E. Kenesas Electronics America Inc - <u>R7FS5D97C3A01CFC#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	133
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs5d97c3a01cfc-aa0

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Precautions

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Table 1.3System (2 of 3)	
Feature	Functional description
Resets	14 resets: • RES pin reset • Power-on reset • Voltage monitor reset 0 • Voltage monitor reset 1 • Voltage monitor reset 2 • Independent Watchdog Timer reset • Watchdog Timer reset • Deep Software Standby reset • SRAM parity error reset • SRAM ECC error reset • Bus master MPU error reset • Bus slave MPU error reset • Stack pointer error reset • Software reset. See section 6, Resets in User's Manual.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the detection level can be selected in the software program. See section 8, Low Voltage Detection (LVD) in User's Manual.
Clocks	 Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) PLL frequency synthesizer Independent Watchdog Timer (WDT) on-chip oscillator Clock out support. See section 9, Clock Generation Circuit in User's Manual.
Clock Frequency Accuracy Measurement Circuit (CAC)	The CAC checks the system clock frequency with a reference clock signal by counting the number of pulses of the system clock to be measured. The reference clock can be provided externally through a CACREF pin or internally from various on-chip oscillators. Event signals can be generated when the clock does not match or measurement ends. This feature is particularly useful in implementing a fail-safe mechanism for home and industrial automation applications. See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User's Manual.
Interrupt Controller Unit (ICU)	The ICU controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt Controller Unit (ICU) in User's Manual.
Key interrupt function (KINT)	A key interrupt can be generated by setting the Key Return Mode register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function (KINT) in User's Manual.
Low-power modes	Power consumption can be reduced in multiple ways, including by setting clock dividers, controlling EBCLK output, controlling SDCLK output, stopping modules, selecting power control mode in normal operation, and transitioning to low-power modes. See section 11, Low-Power Modes in User's Manual.
Battery backup function	A battery backup function is provided for partial powering by a battery. The battery-powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See section 12, Battery Backup Function in User's Manual.
Register write protection	The register write protection function protects important registers from being overwritten because of software errors. See section 13, Register Write Protection in User's Manual.
Memory Protection Unit (MPU)	Four MPUs and a CPU stack pointer monitor function are provided for memory protection. See section 16, Memory Protection Unit (MPU) in User's Manual.
Watchdog Timer (WDT)	The WDT is a 14-bit down-counter. It can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and be used as the condition for detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in User's Manual.

RENESAS

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 Part numbering scheme

Table 1.14List of Products

Part Number	Orderable Part Number	Package	Code flash	Data flash	SRAM	Operating Temperature
R7FS5D97E2A01CBG	R7FS5D97E2A01CBG#AC0	PLBG0176GE-A	2 MB	64 KB	640 KB	-40 to +85°C
R7FS5D97E3A01CFC	R7FS5D97E3A01CFC#AA0	PLQP0176KB-A				-40 to +105°C
R7FS5D97E2A01CLK	R7FS5D97E2A01CLK#AC0	PTLG0145KA-A				-40 to +85°C
R7FS5D97E3A01CFB	R7FS5D97E3A01CFB#AA0	PLQP0144KA-B				-40 to +105°C
R7FS5D97E3A01CFP	R7FS5D97E3A01CFP#AA0	PLQP0100KB-B				-40 to +105°C
R7FS5D97C2A01CBG	R7FS5D97C2A01CBG#AC0	PLBG0176GE-A	1 MB			-40 to +85°C
R7FS5D97C3A01CFC	R7FS5D97C3A01CFC#AA0	PLQP0176KB-A				-40 to +105°C
R7FS5D97C2A01CLK	R7FS5D97C2A01CLK#AC0	PTLG0145KA-A				-40 to +85°C
R7FS5D97C3A01CFB	R7FS5D97C3A01CFB#AA0	PLQP0144KA-B	1			-40 to +105°C
R7FS5D97C3A01CFP	R7FS5D97C3A01CFP#AA0	PLQP0100KB-B				-40 to +105°C

1.5 Pin Functions

Table 1.16Pin functions (1 of 5)

