

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Core Processor Core Size	ARM® Cortex®-M0+ 32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke04z8vtg4r

Table of Contents

1	Ord	ering pa	rts3
	1.1	Determ	nining valid orderable parts3
2	Part	identific	cation3
	2.1	Descrip	otion3
	2.2	Format	3
	2.3	Fields	3
	2.4	Examp	le4
3	Para	ameter o	classification
4	Rati	ngs	4
	4.1	Therma	al handling ratings4
	4.2	Moistu	re handling ratings5
	4.3	ESD ha	andling ratings5
	4.4	Voltage	e and current operating ratings5
5	Gen	eral	6
	5.1	Nonsw	itching electrical specifications6
		5.1.1	DC characteristics6
		5.1.2	Supply current characteristics13
		5.1.3	EMC performance14
	5.2	Switchi	ing specifications15
		5.2.1	Control timing15

		5.2.2	FTM module timing	16
	5.3	Therma	al specifications	17
		5.3.1	Thermal characteristics	17
6	Peri	pheral c	perating requirements and behaviors	19
	6.1	Core m	nodules	19
		6.1.1	SWD electricals	19
	6.2	Externa	al oscillator (OSC) and ICS characteristics	20
	6.3	NVM s	pecifications	22
	6.4	Analog		23
		6.4.1	ADC characteristics	23
		6.4.2	Analog comparator (ACMP) electricals	25
	6.5	Commi	unication interfaces	26
		6.5.1	SPI switching specifications	26
7	Dim	ensions		29
	7.1	Obtaini	ng package dimensions	29
8	Pinc	out		29
	8.1	Signal	Multiplexing and Pin Assignments	29
	8.2	Device	pin assignment	31
9	Rev	ision his	story	32

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: KE04Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE04
А	Key attribute	• Z = M0+ core
FFF	Program flash memory size	• 8 = 8 KB
R	Silicon revision	(Blank) = MainA = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	• TG = 16 TSSOP (4.5 mm x 5 mm)

Symbol	Description	Min.	Max.	Unit	Notes
T _{SDR}	Solder temperature, lead-free		260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 105 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 200 mA.
 - I/O pins pass +30/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 Vccmax.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance

General

circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Table 2. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	V _{DD} + 0.3 ¹	V
	Input voltage of true open drain pins	-0.3	6	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} Maximum rating of V_{DD} also applies to V_{IN} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 3. DC characteristics

Symbol	С	Descriptions			Min	Typical ¹	Max	Unit
_	_	(Operating voltage	_	2.7	_	5.5	V
V _{OH}	Р	Output	All I/O pins, except PTA2	5 V, $I_{load} = -5 \text{ mA}$	V _{DD} – 0.8	_	_	V
	С	high voltage	and PTA3, standard- drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
	Р		High current drive pins,	5 V, I _{load} = -20 mA	V _{DD} – 0.8	_	_	V
	С		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	V
I _{OHT}	D	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
		high current		3 V	_	_	-60	
V _{OL}	Р	Output	All I/O pins, standard-	5 V, I _{load} = 5 mA	_	_	0.8	V
	С	low	drive strength	3 V, I _{load} = 2.5 mA	_	_	0.8	V
	Р	vollage	High current drive pins,	5 V, I _{load} =20 mA	_	_	0.8	V
	С]	high-drive strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V

