
RA3	2	2	27	Y	AN3	VREF+	CPS3	C12IN3- C1IN+ C1OUT	SRQ	—	CCP3	—	_		—	Ν	—
RA4	3	3	28	Υ	AN4	_	CPS4	C2OUT	SRNQ	T0CKI	CCP4	_	_		—	Ν	—
RA5	4	4	1	Ν				—		-		—	SS1 ⁽¹⁾		_	Y ⁽²⁾	MCLR VPP
RA6	15	17	20	Ν			_	_	_	—	P1D ⁽¹⁾ P2B ⁽¹⁾		SDO1 ⁽¹⁾		_	Ν	OSC2 CLKOUT CLKR
RA7	16	18	21	Ν				_		_	P1C ⁽¹⁾ CCP2 ⁽¹⁾ P2A ⁽¹⁾	_			_	Ν	OSC1 CLKIN
RB0	6	7	7	N	_		—	—	SRI	T1G	CCP1 ⁽¹⁾ P1A ⁽¹⁾ FLT0	—		INT IOC	-	Y	-
RB1	7	8	8	Y	AN11	—	CPS11	—	_	_	_	RX ^(1,3) DT ^(1,3)	SDA1 SDI1	IOC	—	Y	—
RB2	8	9	9	Y	AN10		CPS10	_	_	-	_	RX ⁽¹⁾ DT ⁽¹⁾ TX ^(1,3) CK ^(1,3)	SDA2 SDI2 SDO1 ^(1,3)	IOC	MDMIN	Y	—
RB3	9	10	10	Y	AN9	_	CPS9	—	_	_	CCP1 ^(1,3) P1A ^(1,3)	_	_	IOC	MDOUT	Y	—
RB4	10	11	12	Y	AN8	-	CPS8	—	-	-		—	SCL1 SCK1	IOC	MDCIN2	Y	—
RB5	11	12	13	Y	AN7		CPS7	_	-	_	P1B	TX ⁽¹⁾ CK ⁽¹⁾	SCL2 SCK2 SS1 ^(1,3)	IOC	_	Y	—
RB6	12	13	15	Y	AN5	_	CPS5	—	_	T1CKI T1OSCI	$\begin{array}{c} P1C^{(1,3)} \\ CCP2^{(1,3)} \\ P2A^{(1,3)} \end{array}$	—	—	IOC	_	Y	ICSPCLK
RB7	13	14	16	Y	AN6	_	CPS6	—	_	T1OSCO	P1D ^(1,3) P2B ^(1,3)		—	IOC	MDCIN1	Y	ICSPDAT
VDD	14	15, 16	17, 19			—	-	—	-	—	—	—	—	-	—		VDD
Vss	5	5,6	3,5	_	—	_	_	_	_	_	_	_	_	_	_	—	Vss

Note 1:

Pin functions can be moved using th<u>e APF</u>CON register(s).
 Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.
 Default function location.

PIC16(L)F1847

NOTES:

1.0 DEVICE OVERVIEW

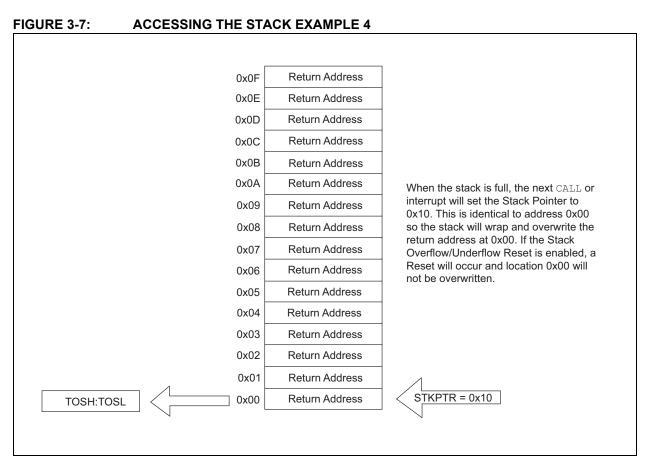
The PIC16(L)F1847 are described within this data sheet. They are available in 18/20/28-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1847 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC16(L)F1847
ADC		•
Capacitive Sensing Module		•
Digital-to-Analog Converter (I	DAC)	•
Digital Signal Modulator (DSN	(N	•
EUSART		•
Fixed Voltage Reference (FV	R)	•
Reference Clock Module		•
SR Latch		•
Capture/Compare/PWM Mod		
	ECCP1	•
	ECCP2	•
	CCP3	•
	CCP4	•
Comparators		
	C1	•
	C2	•
Master Synchronous Serial P	orts	
	MSSP1	•
	MSSP2	•
Timers		
	Timer0	•
	Timer1	•
	Timer2	•
	Timer4	•
	Timer6	•

