E. Fenesas Electronics America Inc - <u>R7FS5D97C2A01CBG#AC0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	133
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LFBGA
Supplier Device Package	176-LFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs5d97c2a01cbg-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1. Overview

The S5D9 MCU integrates multiple series of software- and pin-compatible ARM[®]-based 32-bit MCUs that share the same set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU provides a high-performance ARM Cortex[®]-M4 core running up to 120 MHz with the following features:

- Up to 2-MB code flash memory
- 640-KB SRAM
- Graphics LCD Controller (GLCDC)
- 2D Drawing Engine (DRW)
- Capacitive Touch Sensing Unit (CTSU)
- Ethernet MAC Controller (ETHERC) with IEEE 1588 PTP, USBFS, USBHS, SD/MMC Host Interface
- Quad Serial Peripheral Interface (QSPI)
- Security and safety features
- Analog peripherals.

1.1 Function Outline

Table 1.1 ARM core

Feature	Functional description
ARM Cortex-M4	 Maximum operating frequency: up to 120 MHz ARM Cortex-M4 core: Revision: r0p1-01rel0 ARMv7E-M architecture profile Single precision floating point unit compliant with the ANSI/IEEE Std 754-2008 ARM Memory Protection Unit (MPU): ARMv7 Protected Memory System Architecture 8 protect regions SysTick timer: Driven by LOCO clock

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 2 MB of code flash memory. See section 55, Flash Memory in User's Manual.
Data flash memory	64 KB of data flash memory. See section 55, Flash Memory in User's Manual.
Memory Mirror Function (MMF)	The MMF can be configured to mirror the wanted application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User's Manual.
SRAM	On-chip high-speed SRAM providing either parity-bit or Error Correction Code (ECC). The first 32 KB of SRAM0 is subject to ECC. Parity check is performed for other areas. See section 53, SRAM in User's Manual.
Standby SRAM	On-chip SRAM that can retain data in Deep Software Standby mode. See section 54, Standby SRAM in User's Manual.

Table 1.3 System (1 of 3)

Feature	Functional description					
Operating modes	Two operating modes: - Single-chip mode - SCI or USB boot mode. See section 3, Operating Modes in User's Manual.					

RENESAS

Table 1.11 Graphics

Feature	Functional description						
Graphics LCD Controller (GLCDC)	 The GLCDC provides multiple functions and supports various data formats and panels. Key GLCDC features include: GPX bus master function for accessing graphics data Superimposition of three planes (single color background plane, graphic 1 plane, and graphic 2 plane) Support for many types of 32- or 16-bit per pixel graphics data and 8-, 4-, or 1-bit LUT data format Digital interface signal output supporting a video image size of WVGA or greater. See section 58, Graphics LCD Controller (GLCDC) in User's Manual. 						
2D Drawing Engine (DRW)	• Digital interface signal output supporting a video image size of WVGA or greater.						
JPEG Codec (JPEG)	The JPEG Codec (JPEG) incorporates a JPEG codec that conforms to the JPEG baseline compression and decompression standard. This provides high-speed compression of image data and high-speed decoding of JPEG data. See section 57, JPEG Codec (JPEG) in User's Manual.						
Parallel Data Capture Unit (PDC)	One PDC unit is provided for communicating with external I/O devices, including image sensors, and transferring parallel data such as an image output from the external I/O device through the DTC or DMAC to the on-chip SRAM and external address spaces (the CS and SDRAM areas). See section 44, Parallel Data Capture Unit (PDC) in User's Manual.						

Table 1.12 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generating polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 40, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The DOC compares, adds, and subtracts 16-bit data. See section 52, Data Operation Circuit (DOC) in User's Manual.
Sampling Rate Converter (SRC)	The SRC converts the sampling rate of data produced by various audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are supported. See section 42, Sampling Rate Converter (SRC) in User's Manual.

Table 1.13 Security

Feature	Functional description
Secure Crypto Engine 7 (SCE7)	 Security algorithms: Symmetric algorithms: AES, 3DES, and ARC4 Asymmetric algorithms: RSA and DSA. Other support features: TRNG (True Random Number Generator) Hash-value generation: SHA1, SHA224, SHA256, GHASH 128-bit unique ID.

