E. Kenesas Electronics America Inc - <u>R7FS5D97C3A01CFP#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	76
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs5d97c3a01cfp-aa0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.3System (3 of 3)

Feature	Functional description							
Independent Watchdog Timer (IWDT)	The IWDT consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by a refresh of the count value in the registers. See section 28, Independent Watchdog Timer (IWDT) in User's Manual.							

Table 1.4 Event link

Feature	Functional description
Event Link Controller (ELC)	The ELC uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User's Manual.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A DTC module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User's Manual.
DMA Controller (DMAC)	An 8-channel DMAC module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User's Manual.

Table 1.6 External bus interface

Feature	Functional description
External buses	 CS area (EXBIU): Connected to the external devices (external memory interface) SDRAM area (EXBIU): Connected to the SDRAM (external memory interface) QSPI area (EXBIUT2): Connected to the QSPI (external device interface).

Table 1.7 Timers

Feature	Functional description								
General PWM Timer (GPT)	The GPT is a 32-bit timer with 14 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User's Manual.								
Port Output Enable for GPT (POEG)	Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in User's Manual.								
Asynchronous General-Purpose Timer (AGT)	The AGT is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and can be accessed with the AGT register. See section 25, Asynchronous General-Purpose Timer (AGT) in User's Manual.								
Realtime Clock (RTC)	The RTC has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 26, Realtime Clock (RTC) in User's Manual.								

	system for communication. See section 3 Manual.
R01DS0303EU0100 Rev.1.00	RENESAS

Communication interfaces (1 of 2) Table 1.8

Feature	Functional description
Serial Communications Interface (SCI)	 The SCI is configurable to five asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 34, Serial Communications Interface (SCI) in User's Manual.
IrDA Interface (IrDA)	The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 35, IrDA Interface in User's Manual.
I ² C Bus Interface (IIC)	The three-channel IIC conforms with and provides a subset of the NXP I ² C bus (Inter- Integrated Circuit bus) interface functions. See section 36, I ² C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent SPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices. See section 38, Serial Peripheral Interface (SPI) in User's Manual.
Serial Sound Interface Enhanced (SSIE)	The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting I ² S 2ch, 4ch, 6ch, 8ch, WS Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 41, Serial Sound Interface Enhanced (SSIE) in User's Manual.
Quad Serial Peripheral Interface (QSPI)	The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 39, Quad Serial Peripheral Interface (QSPI) in User's Manual.
CAN module (CAN)	The CAN module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically-noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 37, Controller Area Network (CAN) Module in User's Manual.
USB 2.0 Full-Speed Module (USBFS)	Full-Speed USB controller that can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. See section 32, USB 2.0 Full-Speed Module (USBFS) in User's Manual.
USB 2.0 High-Speed Module (USBHS)	High-Speed USB controller that can operate as a host controller or a device controller. As a host controller, the USBHS supports high-speed transfer, full-speed transfer, and low-speed transfer as defined in Universal Serial Bus Specification 2.0. As a device controller, the USBHS supports high-speed transfer and full-speed transfer as defined in Universal Serial Bus Specification 2.0. The USBHS has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USBHS has FIFO buffers for data transfer, providing a maximum of 10 pipes. Any endpoint number can be assigned to pipes 1 to 9, based on the peripheral devices or your system for communication. See section 33, USB 2.0 High-Speed Module (USBHS) in User's Manual.