TABLE 3-3: PIC16(L)F1847 MEMORY MAP, BANKS 0-7


IADL	.⊏ ა -ა: P	1010(∟)Г104/ №1⊏1	NOR	I IVIAF, DAIN	N3 0-	-1								
	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	—	30Ch		38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	—	38Dh	—
00Eh	_	08Eh	—	10Eh	-	18Eh	_	20Eh	_	28Eh	_	30Eh	_	38Eh	—
00Fh	_	08Fh	—	10Fh	—	18Fh	_	20Fh	_	28Fh	—	30Fh	—	38Fh	_
010h	_	090h	—	110h	_	190h		210h	_	290h	—	310h	_	390h	_
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L	391h	_
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H	392h	—
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	—
014h	PIR4	094h	PIE4	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h		394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSPCON1	295h	CCP1AS	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSPCON2	296h	PSTR1CON	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSPCON3	297h		317h	—	397h	_
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	CCPR2L	318h	CCPR4L	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF	299h	CCPR2H	319h	CCPR4H	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MSK	29Bh	PWM2CON	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	SSP2STAT	29Ch	CCP2AS	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON	29Dh	PSTR2CON	31Dh		39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2	29Eh	CCPTMRS	31Eh	_	39Eh	MDCARL
01Fh	CPSCON1	09Fh	_	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3	29Fh	_	31Fh	—	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	Common RAM		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	
		-		•						-					

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-5: PIC16(L)F1847 MEMORY MAP, BANKS 16-23

IADI	_E 3-3. FI	010		NOR	I WAF, DAN	N 3 II	0-23								
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch	—	88Ch	_	90Ch	_	98Ch	_	A0Ch	_	A8Ch	—	B0Ch	—	B8Ch	—
80Dh	_	88Dh	_	90Dh	—	98Dh	_	A0Dh	—	A8Dh	_	B0Dh	_	B8Dh	_
80Eh	—	88Eh	—	90Eh	—	98Eh	—	A0Eh	—	A8Eh	—	B0Eh	—	B8Eh	_
80Fh	_	88Fh	_	90Fh	—	98Fh	_	A0Fh	—	A8Fh	_	B0Fh	_	B8Fh	_
810h	—	890h	—	910h	—	990h	—	A10h	—	A90h	—	B10h	—	B90h	_
811h	—	891h	—	911h	—	991h	—	A11h	—	A91h	—	B11h	—	B91h	_
812h	_	892h	_	912h	—	992h	_	A12h	_	A92h	—	B12h	_	B92h	_
813h	_	893h	_	913h	—	993h	_	A13h	_	A93h	—	B13h	_	B93h	_
814h	_	894h	_	914h	—	994h	_	A14h	_	A94h	—	B14h	_	B94h	_
815h	—	895h	—	915h	—	995h	—	A15h	—	A95h	—	B15h	—	B95h	_
816h	_	896h	_	916h	—	996h	_	A16h	—	A96h	_	B16h	_	B96h	_
817h	—	897h	—	917h	—	997h	—	A17h	—	A97h	—	B17h	—	B97h	—
818h	—	898h	—	918h	—	998h	—	A18h	—	A98h	—	B18h	—	B98h	—
819h	_	899h	_	919h	—	999h	_	A19h	—	A99h	_	B19h	_	B99h	_
81Ah	_	89Ah	_	91Ah	—	99Ah	_	A1Ah	—	A9Ah	_	B1Ah	_	B9Ah	_
81Bh	_	89Bh	—	91Bh	—	99Bh	—	A1Bh	—	A9Bh	-	B1Bh	_	B9Bh	—
81Ch	—	89Ch	—	91Ch	—	99Ch	—	A1Ch	—	A9Ch	—	B1Ch	—	B9Ch	—
81Dh	—	89Dh	—	91Dh	—	99Dh	—	A1Dh	—	A9Dh	—	B1Dh	—	B9Dh	—
81Eh	—	89Eh	—	91Eh	—	99Eh	—	A1Eh	—	A9Eh	—	B1Eh	—	B9Eh	_
81Fh	_	89Fh	_	91Fh	—	99Fh	_	A1Fh	_	A9Fh	—	B1Fh	_	B9Fh	_
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BA0h	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh	_	70h – 7Fh		70h – 7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

PIC16(L)F1847

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is set to '1', the device will be reset if the stack is PUSHed beyond the 16th level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** The entire data EEPROM will be erased when the code protection is turned off during an erase. Once the Data Code Protection bit is enabled, (CPD = 0), the Bulk Erase Program Memory Command (through ICSP) can disable the Data Code Protection (CPD = 1). When a Bulk Erase Program Memory Command is executed, the entire program Flash memory, data EEPROM and configuration memory will be erased.