1.2 Block Diagram

Figure 1.1 shows the block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

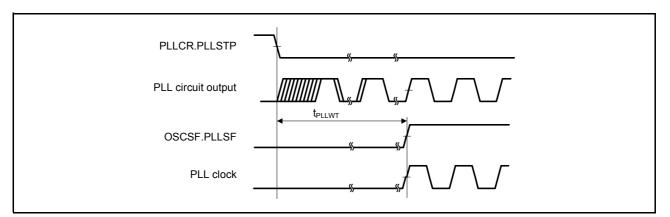

Function	Signal	I/O	Description
SDRAM interface	CKE	Output	SDRAM clock enable signal.
	SDCS	Output	SDRAM chip select signal, active low.
	RAS	Output	SDRAM low address strobe signal, active low.
	CAS	Output	SDRAM column address strobe signal, active low.
	WE	Output	SDRAM write enable signal, active low.
	DQM0	Output	SDRAM I/O data mask enable signal for DQ07 to DQ00.
	DQM1	Output	SDRAM I/O data mask enable signal for DQ15 to DQ08.
	A00 to A15	Output	Address bus.
	DQ00 to DQ15	I/O	Data bus.
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	External trigger input pins.
	GTIOC0A to GTIOC13A, GTIOC0B to GTIOC13B	I/O	Input capture, output compare, or PWM output pins.
	GTIU	Input	Hall sensor input pin U.
	GTIV	Input	Hall sensor input pin V.
	GTIW	Input	Hall sensor input pin W.
	GTOUUP	Output	Three-phase PWM output for BLDC motor control (positive U phase).
	GTOULO	Output	Three-phase PWM output for BLDC motor control (negative U phase).
	GTOVUP	Output	Three-phase PWM output for BLDC motor control (positive V phase).
	GTOVLO	Output	Three-phase PWM output for BLDC motor control (negative V phase).
	GTOWUP	Output	Three-phase PWM output for BLDC motor control (positive W phase).
	GTOWLO	Output	Three-phase PWM output for BLDC motor control (negative W phase).
AGT	AGTEE0, AGTEE1	Input	External event input enable signals.
	AGTIO0, AGTIO1	I/O	External event input and pulse output pins.
	AGTO0, AGTO1	Output	Pulse output pins.
	AGTOA0, AGTOA1	Output	Output compare match A output pins.
	AGTOB0, AGTOB1	Output	Output compare match B output pins.
RTC	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock.
	RTCIC0 to RTCIC2	Input	Time capture event input pins.
SCI	SCK0 to SCK9	I/O	Input/output pins for the clock (clock synchronous mode).
	RXD0 to RXD9	Input	Input pins for received data (asynchronous mode/clock synchronous mode
	TXD0 to TXD9	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode).
	CTS0_RTS0 to CTS9_RTS9	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active low.
	SCL0 to SCL9	I/O	Input/output pins for the I ² C clock (simple IIC mode).
	SDA0 to SDA9	I/O	Input/output pins for the I ² C data (simple IIC mode).
	SCK0 to SCK9	I/O	Input/output pins for the clock (simple SPI mode).
	MISO0 to MISO9	I/O	Input/output pins for slave transmission of data (simple SPI mode).
	MOSI0 to MOSI9	I/O	Input/output pins for master transmission of data (simple SPI mode).
	SS0 to SS9	Input	Chip-select input pins (simple SPI mode), active low.
IIC	SCL0 to SCL2	I/O	Input/output pins for the clock.
	SDA0 to SDA2	I/O	Input/output pins for data.
SSIE	SSIBCK0	I/O	SSIE serial bit clock pins.
	SSIBCK1]	
	SSILRCK0/SSIFS0	I/O	LR clock/frame synchronization pins.
	SSILRCK1/SSIFS1]	
	SSITXD0	Output	Serial data output pins.
	SSIRXD0	Input	Serial data input pins.
	SSIDATA1	I/O	Serial data input/output pins.
	AUDIO_CLK	Input	External clock pin for audio (input oversampling clock).

Table 1.16Pin functions (2 of 5)