Function	Signal	I/O	Description
Power supply	VCC	Input	Digital voltage supply pin. This is used as the digital power supply for the respective modules and internal voltage regulator, and used to monitor the voltage of the POR/LVD. Connect to the system power supply. Connect to VSS through a $0.1-\mu$ F smoothing capacitor close to each VCC pin.
	VCL0	-	Connect to VSS through a 0.1-µF smoothing capacitor close to each VCL
	VCL	-	pin. Stabilize the internal power supply.
	VSS	Input	Ground pin. Connect to the system power supply (0 V).
	VBATT	Input	Backup power pin.
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through the
	EXTAL	Input	EXTAL pin.
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator
	XCOUT	Output	between XCOUT and XCIN.
	EBCLK	Output	Outputs the external bus clock for external devices.
	SDCLK	Output	Outputs the SDRAM-dedicated clock.
	CLKOUT	Output	Clock output pin.
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin.
Interrupt	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ15	Input	Maskable interrupt request pins.
KINT	KR00 to KR07	Input	A key interrupt can be generated by inputting a falling edge to the key interrupt input pins.
On-chip emulator	TMS	I/O	On-chip emulator or boundary scan pins.
	TDI	Input	
	ТСК	Input	
	TDO	Output	
	TCLK	Output	This pin outputs the clock for synchronization with the trace data.
	TDATA0 to TDATA3	Output	Trace data output.
	SWDIO	I/O	Serial wire debug data input/output pin.
	SWCLK	Input	Serial wire clock pin.
	SWO	Output	Serial wire trace output pin.
External bus interface	RD	Output	Strobe signal indicating that reading from the external bus interface space is in progress, active low.
	WR	Output	Strobe signal indicating that writing to the external bus interface space is in progress, in 1-write strobe mode, active low.
	WR0 to WR1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in writing to the external bus interface space, in byte strobe mode, active low.
	BC0 to BC1	Output	Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in access to the external bus interface space, in 1-write strobe mode, active low.
	ALE	Output	Address latch signal when address/data multiplexed bus is selected.
	WAIT	Input	Input pin for wait request signals in access to the external space, active low.
	CS0 to CS7	Output	Select signals for CS areas, active low.
	A00 to A23	Output	Address bus.
	D00 to D15	I/O	Data bus.
	A00/D00 to A15/D15	I/O	Address/data multiplexed bus.

