E. Fenesas Electronics America Inc - <u>R7FS5D97E2A01CBG#AC0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	133
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	640K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LFBGA
Supplier Device Package	176-LFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs5d97e2a01cbg-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	system for communication. See section 3 Manual.
R01DS0303EU0100 Rev.1.00	RENESAS

Communication interfaces (1 of 2) Table 1.8

Feature	Functional description
Serial Communications Interface (SCI)	 The SCI is configurable to five asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 34, Serial Communications Interface (SCI) in User's Manual.
IrDA Interface (IrDA)	The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 35, IrDA Interface in User's Manual.
I ² C Bus Interface (IIC)	The three-channel IIC conforms with and provides a subset of the NXP I ² C bus (Inter- Integrated Circuit bus) interface functions. See section 36, I ² C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent SPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices. See section 38, Serial Peripheral Interface (SPI) in User's Manual.
Serial Sound Interface Enhanced (SSIE)	The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting I ² S 2ch, 4ch, 6ch, 8ch, WS Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 41, Serial Sound Interface Enhanced (SSIE) in User's Manual.
Quad Serial Peripheral Interface (QSPI)	The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 39, Quad Serial Peripheral Interface (QSPI) in User's Manual.
CAN module (CAN)	The CAN module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically-noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 37, Controller Area Network (CAN) Module in User's Manual.
USB 2.0 Full-Speed Module (USBFS)	Full-Speed USB controller that can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. See section 32, USB 2.0 Full-Speed Module (USBFS) in User's Manual.
USB 2.0 High-Speed Module (USBHS)	High-Speed USB controller that can operate as a host controller or a device controller. As a host controller, the USBHS supports high-speed transfer, full-speed transfer, and low-speed transfer as defined in Universal Serial Bus Specification 2.0. As a device controller, the USBHS supports high-speed transfer and full-speed transfer as defined in Universal Serial Bus Specification 2.0. The USBHS has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USBHS has FIFO buffers for data transfer, providing a maximum of 10 pipes. Any endpoint number can be assigned to pipes 1 to 9, based on the peripheral devices or your system for communication. See section 33, USB 2.0 High-Speed Module (USBHS) in User's Manual.

Table 1.11 Graphics

Feature	Functional description
Graphics LCD Controller (GLCDC)	 The GLCDC provides multiple functions and supports various data formats and panels. Key GLCDC features include: GPX bus master function for accessing graphics data Superimposition of three planes (single color background plane, graphic 1 plane, and graphic 2 plane) Support for many types of 32- or 16-bit per pixel graphics data and 8-, 4-, or 1-bit LUT data format Digital interface signal output supporting a video image size of WVGA or greater. See section 58, Graphics LCD Controller (GLCDC) in User's Manual.
2D Drawing Engine (DRW)	The 2D Drawing Engine (DRW) provides flexible functions that can support almost any object geometry rather than being bound to only a few specific geometries such as lines, triangles, or circles. The edges of every object can be independently blurred or antialiased. Rasterization is executed at one pixel per clock on the bounding box of the object from left to right and top to bottom. The DRW can also raster from bottom to top to optimize the performance in certain cases. In addition, optimization methods are available to avoid rasterization of many empty pixels of the bounding box. The distances to the edges of the object are calculated by a set of edge equations for every pixel of the bounding box. These edge equations can be combined to describe the entire object. If a pixel is inside the object, it is selected for rendering. If it is outside, it is discarded. If it is on the edge, an alpha value can be chosen proportional to the distance of the pixel to the nearest edge for antialiasing. Every pixel that is selected for rendering can be textured. The resulting aRGB quadruple can be modified by a general raster operation approach independently for each of the four channels. The aRGB quadruples can then be blended with one of the multiple blend modes of the DRW. The DRW provides two inputs (texture read and framebuffer read), and one output (framebuffer write). The internal color format is always aRGB (8888). The color formats from the inputs are converted to the internal format on read and a conversion back is made on write. See section 56, 2D Drawing Engine (DRW) in User's Manual.
JPEG Codec (JPEG)	The JPEG Codec (JPEG) incorporates a JPEG codec that conforms to the JPEG baseline compression and decompression standard. This provides high-speed compression of image data and high-speed decoding of JPEG data. See section 57, JPEG Codec (JPEG) in User's Manual.
Parallel Data Capture Unit (PDC)	One PDC unit is provided for communicating with external I/O devices, including image sensors, and transferring parallel data such as an image output from the external I/O device through the DTC or DMAC to the on-chip SRAM and external address spaces (the CS and SDRAM areas). See section 44, Parallel Data Capture Unit (PDC) in User's Manual.