11.6 Write/Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE/VERIFY

BANKSEI	L EEDATL		;
MOVF	EEDATL,	W	;EEDATL not changed
			;from previous write
BSF	EECON1,	RD	;YES, Read the
			;value written
XORWF	EEDATL,	W	;
BTFSS	STATUS,	Ζ	;Is data the same
GOTO	WRITE_E	RR	;No, handle error
:			;Yes, continue
1			

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- · ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

16.1.2 CHANNEL SELECTION

There are up to 14 channel selections available:

- AN<11:0> pins
- DAC Output
- · FVR (Fixed Voltage Reference) Output

Refer to Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section TABLE 14-1: "Summary of Registers Associated with the Fixed Voltage Reference" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 16.2 "ADC Operation"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- VDD
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section TABLE 14-1: "Summary of Registers Associated with the Fixed Voltage Reference" for more details on the Fixed Voltage Reference.

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

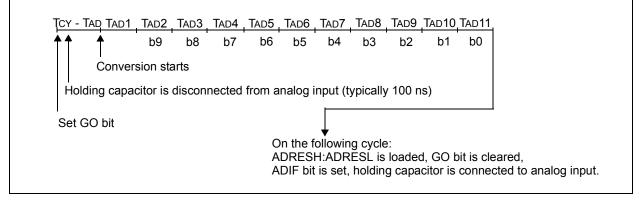
For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in Section 30.0 "Electrical Specifications" for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)			Device Frequ	uency (Fosc)		
ADC Clock Source	ADCS<2.0>		20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
Frc	x11	1.0-6.0 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.


Note 1: The FRC source has a typical TAD time of $1.6 \ \mu s$ for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

PIC16(L)F1847

NOTES:

25.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 25-4.

An MSSPx interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See Section 25.2.3 "SPI Master Mode" for more detail.

25.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSPx module configured as an I^2C Slave in 7-bit Addressing mode. Figure 25-14 and Figure 25-15 are used as visual references for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCLx line.
- 8. The master clocks out a data byte.
- Slave drives SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

25.5.2.2 7-bit Reception with AHEN and DHEN

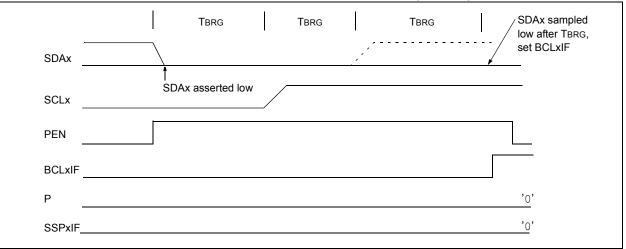
Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCLx. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 25-16 displays a module using both address and data holding. Figure 25-17 includes the operation with the SEN bit of the SSPxCON2 register set.

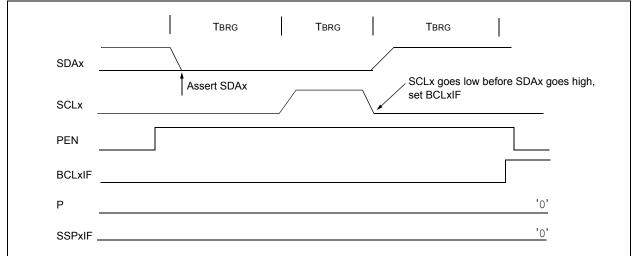
- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the 8th falling edge of SCLx.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPx-CON3 register to determine if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an \overline{ACK} , not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the 9th falling edge of SCLx even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after 8th falling edge of SCLx for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSPSTAT register.


25.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out (Case 1).
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high (Case 2).

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 25-38). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 25-39).