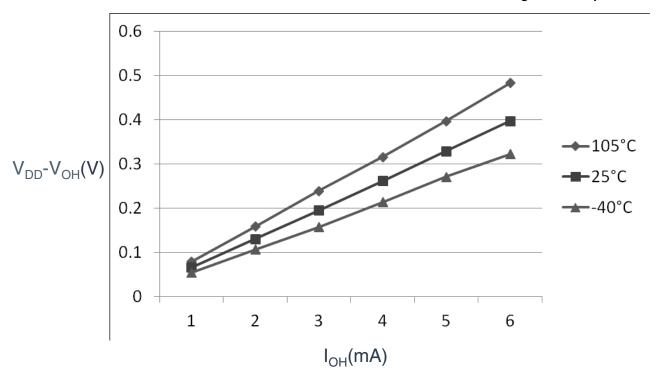


Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

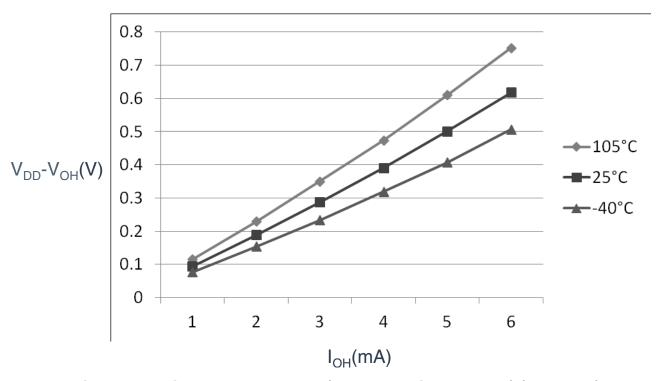


Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

nonswitching electrical specifications

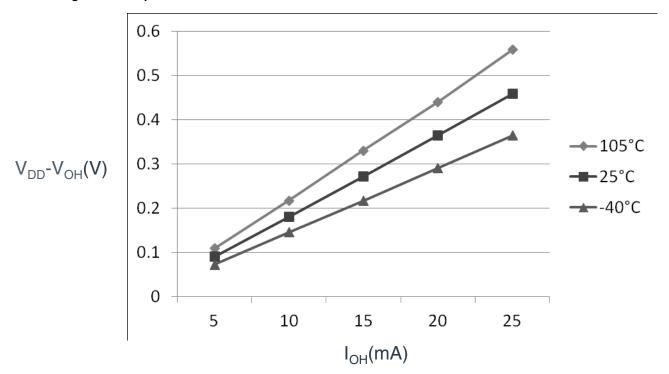


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

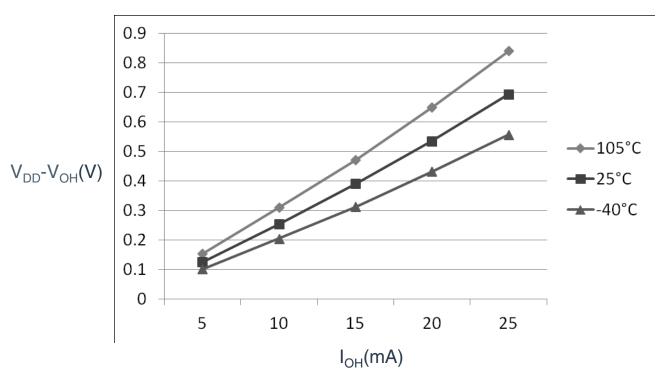


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

Nonswitching electrical specifications

Table 5. Supply current characteristics (continued)

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	48/24 MHz	5	7.2	_	mA	-40 to 105 °C
Р	mode, all modules clocks enabled		24/24 MHz	1	6.3	6.5		
С	enabled		12/12 MHz		3.6	_		
С			1/1 MHz		1.9	_		
С			48/24 MHz	3	7.1	_		
Р			24/24 MHz		6.2	6.4		
С			12/12 MHz		3.5	_		
С			1/1 MHz		1.8	_		
Р	Stop mode supply current	SI _{DD}	_	5	2	40	μΑ	-40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³		_	3	1.9	39		-40 to 105 °C
С	ADC adder to Stop	_	_	5	86	_	μA	-40 to 105 °C
С	ADLPC = 1			3	82	_		
	ADLSMP = 1							
	ADCO = 1							
	MODE = 10B							
	ADICLK = 11B							
С	ACMP adder to Stop	_	_	5	12	_	μΑ	-40 to 105 °C
С				3	12	_		
С	LVD adder to Stop ⁴	_	_	5	130	_	μA	-40 to 105 °C
С				3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 105 °C.
- 3. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 20-pin SOIC package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	11	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	14	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	М	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 40 \,^{\circ}\text{MHz}$, $f_{BUS} = 20 \,^{\circ}\text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 7. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock	f _{Sys}	DC	_	48	MHz	
2	Р	Bus frequency (t _{cyc} = 1/f _{Bus}	f _{Bus}	DC	_	24	MHz	
3	Р	Internal low power oscillato	f _{LPO}	0.67	1.0	1.25	KHz	
4	D	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns	
					t _{cyc}			
5	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns

Table 7. Control timing (continued)

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
7	D	Keyboard interrupt pulse width Asynchronous path ²		t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

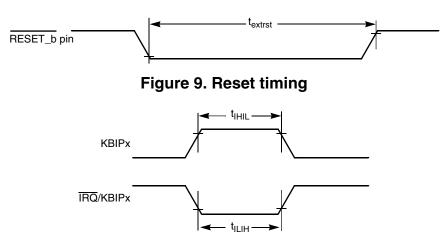


Figure 10. KBIPx timing

5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter.

Table 8. FTM input timing

С	Function	Symbol	Min	Max	Unit
D	Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
D	External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz
D	External clock period	t _{TCLK}	4	_	t _{cyc}

 t_{cyc}

С	Function	Symbol	Min	Max	Unit
D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
D	Input capture pulse	t _{ICPW}	1.5	_	t _{cvc}

Table 8. FTM input timing (continued)

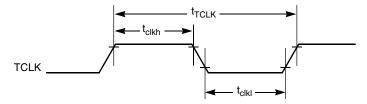


Figure 11. Timer external clock

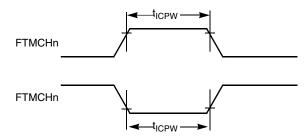


Figure 12. Timer input capture pulse

Thermal specifications 5.3

width

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is userdetermined rather than being controlled by the MCU design. To take P_{I/O} into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

rnermal specifications

Table 9. Thermal attributes

Board type	Symbol	Description	24 QFN	20 SOIC	16 TSSOP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	110	88	130	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	42	61	87	°C/W	1, 3
Single-layer (1S)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	92	74	109	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	36	55	80	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	18	34	48	°C/W	4
_	$R_{\theta JC}$	Thermal resistance, junction to case	3.7	37	33	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	10	20	10	°C/W	6

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

KE04 Sub-Family Data Sheet, Rev3, 3/2014.