in r	num	ber				ĺ	1	Extb	us	Timers				Com	munica	ation i	nterfa	ces						Analog	J	HMI	
	LQFP176	LGA145	LQFP144		Power, System, Clock, Debug, CAC	Interrupt	l/O port	External bus	SDRAM	AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	SI	SPI, QSPI	SSIE	ETHERC (MII) (25 MHz)	ETHERC (RMII) (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	GLCDC. PDC
86	66	A6	54	37	TRDATA 3	-	P208	-	-	-	GTOVLO	-	-	-	-	-	-	QIO3	-	ET0_LI NKSTA	ET0_LI NKST A	-	SD0 DAT0 B	-	-	-	LCD_DAT/ 18_B
			55		RES	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		B6 C8	56 57	39 40	MD -	- NMI	P201 P200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	70	-	-	-	-	-	P908	CS7	-	-	-	GTIOC 2A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA 14_B
7	71	-	-	-	-	-	P907	CS6	-	-	-	GTIOC 2B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA 13 B
7	72	-	-	-	-	-	P906	CS5	-	-	-	GTIOC 3A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DAT
7	73	-	-	-	-	-	P905	CS4	-	-	-	GTIOC 3B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DAT
7	74	C6	58	-	-	-	P312	CS3	CAS	AGTOA1	-	-	-	-	-	CTS3_ RTS3/	-	-	-	-	-	-	-	-	-	-	-
6	75	B5	59	_		-	P311	CS2	RAS	AGTOB1	-		-			SS3 SCK3		-	_	_	_	_			-	-	LCD_DAT
			60				P310		A15	AGTEE1						TXD3		QIO3				-					23_A LCD_DAT
				-		-				AGTEET	-		-	-	-		-		-	-	-		-	-	-	-	22_A
			61	-	-	-	P309		A14	-	-	-	-	-	-	RXD3	-	QIO2	-	-	-	-	-	-	-	-	LCD_DAT/ 21_A
			62	-	-	-	P308		A13	-	-	-	-	-	-	-	-	QIO1	-	-	-	-	-	-	-	-	LCD_DAT/ 20_A
6	79	A4	63	41	-	-	P307	A12	A12	-	GTOUUP	-	-	-	CTS6	-	-	QIO0	-	-	-	-	-	-	-	-	LCD_DAT/ 19_A
4 8	80	B4	64	42	-	-	P306	A11	A11	-	GTOULO	-	-	-	SCK6	-	-	QSSL	-	-	-	-	-	-	-	-	LCD_DAT/ 18_A
58	81	D6	65	43	-	IRQ8	P305	A10	A10	-	GTOWUP	-	-	-	TXD6/ MOSI6	-	-	QSPC LK	-	-	-	-	-	-	-	-	LCD_DAT/ 17_A
4 8	82	C4	66	44	-	IRQ9	P304	A09	A09	-	GTOWLO	GTIOC	-	-	/SDA6 RXD6/	-	-	-	-	-	-	-	-	-	-	-	LCD_DAT/
												7A			MISO6 /SCL6												16_A
			67 68		VSS VCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			69	47	-	-	P303	A08	A08	-	-	GTIOC 7B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DAT/ 15_A
38	86	A2	70	48	-	IRQ5	P302	A07	A07	-	GTOUUP	GTIOC 4A	-	-	TXD2/ MOSI2 /SDA2	-	-	SSLB3 _B	-	-	-	-	-	-	-	-	LCD_DAT/ 14_A
28	87	C3	71	49	-	IRQ6	P301	A06	A06	AGTIO0	GTOULO	GTIOC 4B	-	-	RXD2/ MISO2	CTS9_ RTS9/ SS9	-	SSLB2 _ ^B	-	-	-	-	-	-	-	-	LCD_DAT/ 13_A
4 8	88	B2	72	50	TCK/SW	-	P300	-	-	-	GTOUUP	GTIOC	-	-	- -	-	-	SSLB1	-	-	-	-	-	-	-	-	-
3 8	89	A1	73	51	CLK TMS/SW	-	P108	-	-	-	GTOULO	0A_A GTIOC	-	-	-	CTS9_	-	_B SSLB0	-	-	-	-	-	-	-	-	-
		D 4		50			D 400				0701410	0B_A		071/4		RTS9/ SS9 TXD9/		_B									
1 9	90	D4	74	52	/TDO/S WO	-	P109	-	-	-	GTOVUP	GTIOC 1A_A	-	CTX1	-	MOSI9 /SDA9	-	MOSIB _B	-	-	-	-	-	-	-	-	-
3 9	91	B1	75	53	TDI	IRQ3	P110	-	-	-	GTOVLO	GTIOC 1B_A	-	CRX1	CTS2_ RTS2/ SS2	RXD9/ MISO9 /SCL9	-	MISOB _B	-	-	-	-	-	-	VCOUT	-	-
4 9	92	C2	76	54	-	IRQ4	P111	A05	A05	-	-	GTIOC 3A_A	-	-	SCK2	SCK9		RSPC KB_B	-	-	-	-	-	-	-	-	LCD_DAT/ 12_A
2 9	93	D3	77	55	-	-	P112	A04	A04	-	-	GTIOC 3B_A	-	-	TXD2/ MOSI2	SCK1	-	SSLB0	SSIBC K0_B	-	-	-	-	-	-	-	LCD_DAT
1 9	94	C1	78	56			P113	A03	A03	-	-	GTIOC	-		/SDA2 RXD2/				SSILR	_	_			_	-		LCD_DAT/
												2A			MISO2 /SCL2				CK0/S SIFS0_ B								10_A
2 9	95	E4	79	57	-	-	P114	A02	A02	-	-	GTIOC 2B	-	-	-	-	-	-	SSIRX D0_B	-	-	-	-	-	-	-	LCD_DAT/ 09_A
1 9	96	E3	80	58	-	-	P115	A01	A01	-	-	GTIOC 4A	-	-	-	-	-	-	SSITX D0_B	-	-	-	-	-	-	-	LCD_DAT/ 08_A
		D2 D1			VCC VSS	-	-	-	-	-	-	-	-	-	-	-	-	-	E	-	-	-	-	-	-	-	-
			83		-	-	- P608	- A00/ BC0	- A00/D QM1	-	-	GTIOC 4B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- LCD_DAT/ 07_A
1	100	E2	84	60	-	-	P609		CKE	-	-	GTIOC	-	CTX1	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA
3	101	F3	85	61	-	-	P610	CS0	WE	-	-	5A GTIOC	-	CRX1	-	-	-	-	-	-	-	-	-	-	-	-	06_A LCD_DATA
2	102	E1	86	-	CLKOUT	-	P611	-	SDCS	-	-	5B -	-	-	-	CTS7_	-	-	-	-	-	-	-	-	-	-	05_A -
1	103	F2	87	-	/CACRE F -	-	P612	D08[DQ08	-	-	-	-	-	-	RTS7/ SS7 SCK7	-	-	-	-	-	-	-	-	-	-	-
		F1						A08/ D08]	DQ09							TXD7											
								A09/ D09]																			
2	105	G3	89	-	_	-	P614	D10[A10/ D10]	DQ10	-	-	-	-	-	-	RXD7	-	-	-	-	-	-	-	-	-	-	-
1	106	-	-	-	-	-	P615		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DAT/ 10_B
1	107	-	-	-	-	-	PA08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA 09_B