Pin	nun	nber	'					Extb	us	Timers				Com	nunica	ation i	nterfa	ces						Analog	I	HMI	
BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug, CAC	Interrupt	/O port	External bus	SDRAM	AGT	ЭРТ	GPT	ктс	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	<u>ں</u>	spi, aspi	SSIE	ETHERC (MII) (25 MHz)	ETHERC (RMII) (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	зсос, Рос
G4	108	-	-	-	-	-	PA09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	LCD_DATA
G2	109	_	-	-	-	-	PA10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA
63	110	G1	90	62	VCC		_	_	_	_	-	_	_	_	_	_	_	_	_		_	_	_	_		_	07_B
H3	111	G2	91	63	VSS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
H1	112	H1	92	64	VCL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H2	113	_	-	-	-	-	PA01	-	-	-	-	-	-	-	SCK8	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA 06_B
H4	114	-	-	-	-	-	PA00	-	-	-	-	-	-	-	TXD8	-	-	-	-	-	-		-	-	-	-	LCD_DATA 05 B
J4	115	-	-	-	-	-	P607	-	-	-	-	-	-	-	RXD8	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA
J1	116	-	-	-	-	-	P606	_	-	-	_	-	RTC	-	CTS8	-	-	-	-	-	-	-	-	-	-	-	U4_B
													OUT		RTS8/												03_B
J2	117	H2	93	-	-	-	P605	D11[A11/ D111	DQ11	-	-	GTIOC 8A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
J3	118	G4	94	-	-	-	P604	D12[A12/ D12]	DQ12	-	-	GTIOC 8B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
K3	119	H3	95	-	-	-	P603	D13[A13/ D13]	DQ13	-	-	GTIOC 7A	-	-	-	CTS9_ RTS9/ SS9	-	-	-	-	-	-	-	-	-	-	-
K1	120	J1	96	65	-	-	P602	EBC	SDCL	-	-	GTIOC	-	-	-	TXD9	-	-	-	-	-	-	-	-	-	-	LCD_DATA
K2	121	J2	97	66	-	-	P601	LK WR/	n DQM0	-	-	7B GTIOC	-	-	-	RXD9	-	-	-	_	-	-	-	-	-	-	LCD_DATA
11	122	ЦЛ	08	67			P600	WR0				6A GTIOC				SCKO											03_A
21	122	1 14	50	07	/CACRE	-	1 000	ND	-	-		6B	-	-	-	5013	-	-	_		-	-	-	-	-	-	02_A
K4	123	K2	99	-	F VCC	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	
L4	124	K1	100	-	VSS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L2	125	J3	101	68	-	KR07	P107	D07[A07/ D07]	DQ07	AGTOA0	-	GTIOC 8A	-	-	CTS8_ RTS8/ SS8	-	-	-	-	-	-	-		-	-	-	LCD_DATA 01_A
M1	126	кз	102	69	-	KRU6	P106	D06[A06/ D06]	DQ06	AGTOBU	-	8B	-	-	SCK8			_A	-	_	-	-		-	-		00_A
L3	127	J4	103	70	-	KR05	P105	D05[A05/ D05]	DQ05	-	GTETRGA	IA	-	-	MOSI8 /SDA8	-	-	_A	-	-	-	-	-	-	-	-	N3_A
MZ	128	LJ	104	71	-	KR04	P104	D04[A04/ D04]	DQ04	-	GTEIRGB	1B	-	-	MISO8 /SCL8				-	_	-	-		-	-		N2_A
Ma	129		105	72		KRU3	P 103	D03[A03/ D03]	DQUS	- ACT00	GTOWLO	2A_A	-	CIXU	RTS0/ SS0	-	-	_A	-		-	-	-			-	N1_A
N2	130	M2	100	73	-		P102	D02[A02/ D02]	DQ02	AGTEEO	GTETROP	2B_A	-	CRAU	TYD0/	CTS1	- SDA1	KA_A	-	-	-	-		0	-		NO_A
P1	132	N1	107	74	-	KR01	P100	A01/ D01]	DOM	AGTION	GTETRGA	5A	_		MOSI0 /SDA0	RTS1/ SS1			-		_	_					A
						KR00		A00/ D00]	Javo		01211071	5B			MISO0 /SCL0	00111	_В	_A									CLK_A
N3	133	L2	109	-	-	-	P800	D14[A14/ D14]	DQ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R1	134	N2	110	-	-	-	P801	D15[A15/ D15]	DQ15	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT4 _A	-	-	-	-
P2	135	-	-	-	-	-	P802	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT5 _A	-	-	-	LCD_DATA 02_B
R2	136	-	-	-	-	-	P803	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT6 _A	-	-	-	LCD_DATA 01_B
P3	137	-	-	-		-	P804	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT7 _A	-	-	-	LCD_DATA 00_B
N4	138	N3	111	-	VCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R3	140	K4	113	76	-	-	- P500	-	-	- AGTOA0	GTIU	- GTIOC 11A	-	- USB_ VBUS EN	-	-	-	- QSPC LK	-	-	-	-	- SD1 CLK_	- AN016	IVREF0	-	-
P4	141	M4	114	77	-	IRQ11	P501	-	-	AGTOB0	GTIV	GTIOC 11B	-	USB_ OVR CUR	-	TXD5/ MOSI5 /SDA5	-	QSSL	-	-	-	-	SD1 CMD A	AN116	IVREF1	-	-
R4	142	L4	115	78	=	IRQ12	P502	-	-	-	GTIW	GTIOC 12A	-	A USB_ OVR	-	RXD5/ MISO5	-	QIO0	-	=	-	-	SD1 DAT0	AN017	IVCMP0	-	-
N5	143	K5	116	79	-	-	P503	-	-	-	GTETRGC	GTIOC	-	CUR B USB_	CTS6_	/SCL5 SCK5	-	QIO1	-	-	-	-	_A SD1	AN117	-	-	-
P5	144	L5	117	80	-	-	P504	ALE	-	-	GTETRGD	GTIOC	-	EXIC EN USB_	KIS6/ SS6 SCK6	CTS5_	-	QIO2	-	-	-	-	DAT1 _A SD1	AN018	-	-	-
	L	L										13A		ιD		к (S5/ SS5							LAT2				
P6	145	K6	118	-	-	IRQ14	P505	-	-	-	-	GTIOC 13B	-	-	RXD6/ MISO6 /SCL6	-	-	QIO3	-	-	-	-	SD1 DAT3 _A	AN118	-	-	-

Figure 2.23 SDRAM single read timing

Figure 2.24 SDRAM single write timing

Figure 2.52 SPI timing for slave when CPHA = 0

RENESAS

Figure 2.55 Transmit and receive timing

2.3.13 **IIC** Timing

 Table 2.27
 IIC timing (1) (1 of 2)

 (1) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B,

 SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.