Table 1.11 Graphics

Feature	Functional description
Graphics LCD Controller (GLCDC)	 The GLCDC provides multiple functions and supports various data formats and panels. Key GLCDC features include: GPX bus master function for accessing graphics data Superimposition of three planes (single color background plane, graphic 1 plane, and graphic 2 plane) Support for many types of 32- or 16-bit per pixel graphics data and 8-, 4-, or 1-bit LUT data format Digital interface signal output supporting a video image size of WVGA or greater. See section 58, Graphics LCD Controller (GLCDC) in User's Manual.
2D Drawing Engine (DRW)	The 2D Drawing Engine (DRW) provides flexible functions that can support almost any object geometry rather than being bound to only a few specific geometries such as lines, triangles, or circles. The edges of every object can be independently blurred or antialiased. Rasterization is executed at one pixel per clock on the bounding box of the object from left to right and top to bottom. The DRW can also raster from bottom to top to optimize the performance in certain cases. In addition, optimization methods are available to avoid rasterization of many empty pixels of the bounding box. The distances to the edges of the object are calculated by a set of edge equations for every pixel of the bounding box. These edge equations can be combined to describe the entire object. If a pixel is inside the object, it is selected for rendering. If it is outside, it is discarded. If it is on the edge, an alpha value can be chosen proportional to the distance of the pixel to the nearest edge for antialiasing. Every pixel that is selected for rendering can be textured. The resulting aRGB quadruple can be modified by a general raster operation approach independently for each of the four channels. The aRGB quadruples can then be blended with one of the multiple blend modes of the DRW. The DRW provides two inputs (texture read and framebuffer read), and one output (framebuffer write). The internal color format is always aRGB (8888). The color formats from the inputs are converted to the internal format on read and a conversion back is made on write. See section 56, 2D Drawing Engine (DRW) in User's Manual.
JPEG Codec (JPEG)	The JPEG Codec (JPEG) incorporates a JPEG codec that conforms to the JPEG baseline compression and decompression standard. This provides high-speed compression of image data and high-speed decoding of JPEG data. See section 57, JPEG Codec (JPEG) in User's Manual.
Parallel Data Capture Unit (PDC)	One PDC unit is provided for communicating with external I/O devices, including image sensors, and transferring parallel data such as an image output from the external I/O device through the DTC or DMAC to the on-chip SRAM and external address spaces (the CS and SDRAM areas). See section 44, Parallel Data Capture Unit (PDC) in User's Manual.

Table 1.12 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generating polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 40, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The DOC compares, adds, and subtracts 16-bit data. See section 52, Data Operation Circuit (DOC) in User's Manual.
Sampling Rate Converter (SRC)	The SRC converts the sampling rate of data produced by various audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are supported. See section 42, Sampling Rate Converter (SRC) in User's Manual.