Figure 2.7 PLL clock oscillation start timing

Note: Only operate the PLL is operated after main clock oscillation has stabilized.

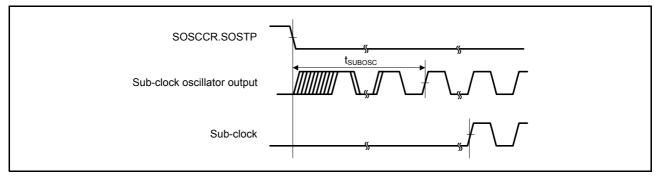


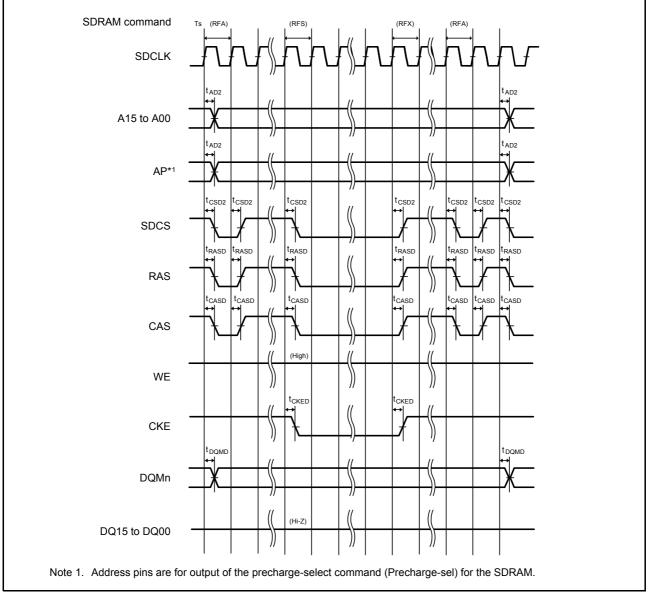
Figure 2.8 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.15 Reset timing

Item		Symbol	Min	Тур	Мах	Unit	Test conditions
RES pulse width	Power-on	t _{RESWP}	1	-	-	ms	Figure 2.9
	Deep Software Standby mode	t _{RESWD}	0.6	-	-	ms	Figure 2.10
	Software Standby mode, Subosc-speed mode	t _{RESWS}	0.3	-	-	ms	
	All other	t _{RESW}	200	-	-	μs	
Wait time after RE	S cancellation	t _{RESWT}	-	29	33	μs	Figure 2.9
Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset)			-	320	408	μs	-

Table 2.18Bus timing (2 of 2)Condition 1: When using the CS area controller (CSC). BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF EBCLK: High drive output is selected in the port drive capability bit in the PmnPFS register. Others: Middle drive output is selected in the port drive capability bit in the PmnPFS register.


Condition 2: When using the SDRAM area controller (SDRAMC). BCLK = SDCLK = 8 to 120 MHz VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF High drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously. BCLK = SDCLK = 8 to 60 MHz VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF

High drive output is selected in the port drive capability bit in the PmnPFS register.

Item	Symbol	Min	Max	Unit	Test conditions
Address delay 2 (SDRAM)	t _{AD2}	0.8	6.8	ns	Figure 2.23 to
CS delay 2 (SDRAM)	t _{CSD2}	0.8	6.8	ns	Figure 2.29
DQM delay (SDRAM)	t _{DQMD}	0.8	6.8	ns	
CKE delay (SDRAM)	t _{CKED}	0.8	6.8	ns	
Read data setup time 2 (SDRAM)	t _{RDS2}	2.9	-	ns	
Read data hold time 2 (SDRAM)	t _{RDH2}	1.5	-	ns	
Write data delay 2 (SDRAM)	t _{WDD2}	-	6.8	ns	
Write data hold time 2 (SDRAM)	t _{WDH2}	0.8	-	ns	
WE delay (SDRAM)	t _{WED}	0.8	6.8	ns	
RAS delay (SDRAM)	t _{RASD}	0.8	6.8	ns	
CAS delay (SDRAM)	t _{CASD}	0.8	6.8	ns	

Figure 2.29 SDRAM self-refresh timing

2.3.7 I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2) GPT32 Conditions:

High drive output is selected in the port drive capability bit in the PmnPFS register.