(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.

(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

ltem		Symbol	Min* ¹	Max	Unit	Test conditions* ³
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	-	ns	Figure 2.56
(Standard mode, SMBus)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
ICFER.FMPE = 0	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA input rise time	t _{Sr}	-	1000	ns	
	SCL, SDA input fall time	t _{Sf}	-	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	$\begin{array}{l} 3 \ (6) \times t_{IICcyc} + 4 \times t_{Pcyc} \\ + \ 300 \end{array}$	-	ns	-
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	$\begin{array}{l} 1 \hspace{0.1cm} (5) \times t_{IICcyc} + t_{Pcyc} + \\ 300 \end{array}$	-	ns	
	Repeated START condition input setup time	t _{STAS}	1000	-	ns	
	STOP condition input setup time	t _{STOS}	1000	-	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	Cb	-	400	pF	

2.3.14 SSIE Timing

 Table 2.29
 SSIE timing

 (1) High drive output is selected with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B" to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group.

				Target	specification		
Item			Symbol	Min.	Max.	Unit	Comments
SSIBCK	Cycle	Master	t _O	80	-	ns	Figure 2.57
		Slave	t _l	80	-	ns	
	High level/ low level	Master	t _{HC} /t _{LC}	0.35	-	t _O	
		Slave		0.35	-	t _l	
	Rising time/falling time	Master	t _{RC} /t _{FC}	-	0.15	t _O / t _I	
		Slave		-	0.15	t _O / t _I	
SSILRCK/SSIFS,	Input set up time	Master	t _{SR}	12	-	ns	Figure 2.59,
SSITXD0, SSIRXD0, SSIDATA1		Slave		12	-	ns	Figure 2.60
00.27.11.1	Input hold time	Master	t _{HR}	8	-	ns	
		Slave		15	-	ns	
	Output delay time	Master	t _{DTR}	-10	5	ns	
		Slave		0	20	ns	Figure 2.59, Figure 2.60
	Output delay time from SSILRCK/SSIFS change	Slave	t _{DTRW}	-	20	ns	Figure 2.61*1
GTIOC1A,	Cycle		t _{EXcyc}	20	-	ns	Figure 2.58
AUDIO_CLK	High level/ low level	t _{EXL} / t _{EXH}	0.4	0.6	t _{EXcyc}		

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK/SSIFS pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA1 pin.

RENESAS

Item			Min	Тур	Max	Unit	Test conditions
High-precision channels (AN003 to AN007)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = $1 \text{ k}\Omega$	0.48 (0.267)*2	-	-	μs	Sampling in 16 states
		Max. = 400 Ω	0.40 (0.183)* ²	-	-	μs	Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V \leq VREFH0 \leq AVCC0
	Offset error		-	±1.0	±2.5	LSB	-
	Full-scale error		-	±1.0	±2.5	LSB	-
	Absolute accuracy		-	±2.0	±4.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±1.5	LSB	-
	INL integral nonlinear	rity error	-	±1.0	±2.5	LSB	-
Normal-precision channels (AN016 to AN020)	$\begin{array}{lll} & \mbox{Conversion time}^{\star 1} & \mbox{Permissible signal} \\ & \mbox{(Operation at} & \mbox{source impedance} \\ & \mbox{PCLKC} = 60 \mbox{ MHz} & \mbox{Max.} = 1 \mbox{Max} \end{array}$		0.88 (0.667)*2	-	-	μs	Sampling in 40 states
	Offset error		-	±1.0	±5.5	LSB	-
	Full-scale error		-	±1.0	±5.5	LSB	-
Absolute accuracy			-	±2.0	±7.5	LSB	-
	DNL differential nonlinearity error		-	±0.5	±4.5	LSB	-
	INL integral nonlinear	rity error	-	±1.0	±5.5	LSB	-

Table 2.40 A/D conversion characteristics for unit 0 (2 of 2) Conditions: PCLKC = 1 to 60 MHz

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

The use of pins AN000 to AN007 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage is stable.

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Note 2. Values in parentheses indicate the sampling time.