Pin	nun	nber	'					Extb	us	Timers				Com	nunica	ation i	nterfa	ces						Analog	I	HMI	
BGA176	LQFP176	LGA145	LQFP144	LQFP100	Power, System, Clock, Debug, CAC	Interrupt	/O port	External bus	SDRAM	AGT	ЭРТ	GPT	ктс	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)	SCI1,3,5,7,9 (30 MHz)	<u>ں</u>	spi, aspi	SSIE	ETHERC (MII) (25 MHz)	ETHERC (RMII) (50 MHz)	USBHS	SDHI	ADC12	DAC12, ACMPHS	CTSU	зсос, Рос
G4	108	-	-	-	-	-	PA09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	LCD_DATA
G2	109	_	-	-	-	-	PA10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA
63	110	G1	90	62	VCC		_	_	_	_	-	_	_	_	_	_	_	_	_		_	_	_	_		_	07_B
H3	111	G2	91	63	VSS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
H1	112	H1	92	64	VCL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H2	113	_	-	-	-	-	PA01	-	-	-	-	-	-	-	SCK8	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA 06_B
H4	114	-	-	-	-	-	PA00	-	-	-	-	-	-	-	TXD8	-	-	-	-	-	-		-	-	-	-	LCD_DATA 05 B
J4	115	-	-	-	-	-	P607	-	-	-	-	-	-	-	RXD8	-	-	-	-	-	-	-	-	-	-	-	LCD_DATA
J1	116	-	-	-	-	-	P606	_	-	-	_	-	RTC	-	CTS8	-	-	-	-	-	-	-	-	-	-	-	U4_B
													OUT		RTS8/												03_B
J2	117	H2	93	-	-	-	P605	D11[A11/ D111	DQ11	-	-	GTIOC 8A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
J3	118	G4	94	-	-	-	P604	D12[A12/ D12]	DQ12	-	-	GTIOC 8B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
K3	119	H3	95	-	-	-	P603	D13[A13/ D13]	DQ13	-	-	GTIOC 7A	-	-	-	CTS9_ RTS9/ SS9	-	-	-	-	-	-	-	-	-	-	-
K1	120	J1	96	65	-	-	P602	EBC	SDCL	-	-	GTIOC	-	-	-	TXD9	-	-	-	-	-	-	-	-	-	-	LCD_DATA
K2	121	J2	97	66	-	-	P601	LK WR/	n DQM0	-	-	7B GTIOC	-	-	-	RXD9	-	-	-	_	-	-	-	-	-	-	LCD_DATA
11	122	ЦЛ	08	67			P600	WR0				6A GTIOC				SCKO											03_A
21	122	1 14	50	07	/CACRE	-	1 000	ND	-	-		6B	-	-	-	5013	-	-	_		-	-	-	-	-	-	02_A
K4	123	K2	99	-	F VCC	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	
L4	124	K1	100	-	VSS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L2	125	J3	101	68	-	KR07	P107	D07[A07/ D07]	DQ07	AGTOA0	-	GTIOC 8A	-	-	CTS8_ RTS8/ SS8	-	-	-	-	-	-	-		-	-	-	LCD_DATA 01_A
M1	126	кз	102	69	-	KRU6	P106	D06[A06/ D06]	DQ06	AGTOBU	-	8B	-	-	SCK8			_A	-	_	-	-		-	-		00_A
L3	127	J4	103	70	-	KR05	P105	D05[A05/ D05]	DQ05	-	GTETRGA	IA	-	-	MOSI8 /SDA8	-	-	_A	-	-	-	-	-	-	-	-	N3_A
MZ	128	LJ	104	71	-	KR04	P104	D04[A04/ D04]	DQ04	-	GTEIRGB	1B	-	-	MISO8 /SCL8				-	_	-	-		-	-		N2_A
Ma	129		105	72		KRU3	P 103	D03[A03/ D03]	DQUS	- ACT00	GTOWLO	2A_A	-		RTS0/ SS0	-	-	_A	-		-	-	-			-	N1_A
N2	130	M2	100	73	-		P102	D02[A02/ D02]	DQ02	AGTEEO	GTETROP	2B_A	-	CRAU	TYD0/	CTS1	- SDA1	KA_A	-	-	-	-		0	-		NO_A
P1	132	N1	107	74	-	KR01	P100	A01/ D01]	DOM	AGTION	GTETRGA	5A	_		MOSI0 /SDA0	RTS1/ SS1			-		_						A
						KR00		A00/ D00]	Javo		012111071	5B			MISO0 /SCL0	00111	_В	_A									CLK_A
N3	133	L2	109	-	-	-	P800	D14[A14/ D14]	DQ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R1	134	N2	110	-	-	-	P801	D15[A15/ D15]	DQ15	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT4 _A	-	-	-	-
P2	135	-	-	-	-	-	P802	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT5 _A	-	-	-	LCD_DATA 02_B
R2	136	-	-	-	-	-	P803	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT6 _A	-	-	-	LCD_DATA 01_B
P3	137	-	-	-		-	P804	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SD1 DAT7 _A	-	-	-	LCD_DATA 00_B
N4	138	N3	111	-	VCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R3	140	K4	113	76	-	-	- P500	-	-	- AGTOA0	GTIU	- GTIOC 11A	-	- USB_ VBUS EN	-	-	-	- QSPC LK	-	-	-	-	- SD1 CLK_	- AN016	IVREF0	-	-
P4	141	M4	114	77	-	IRQ11	P501	-	-	AGTOB0	GTIV	GTIOC 11B	-	USB_ OVR CUR	-	TXD5/ MOSI5 /SDA5	-	QSSL	-	-	-	-	SD1 CMD A	AN116	IVREF1	-	-
R4	142	L4	115	78	=	IRQ12	P502	-	-	-	GTIW	GTIOC 12A	-	A USB_ OVR	-	RXD5/ MISO5	-	QIO0	-	=	-	-	SD1 DAT0	AN017	IVCMP0	-	-
N5	143	K5	116	79	-	-	P503	-	-	-	GTETRGC	GTIOC	-	CUR B USB_	CTS6_	/SCL5 SCK5	-	QIO1	-	-	-	-	_A SD1	AN117	-	-	-
P5	144	L5	117	80	-	-	P504	ALE	-	-	GTETRGD	GTIOC	-	EXIC EN USB_	KIS6/ SS6 SCK6	CTS5_	-	QIO2	-	-	-	-	DAT1 _A SD1	AN018	-	-	-
	L	L										13A		ιD		к (S5/ SS5							DAT2 _A				
P6	145	K6	118	-	-	IRQ14	P505	-	-	-	-	GTIOC 13B	-	-	RXD6/ MISO6 /SCL6	-	-	QIO3	-	-	-	-	SD1 DAT3 _A	AN118	-	-	-

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V, VSS = AVSS0 = VREFL0/VREFL = VSS_USB = VSS1_USBHS = VSS2_USBHS = PVSS_USBHS = AVSS_USBHS = 0 V, Ta = Topr

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of timing specification in each peripherals are recommended for the best peripheral operation, however make sure to adjust driving abilities of each pins to meet your conditions.