AGT Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem		Symbol	Min	Max	Unit	Test conditions
I/O ports	Input data pulse width	t _{PRW}	1.5	-	t _{Pcyc}	Figure 2.30
POEG	POEG input trigger pulse width	t _{POEW}	3	-	t _{Pcyc}	Figure 2.31

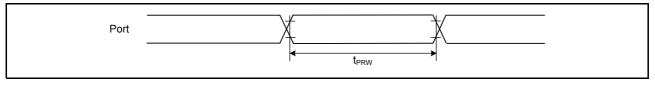
S5D9

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2) GPT32 Conditions:

High drive output is selected in the port drive capability bit in the PmnPFS register.

AGT Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register.


ltem			Symbol	Min	Max	Unit	Test conditions
GPT32	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.32
		Dual edge		2.5	-		
GTIOCxY output skew	•	Middle drive buffer	t _{GTISK} *2	-	4	ns	Figure 2.33
	(x = 0 to 7, Y= A or B)	High drive buffer		-	4		
	GTIOCxY output skew	Middle drive buffer		-	4		
(x = 8 to 13, Y = A or I	(x = 8 to 13, Y = A or B)	High drive buffer		-	4		
	GTIOCxY output skew (x = 0 to 13, Y = A or B)Middle drive bufferHigh drive buffer	Middle drive buffer		-	6		
		High drive buffer		-	6		
	OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO		t _{GTOSK}	-	5	ns	Figure 2.34
GPT(PWM Delay Generation Circuit)	GTIOCxY_Z output skew (x = 0 to 3, Y = A or B, Z = A)		t _{HRSK} *3	-	2.0	ns	Figure 2.35
AGT	AGTIO, AGTEE input cycle		t _{ACYC} *4	100	-	ns	Figure 2.36
	AGTIO, AGTEE input high widt	t high width, low width		40	-	ns	
	AGTIO, AGTO, AGTOA, AGTO	AGTIO, AGTO, AGTOA, AGTOB output cycle			-	ns	
ADC12	ADC12 trigger input pulse width	1	t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.37
KINT	Key interrupt input low width		t _{KR}	250	-	ns	Figure 2.38

Note 1. t_{Pcyc}: PCLKB cycle, t_{PDcyc}: PCLKD cycle.

Note 2. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.

Note 3. The load is 30 pF.

Note 4. Constraints on AGTIO input: $t_{Pcyc} \times 2$ (t_{Pcyc} : PCLKB cycle) < t_{ACYC} .

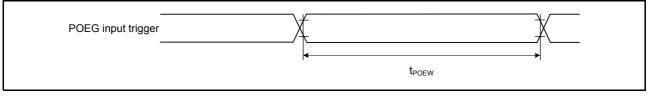
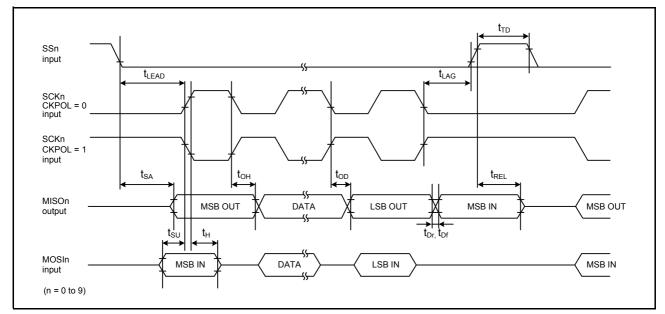
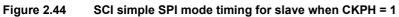
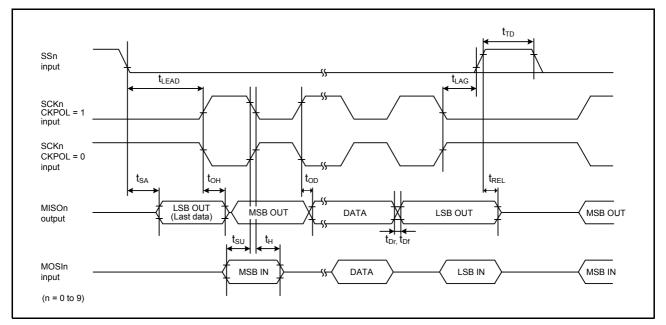





Figure 2.31 POEG input trigger timing

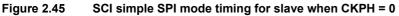


 Table 2.24
 SCI timing (3) (1 of 2)

 Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem		Symbol	Min	Max	Unit	Test conditions
(Standard mode)	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.46
	SDA input fall time	t _{Sf}	-	300	ns]
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns]
	Data input setup time	t _{SDAS}	250	-	ns]
	Data input hold time	t _{SDAH}	0	-	ns	1
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF	1

 Table 2.24
 SCI timing (3) (2 of 2)

 Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Item		Symbol	Min	Max	Unit	Test conditions
(Fast mode) SDA input	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.46
	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	100	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	1
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF	

Note: t_{IICcyc} : IIC internal reference clock (IIC ϕ) cycle, t_{Pcyc} : PCLKA cycle.