Table 1.12 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generating polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 40, Cyclic Redundancy Check (CRC) Calculator in User's Manual.
Data Operation Circuit (DOC)	The DOC compares, adds, and subtracts 16-bit data. See section 52, Data Operation Circuit (DOC) in User's Manual.
Sampling Rate Converter (SRC)	The SRC converts the sampling rate of data produced by various audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are supported. See section 42, Sampling Rate Converter (SRC) in User's Manual.

Figure 2.7 PLL clock oscillation start timing

Note: Only operate the PLL is operated after main clock oscillation has stabilized.

Figure 2.8 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.15 Reset timing

Item		Symbol	Min	Тур	Max	Unit	Test conditions
RES pulse width	Power-on	t _{RESWP}	1	-	-	ms	Figure 2.9
	Deep Software Standby mode	t _{RESWD}	0.6	-	-	ms	Figure 2.10
	Software Standby mode, Subosc-speed mode	t _{RESWS}	0.3	-	-	ms	
	All other	t _{RESW}	200	-	-	μs	
Wait time after RES cancellation		t _{RESWT}	-	29	33	μs	Figure 2.9
Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset)		t _{RESW2}	-	320	408	μs	-

- The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be Note 1. determined with the following equation: Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3 SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)). When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For Note 2. other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = Xh) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) - $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) + $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) + $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + ($t_{MAINOSCWT}$ (MOSCWTCR = 2h) + $t_{MAINOSCWT}$ (MOSCWTCR = 05h) + $t_{MAINOSCWT}$ (MOSCWTCR = 0 05h)) Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 05h) + (t_{MAINOSCWT} (MOSCWTCR = Xh) - t_{MAINOSCWT} (MOSCWTCR = 05h)) Note 4 When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).
- For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + (t_{MAINOSCWT} (MOSCWTCR = Xh) - t_{MAINOSCWT} (MOSCWTCR = 00h))
- Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + (t_{MAINOSCWT} (MOSCWTCR = Xh) - t_{MAINOSCWT} (MOSCWTCR = 00h))
- Note 6. The HOCO frequency is 20 MHz.
- Note 7. The MOCO frequency is 8 MHz.
- Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
- Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum)
 - STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).
- Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μ s (typical) or 18 μ s (maximum) is added as the HOCO wait time.

Figure 2.11 Software Standby mode cancellation timing

Figure 2.28 SDRAM mode register set timing

Figure 2.42 SCI simple SPI mode timing for master when CKPH = 1

Figure 2.43 SCI simple SPI mode timing for master when CKPH = 0

 Table 2.24
 SCI timing (3) (2 of 2)

 Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

ltem	Symbol	Min	Max	Unit	Test conditions	
Simple IIC	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.46
(Fast mode)	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	100	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF	

Note: t_{IICcyc} : IIC internal reference clock (IIC ϕ) cycle, t_{Pcyc} : PCLKA cycle.

Note 1. Cb indicates the total capacity of the bus line.

Figure 2.46 SCI simple IIC mode timing

S5D9

Note 2. Must use pins that have a letter ("_A", "_B") to indicate group membership appended to their name as groups. For the SPI interface, the AC portion of the electrical characteristics is measured for each group.

- Note 3. N is set to an integer from 1 to 8 by the SPCKD register.
- Note 4. N is set to an integer from 1 to 8 by the SSLND register.

Figure 2.49 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

Figure 2.50 SPI timing for master when CPHA = 1

Figure 2.55 Transmit and receive timing

2.3.13 **IIC** Timing

 Table 2.27
 IIC timing (1) (1 of 2)

 (1) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B,

 SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.

(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.