Table 2.41 A/D conversion characteristics for unit 1 (1 of 2) Conditions: PCLKC = 1 to 60 MHz

Item			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	60	MHz	-
Analog input capacitance			-	-	30	pF	-
Quantization error			-	±0.5	-	LSB	-
Resolution			-	-	12	Bits	-
Channel-dedicated sample-and-hold circuits in use (AN100 to AN102)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = $1 k\Omega$	1.06 (0.4 + 0.25)*2	-	-	μs	 Sampling of channel- dedicated sample-and-hold circuits in 24 states Sampling in 15 states
	Offset error		-	±1.5	±3.5	LSB	AN100 to AN102 = 0.25 V
	Full-scale error		-	±1.5	±3.5	LSB	AN100 to AN102 = VREFH - 0.25 V
	Absolute accuracy		-	±2.5	±5.5	LSB	-
	DNL differential nonli	nearity error	-	±1.0	±2.0	LSB	-
	INL integral nonlinear	ity error	-	±1.5	±3.0	LSB	-
	Holding characteristic circuits	-	-	20	μs	-	
	Dynamic range		0.25	-	VREFH - 0.25	V	-

Figure 2.94 Voltage detection circuit timing (V_{det0})

2.10 VBATT Characteristics

Table 2 48	Battery	backup	function	characteristics
1 abie 2.40	Dallery	Dackup	Tunction	characteristics

Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Voltage level for switching to battery backup	V _{DETBATT}	2.50	2.60	2.70	V	Figure 2.97
Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop	V _{BATTSW}	2.70	-	-	V	
VCC-off period for starting power supply switching	t _{VOFFBATT}	200	-	-	μs	

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 2.97 Battery backup function characteristics

2.11 CTSU Characteristics

Table 2.49 CTSU characteristics

Item	Symbol	Min	Тур	Мах	Unit	Test conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	-
TS pin capacitive load	C _{base}	-	-	50	pF	-
Permissible output high current	Σ _{IoH}	-	-	-40	mA	When the mutual capacitance method is applied

2.12 ACMPHS Characteristics

Table 2.50ACMPHS characteristics

Item	Symbol	Min	Тур	Мах	Unit	Test conditions
Reference voltage range	VREF	0	-	AVCC0	V	-
Input voltage range	VI	0	-	AVCC0	V	-
Output delay*1	Td	-	50	100	ns	VI = VREF ± 100 mV
Internal reference voltage	Vref	1.13	1.18	1.23	V	-

Note 1. This value is the internal propagation delay.

ltem		Symbol	Min	Тур	Мах	Unit
Gain error	G = 1.500	Gerr	-1.0	-	1.0	%
	G = 2.333		-1.0	-	1.0	
	G = 4.000		-1.0	-	1.0	
	G = 5.667	_	-1.0	-	1.0	

Table 2.52 PGA characteristics in differential mode (2 of 2)

2.14 Flash Memory Characteristics

2.14.1 Code Flash Memory Characteristics

Item			FC	FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz			Test
		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	conditions
Programming time	128-byte	t _{P128}	-	1.1	13.2	-	0.52	6.0	ms	
$N_{PEC} \le 100 \text{ times}$	8-KB	t _{P8K}	-	75	176	-	34	80	ms	
	32-KB	t _{P32K}	-	299	704	-	136	320	ms	
Programming time	128-byte	t _{P128}	-	1.4	15.8	-	0.62	7.2	ms	
N _{PEC} > 100 times	8-KB	t _{P8K}	-	90	212	-	41	96	ms	
	32-KB	t _{P32K}	-	359	848	-	163	384	ms	
Erasure time	8-KB	t _{E8K}	-	92	216	-	51	120	ms	
$N_{PEC} \le 100 \text{ times}$	32-KB	t _{E32K}	-	329	864	-	183	480	ms	
Erasure time	8-KB	t _{E8K}	-	110	260	-	61	144	ms	
N _{PEC} > 100 times	32-KB	t _{E32K}	-	396	1040	-	220	576	ms	
Reprogramming/erasure cycle*Note:		N _{PEC}	10000*1	-	-	10000*1	-	-	Times	
Suspend delay during programming		t _{SPD}	-	-	264	-	-	120	μs	
First suspend delay during erasure in suspend priority mode		t _{SESD1}	-	-	216	-	-	120	μs	
Second suspend delay during erasure in suspend priority mode		t _{SESD2}	-	-	1.7	-	-	1.7	ms	
Suspend delay during erasure in erasure priority mode		t _{SEED}	-	-	1.7	-	-	1.7	ms	
Forced stop command		t _{FD}	-	-	32	-	-	20	μs	
Data hold time*2		t _{DRP}	10* ^{2, *3}	-	-	10* ^{2, *3}	-	-	Years	
			30*2, *3	-	-	30*2, *3	-	-		Ta = +85°C

Table 2.53Code flash memory characteristicsConditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), Note: erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.