2.1 Absolute Maximum Ratings

Table 2.1Absolute maximum ratings

Item	Symbol	Value	Unit
Power supply voltage	VCC, VCC_USB *2	-0.3 to +4.0	V
VBATT power supply voltage	VBATT	-0.3 to +4.0	V
Input voltage (except for 5V-tolerant ports*1)	V _{in}	-0.3 to VCC + 0.3	V
Input voltage (5V-tolerant ports*1)	V _{in}	-0.3 to + VCC + 4.0 (max 5.8)	V
Reference power supply voltage	VREFH/VREFH0	-0.3 to VCC + 0.3	V
Analog power supply voltage	AVCC0 *2	-0.3 to +4.0	V
USBHS power supply voltage	VCC_USBHS	-0.3 to +4.0	V
USBHS analog power supply voltage	AVCC_USBHS	-0.3 to +4.0	V
Analog input voltage	V _{AN}	-0.3 to AVCC0 + 0.3	V
Operating temperature*3,*4,*5	T _{opr}	-40 to +85 -40 to +105	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.

Note 1. Ports P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, and PB01 are 5V-tolerant.

Note 2. Connect AVCC0 and VCC_USB to VCC.

Note 3. See section 2.2.1, T_j/T_a Definition.

Note 4. Contact a Renesas Electronics sales office for information on derating operation when T_a = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability.

Note 5. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering.

2.2.5 Operating and Standby Current

Table 2.7Operating and standby current (1 of 2)

ltem					Symbol	Min	Тур	Max	Unit	Test conditions
Supply		Maximum* ²			I _{CC} *3	-	-	137* ²	mA	ICLK = 120 MHz
current"		CoreMark®*5				-	21	-		PCLKA = 120 MHz* ⁷ PCLKB = 60 MHz
		Normal mode	All pe while flash*	ripheral clocks enabled, (1) code executing from 4		-	34	-		PCLKC = 60 MHz PCLKD = 120 MHz FCLK = 60 MHz BCLK = 120 MHz
	mode		All pe while flash*	ripheral clocks disabled, (1) code executing from 5, *6		-	14	-		DOLIX - 120 WI12
	eed	Sleep mode*5, *6				-	12	46		
	h-sp	Increase during BGO	Data	flash P/E		-	6	-		
	Hig	operation	Code	flash P/E	İ	-	8	-		
	Lov	v-speed mode ^{*5}				-	2.4	-		ICLK = 1 MHz
	Sul	bosc-speed mode*5				-	2	-		ICLK = 32.768 kHz
	Sof	ftware Standby mode				-	1.8	28		-
		Power supplied to Standb detecting unit	y SRAN	I and USB resume		-	30	113	μA	-
	ode	Power not supplied to SRAM or USB resume	Powe powe	r-on reset circuit low- r function disabled		-	13	40		-
	ndby m	detecting unit	Powe powe	r-on reset circuit low- r function enabled		-	6.3	34		-
	are Sta	Increase when the RTC and AGT are operating	When oscilla	the low-speed on-chip ator (LOCO) is in use		-	5	-		-
	Softwa		When low cl	a crystal oscillator for ock loads is in use		-	1.0	-		-
	Deep		When stand	a crystal oscillator for ard clock loads is in use		-	1.5	-		-
	RT the	C operating while VCC is of battery backup function, or	f (with nly the	When a crystal oscillator for low clock		-	0.9	-		V _{BATT} = 1.8 V, VCC = 0 V
	ope	erate)		loads is in use		-	1.3	-		V _{BATT} = 3.3 V, VCC = 0 V
				When a crystal oscillator for standard		-	1.1	-		V _{BATT} = 1.8 V, VCC = 0 V
						-	1.8	-		V _{BATT} = 3.3 V, VCC = 0 V
Analog	Du	ring 12-bit A/D conversion			AI _{CC}	-	0.8	1.1	mA	-
supply	Du	ring 12-bit A/D conversion v	vith S/H	amp		-	2.3	3.3	mA	-
current	PG	A (1ch)				-	1	3	mA	-
	AC	MPHS (1unit)				-	100	150	μA	AVCC ≥ 2.7 V
	Ter	nperature sensor		1		-	0.1	0.2	mA	-
	Du	ring D/A conversion (per un	it)	Without AMP output		-	0.1	0.2	mA	-
				With AMP output		-	0.6	1.1	mA	-
	Wa	iting for A/D, D/A conversio	n (all u	nits)		-	0.9	1.6	mA	-
	AD	C12, DAC12 in standby mo	des (all	units)* ⁸		-	2	8	μA	-
Reference power	Du	ring 12-bit A/D conversion (unit 0)		AI _{REFH0}	-	70	120	μA	-
supply	Wa	iting for 12-bit A/D conversi	conversion (unit 0)			-	0.07	0.5	μA	-
(VREFH0)	AD	C12 in standby modes (unit	t 0)			-	0.07	0.5	μA	-
Reference	Du	ring 12-bit A/D conversion (unit 1)		AI _{REFH}	-	70	120	μA	-
supply	Du (pe	ring D/A conversion r unit)		Without AMP output		-	0.1	0.4	mA	-
(VREFH)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/		With AMP ouput		-	0.1	0.4	mA	-
-	Wa	iting for 12-bit A/D (unit 1),	D/A (all	units) conversion		-	0.07	0.8	μA	-
	ADC12 unit 1 in standby modes			-	0.07	0.8	μA	-		

Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.

- Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
- PCLKD, FCLK, and BCLK frequencies.
- Note 3. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.

Table 2.11 Operation frequency value in low-speed mode

ltem		Symbol	Min	Тур	Мах	Unit
Operation frequency	System clock (ICLK)*2	f	-	-	1	MHz
	Peripheral module clock (PCLKA)*2		-	-	1	
	Peripheral module clock (PCLKB)*2		-	-	1	
	Peripheral module clock (PCLKC)*2,*3		_*3	-	1	
	Peripheral module clock (PCLKD)*2		-	-	1	
	Flash interface clock (FCLK)*1, *2		-	-	1	
	External bus clock (BCLK)		-	-	1	
	EBCLK pin output		-	-	1	

Note 1. Programming or erasing the flash memory is disabled in low-speed mode.

Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies.

Note 3. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.

Table 2.12 Operation frequency value in Subosc-speed mode

Item		Symbol	Min	Тур	Мах	Unit
Operation frequency System clock (ICLK)*2			27.8	-	37.7	kHz
	Peripheral module clock (PCLKA)*2		-	-	37.7	
	Peripheral module clock (PCLKB)*2		-	-	37.7	
	Peripheral module clock (PCLKC)*2,*3		-	-	37.7	
	Peripheral module clock (PCLKD)*2		-	-	37.7	
	Flash interface clock (FCLK)*1, *2		27.8	-	37.7	
	External bus clock (BCLK)*2		-	-	37.7	
	EBCLK pin output		-	-	37.7	

Note 1. Programming or erasing the flash memory is disable in Subosc-speed mode.

Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies.

Note 3. The ADC12 cannot be used.

2.3.2 Clock Timing

Table 2.13	Clock timing except for sub-clock oscillator (1 of 2
------------	--

Item	Symbol	Min	Тур	Мах	Unit	Test conditions
EBCLK pin output cycle time	t _{Bcyc}	16.6	-	-	ns	Figure 2.3
EBCLK pin output high pulse width	t _{CH}	3.3	-	-	ns	
EBCLK pin output low pulse width	t _{CL}	3.3	-	-	ns	
EBCLK pin output rise time	t _{Cr}	-	-	5.0	ns	
EBCLK pin output fall time	t _{Cf}	-	-	5.0	ns	
SDCLK pin output cycle time	t _{SDcyc}	8.33	-	-	ns	
SDCLK pin output high pulse width	t _{CH}	1.0	-	-	ns	
SDCLK pin output low pulse width	t _{CL}	1.0	-	-	ns	
SDCLK pin output rise time	t _{Cr}	-	-	3.0	ns	7
SDCLK pin output fall time	t _{Cf}	-	-	3.0	ns	

Figure 2.18 External bus timing for normal read cycle with bus clock synchronized

Figure 2.27 SDRAM multiple read line stride timing

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2) GPT32 Conditions:

High drive output is selected in the port drive capability bit in the PmnPFS register.