FIGURE 25-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 25-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

REGISTER 25-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	СКР		SSPM	1<3:0>	
pit 7							bit (
ogond:							
Legend: R = Readable bit		W = Writable bit		U = Unimplement	ed hit, read as '0'		
u = Bit is unchang	ed	x = Bit is unknowr	1	•	OR and BOR/Value	at all other Resets	
1' = Bit is set	cu	'0' = Bit is cleared		HS = Bit is set by		C = User cleared	
				TIS - DILIS SEL Dy	naruware	C - Oser cleared	
pit 7	0 = No collision <u>Slave mode:</u>	e SSPxBUF registe JF register is written		while the I ² C condi			to be started
Dit 6	In SPI mode: 1 = A new byte is Overflow car setting overf SSPxBUF re 0 = No overflow In I ² C mode: 1 = A byte is re	n only occur in Slave low. In Master mode egister (must be clea ceived while the St eared in software).	SSPxBUF registe e mode. In Slave e, the overflow bit i ared in software).	r is still holding the pr mode, the user must s not set since each r is still holding the p	read the SSPxBUF, lew reception (and tr	even if only transmit ansmission) is initiate	ting data, to avoid ad by writing to the
bit 5	In both modes, wi In SPI mode: 1 = Enables series 0 = Disables series 1 = Enables the 1 = Enables the	al port and configur rial port and configu	pins must be pro es SCKx, SDOx, ures these pins a gures the SDAx a	nd SCLx pins as the	source of the serial		
bit 4	0 = Idle state for o <u>In I²C Slave mode</u> SCLx release con 1 = Enable clock	clock is a high level clock is a low level <u>a:</u> trol w (clock stretch). (' <u>de:</u>		lata setup time.)			
bit 3-0	0000 = SPI Mast 0001 = SPI Mast 0010 = SPI Mast 0010 = SPI Slave 0101 = SPI Slave 0101 = SPI Slave 0101 = I ² C Slave 1000 = I ² C Slave 1000 = I ² C Maste 1010 = Reserved 1011 = I ² C firmwa 1001 = Reserved 1101 = I ² C Slave	mode, 7-bit addres mode, 10-bit addre er mode, clock = Fc er mode, clock = Fc are controlled Mast mode, 7-bit addres	DSC/4 DSC/16 DSC/64 WR2 out <u>put/</u> 2 Kx pin, <u>SSx</u> pin of Kx pin, <u>SSx</u> pin of SS DSC/(4 * (SSPxAE DSC/(4 * (SSPxAE er mode (Slave i SS with Start and	control enabled control disabled, SS; DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾	nabled) pin	
2: Whe 3: Whe 4: SSF	laster mode, the ove en enabled, these pi en enabled, the SDA 2xADD values of 0, 1 2xADD value of '0' is	erflow bit is not set and ns must be properly and SCLx pins m or 2 are not suppo	since each new r y configured as in nust be configure orted for I ² C Mod	eception (and trans nput or output. d as inputs. e.		by writing to the SS	PxBUF register.

REGISTER 25-5: SSPxMSK: SSPx MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1					
			MSH	<<7:0>								
bit 7							bit 0					
												
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets					
'1' = Bit is set		'0' = Bit is cle	ared									
bit 7-1	MSK<7:1>:					•						
	1 = The rec 0 = The rec	eived address b eived address b	it n is compai it n is not use	red to SSPxADI ed to detect I ² C	D <n> to detect address match</n>	I ² C address m	atch					
bit 0	MSK<0>: M	ask bit for I ² C S	lave mode, 1	0-bit Address								
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):											
		eived address b				I ² C address m	atch					
	-	eived address b			address match							
	IFC Slave m	ode, 7-bit addre	ss, the bit is l	gnored								

REGISTER 25-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

Master mode:

1' = Bit is set

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

'0' = Bit is cleared

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

TABLE 30-16: COMPARATOR SPECIFICATIONS⁽¹⁾

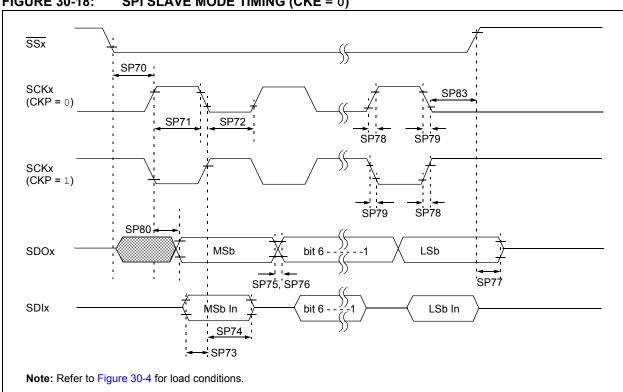
VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage		±7.5	±60	mV	CxSP = 1 Vicм = Vdd/2
CM02	VICM	Input Common Mode Voltage	0	_	Vdd	V	
CM03	CMRR	Common Mode Rejection Ratio	_	50	_	dB	
CM04A		Response Time Rising Edge		400	800	ns	CxSP = 1
CM04B	TRESP ⁽²⁾	Response Time Falling Edge		200	400	ns	CxSP = 1
CM04C		Response Time Rising Edge	_	1200		ns	CxSP = 0
CM04D		Response Time Falling Edge		550		ns	CxSP = 0
CM05	Тмс2о∨	Comparator Mode Change to Output Valid*	—	—	10	μS	
CM06	CHYSTER	Comparator Hysteresis		50 10		mV mV	CxHYS = 1, CxSP = 1 CxHYS = 1, CxSP = 0

These parameters are characterized but not tested.

Note 1: See Section 31.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

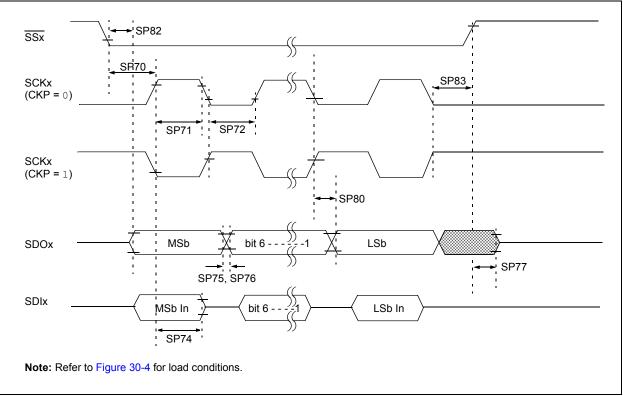
2: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to Vdd.

TABLE 30-17: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS⁽¹⁾


Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	Clsb	Step Size	_	VDD/32	_	V	
DAC02*	CACC	Absolute Accuracy	—	—	± 1/2	LSb	
DAC03*	CR	Unit Resistor Value (R)	_	5000		Ω	
DAC04*	CST	Settling Time ⁽²⁾	_	_	10	μS	

These parameters are characterized but not tested.

Note 1: See Section 31.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.


2: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

PIC16(L)F1847

FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)

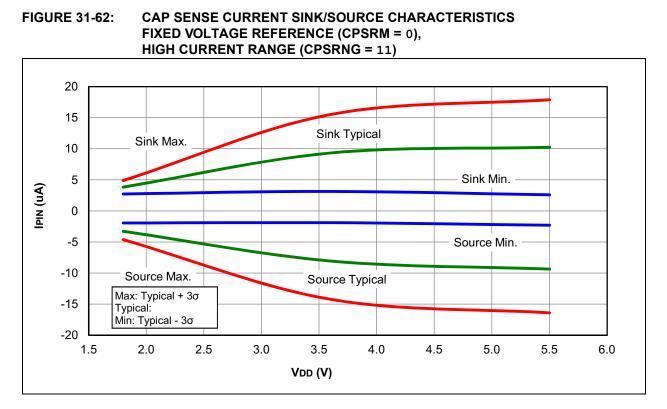
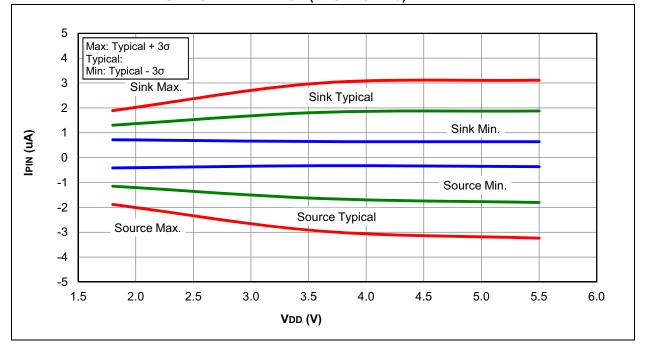
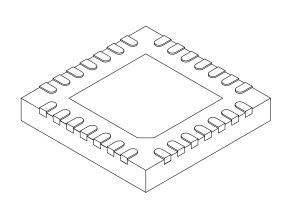




FIGURE 31-63: CAP SENSE CURRENT SINK/SOURCE CHARACTERISTICS FIXED VOLTAGE REFERENCE (CPSRM = 0), MEDIUM CURRENT RANGE (CPSRNG = 10)

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support