(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

ltem		Symbol	Min* ¹	Max	Unit	Test conditions* ³
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	-	ns	Figure 2.56
(Standard mode, SMBus)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	-	ns	
ICFER.FMPE = 0	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	-	ns	
	SCL, SDA input rise time	t _{Sr}	-	1000	ns	
	SCL, SDA input fall time	t _{Sf}	-	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	-
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	-	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	$\begin{array}{l} 3 \ (6) \times t_{IICcyc} + 4 \times t_{Pcyc} \\ + \ 300 \end{array}$	-	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	-	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	$\begin{array}{l} 1 \hspace{0.1cm} (5) \times t_{IICcyc} + t_{Pcyc} + \\ 300 \end{array}$	-	ns	
	Repeated START condition input setup time	t _{STAS}	1000	-	ns	-
	STOP condition input setup time	t _{STOS}	1000	-	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	Cb	-	400	pF	

2.3.14 SSIE Timing

 Table 2.29
 SSIE timing

 (1) High drive output is selected with the port drive capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B" to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group.

			Target s	Target specification			
ltem			Symbol	Min.	Max.	Unit	Comments
SSIBCK	Cycle	Master	t _O	80	-	ns	Figure 2.57
		Slave	t _l	80	-	ns	
	High level/ low level	Master	t _{HC} /t _{LC}	0.35	-	t _O	
		Slave		0.35	-	tı	
	Rising time/falling time	Master	t _{RC} /t _{FC}	-	0.15	t _O / t _I	
		Slave		-	0.15	t _O / t _I	
SSILRCK/SSIFS,	Input set up time	Master	t _{SR}	12	-	ns	Figure 2.59,
SSITXD0, SSIRXD0, SSIDATA1		Slave		12	-	ns	Figure 2.60
00.27.11.1	Input hold time	Master	t _{HR}	8	-	ns	
		Slave		15	-	ns	
	Output delay time	Master	t _{DTR}	-10	5	ns	
		Slave		0	20	ns	Figure 2.59, Figure 2.60
	Output delay time from SSILRCK/SSIFS change	Slave	t _{DTRW}	-	20	ns	Figure 2.61*1
GTIOC1A,	Cycle		t _{EXcyc}	20	-	ns	Figure 2.58
AUDIO_CLK	High level/ low level		t _{EXL} / t _{EXH}	0.4	0.6	t _{EXcyc}	

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK/SSIFS pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA1 pin.

RENESAS

the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.

Figure 2.62 SD/MMC Host Interface signal timing

2.3.16 ETHERC Timing

 Table 2.31
 ETHERC timing

 Conditions: ETHERC (RMII): Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins:
 ET0_MDC, ET0_MDIO.

For other pins, high drive output is selected in the port drive capability bit in the PmnPFS register.

ETHERC (MII): Middle drive output is selected in the port drive capability bit in the PmnPFS register.

			•••			Test	
Item		Symbol	Min	мах	Unit	conditions*3	
ETHERC (RMII)	REF50CK cycle time	T _{ck}	20	-	ns	Figure 2.63 to	
	REF50CK frequency, typical 50 MHz	-	-	50 + 100 ppm	MHz	Figure 2.66	
	REF50CK duty	-	35	65	%		
	REF50CK rise/fall time	T _{ckr/ckf}	0.5	3.5	ns		
	RMII_xxxx*1 output delay	T _{co}	2.5	12.0	ns		
	RMII_xxxx* ² setup time	T _{su}	3	-	ns		
	RMII_xxxx* ² hold time	T _{hd}	1	-	ns		
	RMII_xxxx*1, *2 rise/fall time	T _r /T _f	0.5	4	ns		
	ET_WOL output delay	t _{WOLd}	1	23.5	ns	Figure 2.67	
ETHERC	ET_TX_CLK cycle time	t _{Tcyc}	40	-	ns	-	
(MII)	ET_TX_EN output delay	t _{TENd}	1	20	ns	Figure 2.68	
	ET_ETXD0 to ET_ETXD3 output delay	t _{MTDd}	1	20	ns		
	ET_CRS setup time	t _{CRSs}	10	-	ns		
	ET_CRS hold time	t _{CRSh}	10	-	ns		
	ET_COL setup time	t _{COLs}	10	-	ns	Figure 2.69	
	ET_COL hold time	t _{COLh}	10	-	ns		
	ET_RX_CLK cycle time	t _{TRcyc}	40	-	ns	-	
	ET_RX_DV setup time	t _{RDVs}	10	-	ns	Figure 2.70	
	ET_RX_DV hold time	t _{RDVh}	10	-	ns		
	ET_ERXD0 to ET_ERXD3 setup time	t _{MRDs}	10	-	ns		
	ET_ERXD0 to ET_ERXD3 hold time	t _{MRDh}	10	-	ns		
	ET_RX_ER setup time	t _{RERs}	10	-	ns	Figure 2.71	
	ET_RX_ER hold time	t _{RESh}	10	-	ns]	
	ET_WOL output delay	t _{WOLd}	1	23.5	ns	Figure 2.72	