AGT Conditions:

Middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem			Symbol	Min	Мах	Unit	Test conditions
GPT32	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.32
				2.5	-		
GTIOCxY output skew		Middle drive buffer	t _{GTISK} *2	-	4	ns	Figure 2.33
	(x = 0 to 7, Y= A or B)	High drive buffer		-	4		
	GTIOCxY output skew	Middle drive buffer		-	4		
	(x = 8 to 13, Y = A or B)	High drive buffer		-	4		
	GTIOCxY output skew			-	6	-	
(x = 0 to 13, Y = A or B)		High drive buffer		-	6		
	OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO		t _{GTOSK}	-	5	ns	Figure 2.34
GPT(PWM Delay Generation Circuit)	GTIOCxY_Z output skew (x = 0 to 3, Y = A or B, Z = A)		t _{HRSK} *3	-	2.0	ns	Figure 2.35
AGT	AGTIO, AGTEE input cycle		t _{ACYC} *4	100	-	ns	Figure 2.36
	AGTIO, AGTEE input high width, low width		t _{ACKWH} , t _{ACKWL}	40	-	ns	
	AGTIO, AGTO, AGTOA, AGTOB o	AGTIO, AGTO, AGTOA, AGTOB output cycle			-	ns	
ADC12	ADC12 trigger input pulse width		t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.37
KINT	Key interrupt input low width		t _{KR}	250	-	ns	Figure 2.38

Note 1. t_{Pcyc}: PCLKB cycle, t_{PDcyc}: PCLKD cycle.

Note 2. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.

Note 3. The load is 30 pF.

Note 4. Constraints on AGTIO input: $t_{Pcyc} \times 2$ (t_{Pcyc} : PCLKB cycle) < t_{ACYC} .

Figure 2.31 POEG input trigger timing

 Table 2.24
 SCI timing (3) (1 of 2)

 Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem		Symbol	Min	Max	Unit	Test conditions	
Simple IIC	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.46	
(Standard mode)	SDA input fall time	t _{Sf}	-	300	ns		
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns		
	Data input setup time	t _{SDAS}	250	-	ns		
	Data input hold time	t _{SDAH}	0	-	ns		
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF		

Note 2. Must use pins that have a letter ("_A", "_B") to indicate group membership appended to their name as groups. For the SPI interface, the AC portion of the electrical characteristics is measured for each group.

- Note 3. N is set to an integer from 1 to 8 by the SPCKD register.
- Note 4. N is set to an integer from 1 to 8 by the SSLND register.

Figure 2.49 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

Figure 2.50 SPI timing for master when CPHA = 1

2.3.14 SSIE Timing

 Table 2.29
 SSIE timing

 (1) High drive output is selected with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B" to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group.

			Target s	pecification			
ltem			Symbol	Min.	Max.	Unit	Comments
SSIBCK	Cycle	Master	t _O	80	-	ns	Figure 2.57
		Slave	t _l	80	-	ns	
	High level/ low level	Master	t _{HC} /t _{LC}	0.35	-	t _O	
		Slave		0.35	-	tı	
	Rising time/falling time	Master	t _{RC} /t _{FC}	-	0.15	t _O / t _I	
		Slave		-	0.15	t _O / t _I	
SSILRCK/SSIFS, SSITXD0, SSIRXD0, SSIDATA1	Input set up time	Master	t _{SR}	12	-	ns	Figure 2.59,
		Slave		12	-	ns	Figure 2.60
00.27.11.1	Input hold time	Master	t _{HR}	8	-	ns	
		Slave		15	-	ns	1
	Output delay time	Master	t _{DTR}	-10	5	ns	
		Slave		0	20	ns	Figure 2.59, Figure 2.60
	Output delay time from SSILRCK/SSIFS change	Slave	t _{DTRW}	-	20	ns	Figure 2.61*1
GTIOC1A,	Cycle		t _{EXcyc}	20	-	ns	Figure 2.58
AUDIO_CLK	High level/ low level		t _{EXL} / t _{EXH}	0.4	0.6	t _{EXcyc}	

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK/SSIFS pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA1 pin.