This indicates the minimum value of the characteristic when reprogramming is performed within the specified range. Note 2.

Note 3. This result is obtained from reliability testing.

Suspension during progra	mming
FCU command	Program Suspend
FSTATR0.FRDY	Ready Not Ready Ready
Programming pulse	Programming
Suspension during erasure	e in suspend priority mode
FCU command	Erase Suspend Resume Suspend
FSTATR0.FRDY	Ready Not Ready
Erasure pulse	Erasing Erasing
 Suspension during erasure 	
FCU command	Erase X Suspend X
FSTATR0.FRDY	Ready Not Ready Ready
Erasure pulse	Erasing
Forced Stop	
FACI command	Forced Stop
FSTATR.FRDY	Not Ready Ready

Figure 2.98 Suspension and forced stop timing for flash memory programming and erasure

Data Flash Memory Characteristics 2.14.2

Table 2.54Data flash memory characteristics (1 of 2)Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

			FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz				Test
Item		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	conditions
Programming time	4-byte	t _{DP4}	-	0.46	3.8	-	0.21	1.7	ms	
	8-byte	t _{DP8}	-	0.48	4.0	-	0.22	1.8		
	16-byte	t _{DP16}	-	0.53	4.5	-	0.24	2.0		
Erasure time	64-byte	t _{DE64}	-	4.03	18	-	2.24	10	ms	
	128-byte	t _{DE128}	-	6.2	27	-	3.4	15		
	256-byte	t _{DE256}	-	11.6	50	-	6.4	28		
Blank check time	4-byte	t _{DBC4}	-	-	84	-	-	30	μs	
Reprogramming/erasure cycle*1		N _{DPEC}	125000 *2	-	-	125000 *2	-	-	-	

Figure 1.2 176-pin LQFP

Figure 1.3 145-pin LGA

Revision History			S5D9 Microcontroller Datasheet			
Rev.	Date	Chapter	Summary			

First Edition issued

Proprietary Notice

1.00

Nov 3, 2016

All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas.

ARM[®] and Cortex[®] are registered trademarks of ARM Limited. CoreSight[™] is a trademark of ARM Limited.

CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.

Magic Packet[™] is a trademark of Advanced Micro Devices, Inc.

SuperFlash[®] is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders.

S5D9 Microcontroller Datasheet

Publication Date: Rev. 1.00 Nov 3, 2016

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2015 Scott Boulevard Santa Clara, CA 90500-2549, U.S.A. Tei: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004 Renesas Electronics Europe Limited Dukse Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +404-1528-585-100, Fax: +44-1628-585-900 Renesas Electronics Canada, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +40-1228-585-100, Fax: +44-1528-585-900 Renesas Electronics Curope CmbH Arcadiastrases 10, 40472 Disseldorf, Germany Tei: +49-211-5503-0, Fax: +49-211-5503-1327 Renesas Electronics (Shanghai) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tei: +86-10-235-1155, Fax: +48-1228-57679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +862-288-2020 Renesas Electronics Taiwan Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +862-285-688, Fax: +862-288-9020 Renesas Electronics Taiwan Co., Ltd. 137, No. 363, Tushimg North Road, Taipiei 10543, Taiwan Tei: +865-28175-9600, Fax: +882 288-9020 Renesas Electronics Maysia Sch.Bd. 00 Bendemeer Road, Unit #06-02 Hyflux Innovatin Centre, Singapore 339949 Tei: +655-2175-9000, Fax: +882 288-185-9670 Renesas Electronics Maysia Sch.Bd. 00 Renesas Electronics Maysia Sch.Bd. 01 Nort, To, No Ka, Hongar Amoorp, Amoorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7855-9390, Fax: +80-735-950. Renesas Electronics Maysia Sch.Bd. 01 Nort, Tho Kab. Meneara Amoorp, Amoorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7855-9390, Fax: +91-60-47298770 Renesas Electronic