Note 1. Cb indicates the total capacity of the bus line.

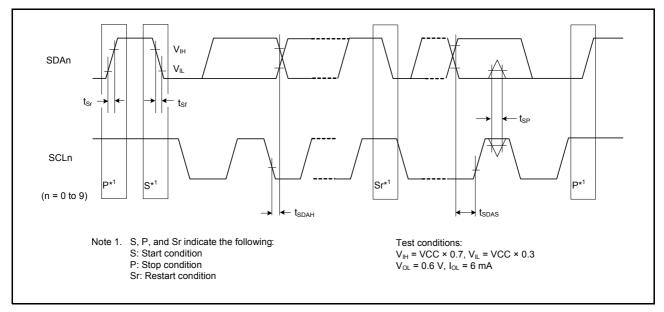
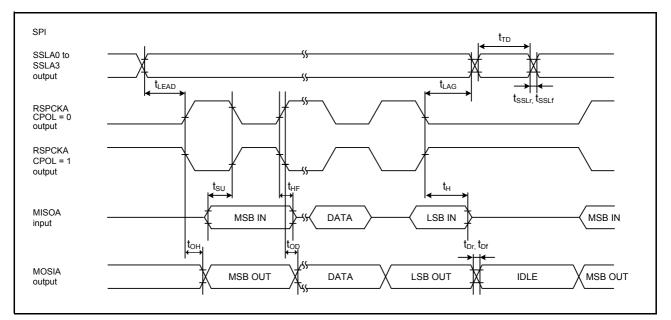



Figure 2.46 SCI simple IIC mode timing

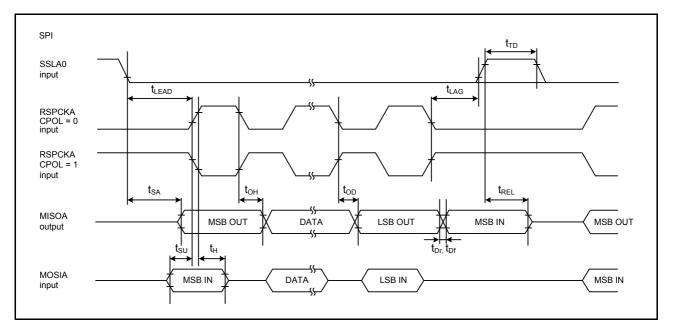
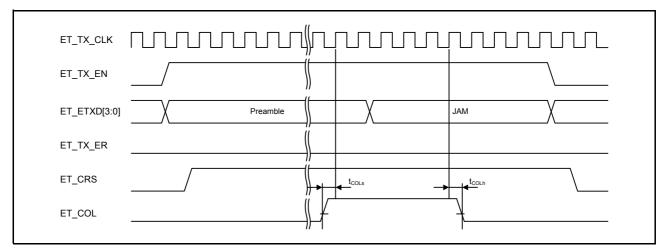
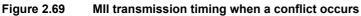




Figure 2.52 SPI timing for slave when CPHA = 0

RENESAS

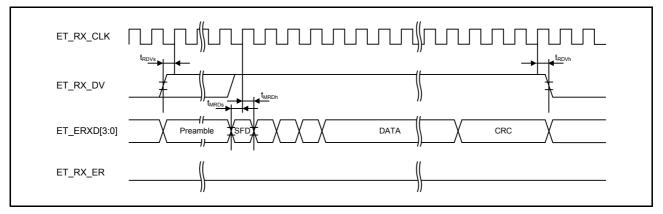


Figure 2.70 MII reception timing in normal operation

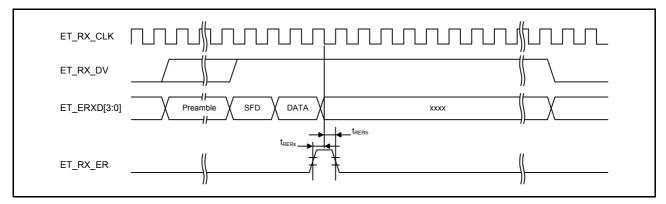


Figure 2.71 MII reception timing when an error occurs

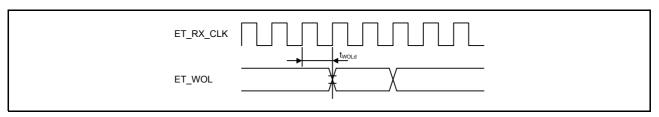
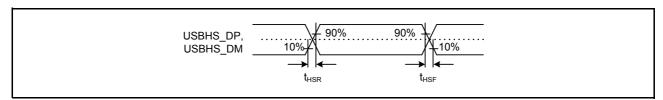