RENESAS

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Table 2.44 D/A conversion characteristics

Item	Min	Тур	Мах	Unit	Test conditions
Resolution	-	-	12	Bits	-
Without output amplifier					
Absolute accuracy	-	-	±24	LSB	Resistive load 2 $M\Omega$
INL	-	±2.0	±8.0	LSB	Resistive load 2 $M\Omega$
DNL	-	±1.0	±2.0	LSB	-
Output impedance	-	8.5	-	kΩ	-
Conversion time	-	-	3.0	μs	Resistive load 2 MΩ, Capacitive load 20 pF
Output voltage range	0	-	VREFH	V	-
With output amplifier					
INL	-	±2.0	±4.0	LSB	-
DNL	-	±1.0	±2.0	LSB	-
Conversion time	-	-	4.0	μs	-
Resistive load	5	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.2	-	VREFH – 0.2	V	-

2.7 TSN Characteristics

Table 2.45TSN characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	±1.0	-	°C	-
Temperature slope	-	-	4.0	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.24	-	V	-
Temperature sensor start time	t _{START}	-	-	30	μs	-
Sampling time	-	4.15	-	-	μs	-

2.8 OSC Stop Detect Characteristics

Table 2.46 Oscillation stop detection circuit characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.92

Figure 2.92 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Table 2 17	Power-on reset circuit and voltage detection circuit characteristics
Table 2.47	Power-on reset circuit and voltage detection circuit characteristics

ltem			Symbol	Min	Тур	Мах	Unit	Test conditions
Voltage detection level	Power-on reset (POR)	Module-stop function disabled* ²	V _{POR}	2.5	2.6	2.7	V	Figure 2.93
		Module-stop function enabled*3		1.8	2.25	2.7	-	
	Voltage detection	circuit (LVD0)	V _{det0_1}	2.84	2.94	3.04		Figure 2.94
			V _{det0_2}	2.77	2.87	2.97		
					2.80	2.90		
	Voltage detection	V _{det1_1}	2.89	2.99	3.09		Figure 2.95	
		V _{det1_2}	2.82	2.92	3.02			
		V _{det1_3}	2.75	2.85	2.95			
Voltage detection circuit (LVD2)		V _{det2_1}	2.89	2.99	3.09		Figure 2.96	
		V _{det2_2}	2.82	2.92	3.02			
			V _{det2_3}	2.75	2.85	2.95		
Internal reset time	Power-on reset ti	me	t _{POR}	-	4.5	-	ms	Figure 2.93
	LVD0 reset time		t _{LVD0}	-	0.51	-		Figure 2.94
	LVD1 reset time		t _{LVD1}	-	0.38	-		Figure 2.95
LVD2 reset time			t _{LVD2}	-	0.38	-		Figure 2.96
Minimum VCC down time*1		t _{VOFF}	200	-	-	μs	Figure 2.93, Figure 2.94	
Response delay		t _{det}	-	-	200	μs	Figure 2.93 to Figure 2.96	
LVD operation stabilization time (after LVD is enabled)			t _{d(E-A)}	-	-	10	μs	Figure 2.95,
Hysteresis width (LVD1 and LVD2)			V_{LVH}	-	70	-	mV	Figure 2.96

Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det1} , and V_{det2} for POR and LVD.

Note 2. The low-power function is disabled and DEEPCUT[1:0] = 00b or 01b.

Note 3. The low-power function is enabled and DEEPCUT[1:0] = 11b.