Note 1. RMII_TXD_EN, RMII_TXD1, RMII_TXD0.

Note 2. RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER.

PDC Timing 2.3.17

Table 2.32PDC timingConditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Item		Symbol	Min	Мах	Unit	Test conditions
PDC	PIXCLK input cycle time	t _{PIXcyc}	37	-	ns	Figure 2.73
	PIXCLK input high pulse width	t _{PIXH}	10	-	ns	
	PIXCLK input low pulse width	t _{PIXL}	10	-	ns	
	PIXCLK rise time	t _{PIXr}	-	5	ns	
	PIXCLK fall time	t _{PIXf}	-	5	ns	
	PCKO output cycle time	t _{PCKcyc}	2 × t _{PBcyc}	-	ns	Figure 2.74
	PCKO output high pulse width	t _{PCKH}	$(t_{PCKcyc} - t_{PCKr} - t_{PCKf})/2 - 3$	-	ns	
	PCKO output low pulse width	t _{PCKL}	$(t_{PCKcyc} - t_{PCKr} - t_{PCKf})/2 - 3$	-	ns	
	PCKO rise time	t _{PCKr}	-	5	ns	
	PCKO fall time	t _{PCKf}	-	5	ns	
	VSYNV/HSYNC input setup time	t _{SYNCS}	10	-	ns	Figure 2.75
	VSYNV/HSYNC input hold time	t _{SYNCH}	5	-	ns	
	PIXD input setup time	t _{PIXDS}	10	-	ns	
	PIXD input hold time	t _{PIXDH}	5	-	ns	

Note 1. t_{PBcyc} : PCLKB cycle.

Figure 2.85 USBHS_DP and USBHS_DM output timing in high-speed mode

Figure 2.86 Test circuit in high-speed mode

Table 2.37	USBHS high-s	peed characte	ristics (USBHS	DP and USBHS	DM pin characteristics)
Conditions: USBI	HS_RREF = 2.2 k	Ω ± 1%, USBMCL	_K = 12/20/24 MHz	-	,

Item		Symbol	Min Max Unit		Test conditions	
Battery Charging Specification	D+ sink current	I _{DP_SINK}	25	175	μA	-
	D- sink current	I _{DM_SINK}	25	175	μA	-
	DCD source current	I _{DP_SRC}	7	13	μA	-
	Data detection voltage	V _{DAT_REF}	0.25	0.4	V	-
	D+ source voltage	V _{DP_SRC}	0.5	0.7	V	Output current = 250 µA
	D- source voltage	V _{DM_SRC}	0.5	0.7	V	Output current = 250 µA

2.4.2 USBFS Timing

Table 2.38USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) (1 of 2)Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS = AVCC_USBHS = 3.0to 3.6 V, UCLK = 48 MHz

Item		Symbol	Min	Тур	Мах	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	-	-	V	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = –200 μA
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.87
	Rise time	t _{LR}	75	-	300	ns	
	Fall time	t _{LF}	75	-	300	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}