Figure 2.72 WOL output timing for MII

Figure 2.85 USBHS_DP and USBHS_DM output timing in high-speed mode

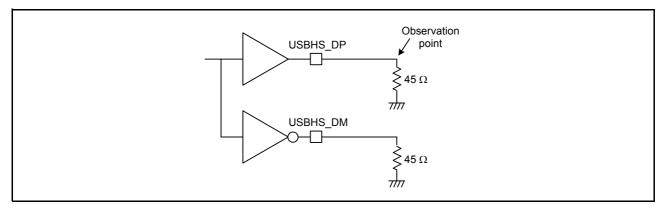


Figure 2.86 Test circuit in high-speed mode

Table 2.37	USBHS high-speed characteristics (USBHS_DP and USBHS_DM pin characteristics)
Conditions: USE	$3HS_RREF = 2.2 \text{ k}\Omega \pm 1\%$, USBMCLK = 12/20/24 MHZ

ltem		Symbol	Min	Max	Unit	Test conditions
Battery Charging Specification	D+ sink current	I _{DP_SINK}	25	175	μA	-
	D- sink current	I _{DM_SINK}	25	175	μA	-
	DCD source current	I _{DP_SRC}	7	13	μA	-
	Data detection voltage	V _{DAT_REF}	0.25	0.4	V	-
	D+ source voltage	V _{DP_SRC}	0.5	0.7	V	Output current = 250 µA
	D- source voltage	V _{DM_SRC}	0.5	0.7	V	Output current = 250 µA

2.4.2 USBFS Timing

Table 2.38USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) (1 of 2)Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS = AVCC_USBHS = 3.0to 3.6 V, UCLK = 48 MHz

ltem		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	-	-	V	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = -200 μA
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.87
	Rise time	t _{LR}	75	-	300	ns	
	Fall time	t _{LF}	75	-	300	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

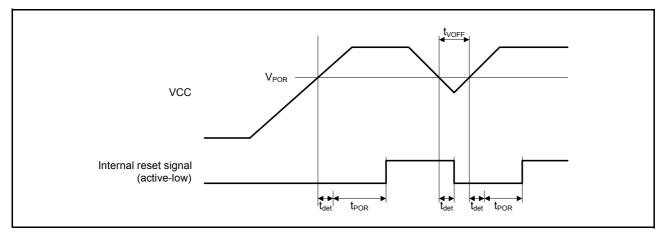
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Table 2.44 D/A conversion characteristics

ltem	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	Bits	-
Without output amplifier					
Absolute accuracy	-	-	±24	LSB	Resistive load 2 $M\Omega$
INL	-	±2.0	±8.0	LSB	Resistive load 2 $M\Omega$
DNL	-	±1.0	±2.0	LSB	-
Output impedance	-	8.5	-	kΩ	-
Conversion time	-	-	3.0	μs	Resistive load 2 MΩ, Capacitive load 20 pF
Output voltage range	0	-	VREFH	V	-
With output amplifier					
INL	-	±2.0	±4.0	LSB	-
DNL	-	±1.0	±2.0	LSB	-
Conversion time	-	-	4.0	μs	-
Resistive load	5	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.2	-	VREFH – 0.2	V	-

2.7 TSN Characteristics


Table 2.45TSN characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	±1.0	-	°C	-
Temperature slope	-	-	4.0	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.24	-	V	-
Temperature sensor start time	t _{START}	-	-	30	μs	-
Sampling time	-	4.15	-	-	μs	-

2.8 OSC Stop Detect Characteristics

Table 2.46 Oscillation stop detection circuit characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.92

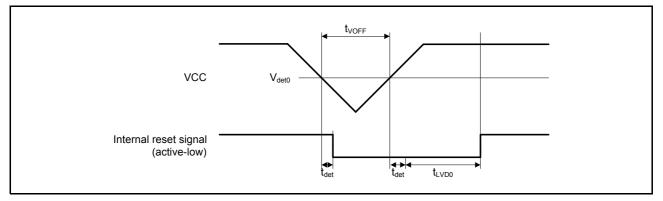


Figure 2.94 Voltage detection circuit timing (V_{det0})

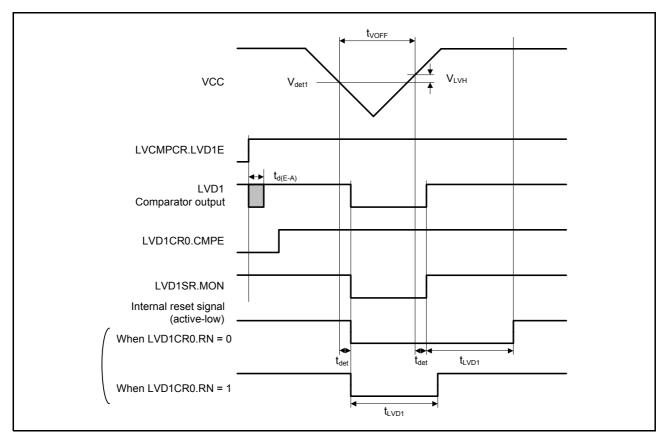


Figure 2.95 Voltage detection circuit timing (V_{det1})