2.13 PGA Characteristics

Table 2.51	PGA characteristics	in single mode

Item	Symbol	Min	Тур	Max	Unit
PGAVSS input voltage range	PGAVSS	0	-	0	V
	AIN0 (G = 2.000)	0.050 × AVCC0	-	0.45 × AVCC0	V
	AIN1 (G = 2.500)	0.047 × AVCC0	-	0.360 × AVCC0	V
	AIN2 (G = 2.667)	0.046 × AVCC0	-	0.337 × AVCC0	V
	AIN3 (G = 2.857)	0.046 × AVCC0	-	0.32 × AVCC0	V
	AIN4 (G = 3.077)	0.045 × AVCC0	-	0.292 × AVCC0	V
	AIN5 (G = 3.333)	0.044 × AVCC0	-	0.265 × AVCC0	V
	AIN6 (G = 3.636)	0.042 × AVCC0	-	0.247 × AVCC0	V
	AIN7 (G = 4.000)	0.040 × AVCC0	-	0.212 × AVCC0	V
	AIN8 (G = 4.444)	0.036 × AVCC0	-	0.191 × AVCC0	V
	AIN9 (G = 5.000)	0.033 × AVCC0	-	0.17 × AVCC0	V
	AIN10 (G = 5.714)	0.031 × AVCC0	-	0.148 × AVCC0	V
	AIN11 (G = 6.667)	0.029 × AVCC0	-	0.127 × AVCC0	V
	AIN12 (G = 8.000)	0.027 × AVCC0	-	0.09 × AVCC0	V
	AIN13 (G = 10.000)	0.025 × AVCC0	-	0.08 × AVCC0	V
	AIN14 (G = 13.333)	0.023 × AVCC0	-	0.06 × AVCC0	V
Gain error	Gerr0 (G = 2.000)	-1.0	-	1.0	%
	Gerr1 (G = 2.500)	-1.0	-	1.0	%
	Gerr2 (G = 2.667)	-1.0	-	1.0	%
	Gerr3 (G = 2.857)	-1.0	-	1.0	%
	Gerr4 (G = 3.077)	-1.0	-	1.0	%
	Gerr5 (G = 3.333)	-1.5	-	1.5	%
	Gerr6 (G = 3.636)	-1.5	-	1.5	%
	Gerr7 (G = 4.000)	-1.5	-	1.5	%
	Gerr8 (G = 4.444)	-2.0	-	2.0	%
	Gerr9 (G = 5.000)	-2.0	-	2.0	%
	Gerr10 (G = 5.714)	-2.0	-	2.0	%
	Gerr11 (G = 6.667)	-2.0	-	2.0	%
	Gerr12 (G = 8.000)	-2.0	-	2.0	%
	Gerr13 (G = 10.000)	-2.0	-	2.0	%
	Gerr14 (G = 13.333)	-2.0	-	2.0	%
Offset error	Voff	-8	-	8	mV

Table 2.52 PGA characteristics in differential mode (1 of 2)

Item		Symbol	Min	Тур	Мах	Unit
PGAVSS input voltage range		PGAVSS	-0.5	-	0.3	V
Differential input	G = 1.500	AIN-PGAVSS	-0.5	-	0.5	V
voltage range	G = 2.333		-0.4	-	0.4	V
	G = 4.000		-0.2	-	0.2	V
	G = 5.667		-0.15	-	0.15	V

Table 2.54Data flash memory characteristics (2 of 2)Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

Item			FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz				Test
		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	conditions
Suspend delay during	4-byte	t _{DSPD}	-	-	264	-	-	120	μs	
programming	8-byte		-	-	264	-	-	120		
	16-byte		-	-	264	-	-	120		
First suspend delay	64-byte	t _{DSESD1}	-	-	216	-	-	120	μs	
during erasure in	128-byte		-	-	216	-	-	120		
suspend phonty mode	256-byte		-	-	216	-	-	120		
Second suspend delay	64-byte	t _{DSESD2}	-	-	300	-	-	300	μs	
during erasure in suspend priority mode	128-byte		-	-	390	-	-	390		
	256-byte		-	-	570	-	-	570		
Suspend delay during	64-byte	t _{DSEED}	-	-	300	-	-	300	μs	
erasing in erasure priority mode	128-byte		-	-	390	-	-	390		
	256-byte		-	-	570	-	-	570		
Forced stop command		t _{FD}	-	-	32	-	-	20	μs	
Data hold time*3		t _{DRP}	10* ^{3,*4}	-	-	10* ^{3,*4}	-	-	Year	
			30* ^{3,*4}	-	-	30* ^{3,*4}	-	-		Ta = +85°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)

Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.

Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

Note 4. This result is obtained from reliability testing.

2.15 Boundary Scan

Table 2.55Boundary scan characteristics

Item	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	100	-	-	ns	Figure 2.99
TCK clock high pulse width	t _{TCKH}	45	-	-	ns	
TCK clock low pulse width	t _{TCKL}	45	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	
TMS setup time	t _{TMSS}	20	-	-	ns	Figure 2.100
TMS hold time	t _{TMSH}	20	-	-	ns	
TDI setup time	t _{TDIS}	20	-	-	ns	
TDI hold time	t _{TDIH}	20	-	-	ns	
TDO data delay	t _{TDOD}	-	-	40	ns	
Boundary scan circuit startup time*1	T _{BSSTUP}	t _{RESWP}	-	-	-	Figure 2.101

Note 1. Boundary scan does not function until the power-on reset becomes negative.

S5D9 Microcontroller Datasheet

Publication Date: Rev. 1.00 Nov 3, 2016

Published by: Renesas Electronics Corporation

Renesas Synergy[™] Platform S5D9 Microcontroller