Item			Min	Тур	Max	Unit	Test conditions
High-precision channels (AN003 to AN007)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.48 (0.267)*2	-	-	μs	Sampling in 16 states
		Max. = 400 Ω	0.40 (0.183)* ²	-	-	μs	Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V \leq VREFH0 \leq AVCC0
	Offset error		-	±1.0	±2.5	LSB	-
	Full-scale error		-	±1.0	±2.5	LSB	-
Absolute accuracy		-	±2.0	±4.5	LSB	-	
	DNL differential nonlinearity error INL integral nonlinearity error		-	±0.5	±1.5	LSB	-
			-	±1.0	±2.5	LSB	-
Normal-precision channels (AN016 to AN020)	nal-precision Conversion time*1 (Operation at D16 to AN020) Permissible signal source impedance PCLKC = 60 MHz) Max. = 1 kΩ		0.88 (0.667)*2	-	-	μs	Sampling in 40 states
	Offset error		-	±1.0	±5.5	LSB	-
	Full-scale error		-	±1.0	±5.5	LSB	-
	Absolute accuracy		-	±2.0	±7.5	LSB	-
	DNL differential nonlinearity error		-	±0.5	±4.5	LSB	-
INL integral nonlinearity error		-	±1.0	±5.5	LSB	-	

Table 2.40 A/D conversion characteristics for unit 0 (2 of 2) Conditions: PCLKC = 1 to 60 MHz

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

The use of pins AN000 to AN007 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage is stable.

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Note 2. Values in parentheses indicate the sampling time.

Table 2.41 A/D conversion characteristics for unit 1 (1 of 2) Conditions: PCLKC = 1 to 60 MHz

Item			Min	Тур	Max	Unit	Test conditions
Frequency			1	-	60	MHz	-
Analog input capacitance			-	-	30	pF	-
Quantization error			-	±0.5	-	LSB	-
Resolution			-	-	12	Bits	-
Channel-dedicated sample-and-hold circuits in use (AN100 to AN102)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = $1 k\Omega$	1.06 (0.4 + 0.25)*2	-	-	μs	 Sampling of channel- dedicated sample-and-hold circuits in 24 states Sampling in 15 states
	Offset error Full-scale error Absolute accuracy DNL differential nonlinearity error		-	±1.5	±3.5	LSB	AN100 to AN102 = 0.25 V
			-	±1.5	±3.5	LSB	AN100 to AN102 = VREFH - 0.25 V
			-	±2.5	±5.5	LSB	-
			-	±1.0	±2.0	LSB	-
INL integral nonlinearity		ity error	-	±1.5	±3.0	LSB	-
	Holding characteristics of sample-and hold circuits		-	-	20	μs	-
Dynamic range		0.25	-	VREFH - 0.25	V	-	

Suspension during progra	mming
FCU command	Program Suspend
FSTATR0.FRDY	Ready Not Ready Ready
Programming pulse	Programming
Suspension during erasure	e in suspend priority mode
FCU command	Erase Suspend Resume Suspend
FSTATR0.FRDY	Ready Not Ready
Erasure pulse	Erasing Erasing
 Suspension during erasure 	
FCU command	Erase X Suspend X
FSTATR0.FRDY	Ready Not Ready Ready
Erasure pulse	Erasing
Forced Stop	
FACI command	Forced Stop
FSTATR.FRDY	Not Ready Ready

Figure 2.98 Suspension and forced stop timing for flash memory programming and erasure

Data Flash Memory Characteristics 2.14.2

Table 2.54Data flash memory characteristics (1 of 2)Conditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

			FCLK = 4 MHz		20 MHz ≤ FCLK ≤ 60 MHz				Test	
Item		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	conditions
Programming time	4-byte	t _{DP4}	-	0.46	3.8	-	0.21	1.7	ms	
	8-byte	t _{DP8}	-	0.48	4.0	-	0.22	1.8		
	16-byte	t _{DP16}	-	0.53	4.5	-	0.24	2.0		
Erasure time	64-byte	t _{DE64}	-	4.03	18	-	2.24	10	ms	
	128-byte	t _{DE128}	-	6.2	27	-	3.4	15		
	256-byte	t _{DE256}	-	11.6	50	-	6.4	28		
Blank check time	4-byte	t _{DBC4}	-	-	84	-	-	30	μs	
Reprogramming/erasure cycle*1		N _{DPEC}	125000 *2	-	-	125000 *2	-	-	-	

Figure 2.106 ETM TCLK timing

Figure 2.107 ETM output timing

Appendix 1. Package Dimensions

For information on the latest version of the package dimensions or mountings, go to "Packages" on the Renesas Electronics Corporation website.

Figure 1.1 176-pin BGA

Figure 1.5 100-pin LQFP

RENESAS