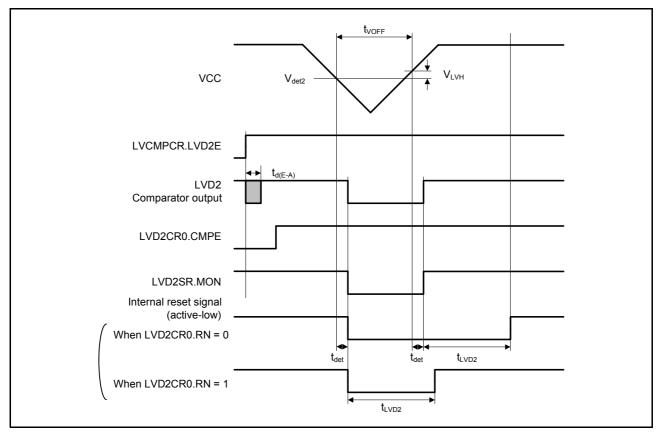


Figure 2.96 Voltage detection circuit timing (V_{det2})

Suspension during program	mming
FCU command	Program Suspend
FSTATR0.FRDY	Ready Not Ready Ready
Programming pulse	Programming
Suspension during erasure	e in suspend priority mode
FCU command	Erase Suspend Resume Suspend tseson
FSTATR0.FRDY	Ready Not Ready Ready Not Ready
Erasure pulse	Erasing
Suspension during erasure	
FCU command	Erase X Suspend X
FSTATR0.FRDY	Ready Not Ready Ready
Erasure pulse	Erasing
Forced Stop	
FACI command	Forced Stop
FSTATR.FRDY	Not Ready Ready

Figure 2.98 Suspension and forced stop timing for flash memory programming and erasure

Data Flash Memory Characteristics 2.14.2

Table 2.54Data flash memory characteristics (1 of 2)Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

			FC	CLK = 4	MHz	20 MHz	≤ FCLK	≤ 60 MHz		Test
Item		Symbol	Min	Тур	Мах	Min	Тур	Мах	Unit	conditions
Programming time	4-byte	t _{DP4}	-	0.46	3.8	-	0.21	1.7	ms	
	8-byte	t _{DP8}	-	0.48	4.0	-	0.22	1.8		
	16-byte	t _{DP16}	-	0.53	4.5	-	0.24	2.0		
Erasure time	64-byte	t _{DE64}	-	4.03	18	-	2.24	10	ms	
	128-byte	t _{DE128}	-	6.2	27	-	3.4	15		
	256-byte	t _{DE256}	-	11.6	50	-	6.4	28		
Blank check time	4-byte	t _{DBC4}	-	-	84	-	-	30	μs	
Reprogramming/erasure cycle*1		N _{DPEC}	125000 *2	-	-	125000 *2	-	-	-	

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2015 Scott Boulevard Santa Clara, CA 90500-2549, U.S.A. Tei: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004 Renesas Electronics Europe Limited Dukse Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +404-1282-585-100, Fax: +44-1282-585-900 Renesas Electronics Canada, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +49-121-503-0, Fax: +49-211-5503-1327 Renesas Electronics Chroge OmbH Arcadiastrases 10, 40472 Disseldorf, Germany Tei: +49-211-5503-0, Fax: +49-211-5503-1327 Renesas Electronics (Shangha) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tei: +86-10-2351-155, Fax: +48-102-257-7679 Renesas Electronics (Shangha) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +862-288-2020 Renesas Electronics Taiwan Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +862-285-6888, Fax: +862-288-9020 Renesas Electronics Taiwan Co., Ltd. 157, No. 363, Fu Shing North Road, Taipiei 10543, Taiwan Tei: +862-28175-9600, Fax: +882 2888-0920 Renesas Electronics Maysia Sch.Bd. 00 Bendemeer Road, Unit #06-402 Hyllux Innovatin Centre, Singapore 339949 Tei: +652-2175-9000, Fax: +882 28175-9670 Renesas Electronics Maysia Sch.Bd. 00 Renesas Electronics Maysia Sch.Bd. 01 Nort, Chi Obel, Road, Haipiei 10543, Taiwan Tei: +696-28175-9000, Fax: +880 2-8175-9670 Renesas Electronics Maysia Sch.Bd. 01 Nort, Roids B, Menaza Amoorp, Amoorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +69-2-7855-9390, Fax: +69-3-7955-9510 Renesas Electronics Maysia Sch.Bd. 01 Nort, Chi Obel, Bowen Hair, Kau, Hi Shage, Indirangar, Bangalore,