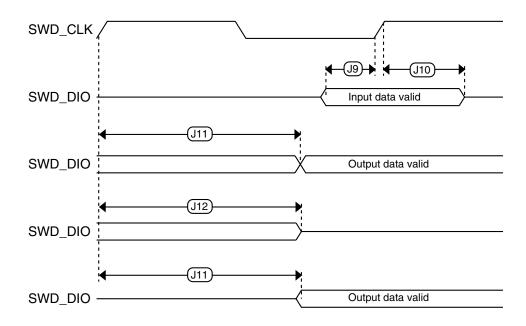


Figure 14. Serial wire data timing

6.2 External oscillator (OSC) and ICS characteristics

Table 11. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)

Num	С	C	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	resonator frequency	High range (RANGE = 1)		4	_	24	MHz
2	D	Lo	oad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ

Table 11. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	С	haracteristic	Symbol	Min	Typical ¹	Max	Unit
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	Р	Internal reference clock (IRC) frequency tringrange		f _{int_t}	31.25	_	39.0625	kHz
9	Р	Internal reference clock frequency, factory trimmed	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Р	Factory trimmed internal oscillator accuracy	$T = 25 ^{\circ}C$, $V_{DD} = 5 ^{\circ}V$	Δf _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	∆f _{int_t}	-1.2	_	1	%
		temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from 0 °C to 105°C	Δf _{int_t}	-0.5	_	1	
13	С	Frequency accuracy of	Over temperature range from -40 °C to 105°C	Δf_{dco_ft}	-1.7	_	1.5	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	Δf _{dco_ft}	-1	_	1.5	
14	С	FLL a	cquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	С		ter of DCO output clock d over 2 ms interval) ⁷	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

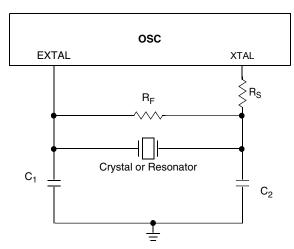


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Table 12. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	24	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	2605	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	2579	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	485	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	464	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
D	Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
D	Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
D	Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
D	Verify Backdoor Access Key	t _{VFYKEY}			482	t _{cyc}
D	Set User Margin Level	t _{MLOADU}			415	t _{cyc}
С	FLASH Program/erase endurance T_L to $T_H = -40 ^{\circ}\text{C}$ to 105 $^{\circ}\text{C}$	n _{FLPE}	10 k	100 k	_	Cycles

Table 14. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	T	E _{TUE}	_	±3.0	_	LSB ³
Error ²	10-bit mode	С		_	±1.0	±2.0	
	8-bit mode	Т		_	±0.8	_	
Differential Non-	12-bit mode	T	DNL	_	±1.2	_	LSB ³
Liniarity	10-bit mode ⁴	С		_	±0.3	±1.0	
	8-bit mode ⁴	Т		_	±0.15	_	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.2	_	LSB ³
	10-bit mode	С		_	±0.3	±1.0	
	8-bit mode	Т		_	±0.15	_	
Zero-scale error ⁵	12-bit mode	T	E _{zs}	_	±1.2	_	LSB ³
	10-bit mode	С		_	±0.15	±1.0	
	8-bit mode	Т		_	±0.3	_	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±1.8	_	LSB ³
	10-bit mode	С		_	±0.7	±1.0	
	8-bit mode	Т		_	±0.5	_	
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	D	m	_	3.266	_	mV/°C
	25 °C–125 °C				3.638	_	
Temp sensor voltage	25 °C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} =2.5 MHz under FBE mode and alternate clock source (ALTCLK) is selected as ADC clock.

^{2.} Includes quantization

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

6.4.2 Analog comparator (ACMP) electricals

Table 15. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

6.5 Communication interfaces

6.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.

Table 16. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} – 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_

reripheral operating requirements and behaviors

Table 17. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

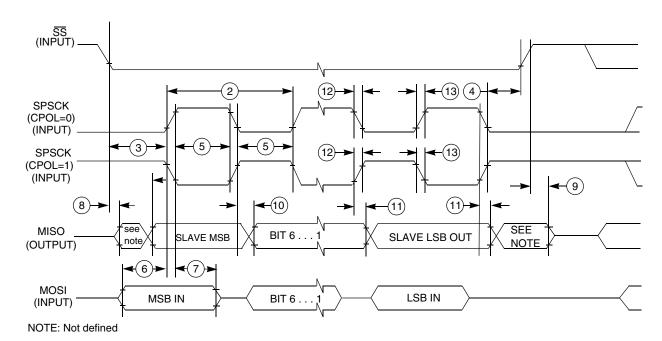


Figure 19. SPI slave mode timing (CPHA = 0)

NOTE

- PTB5, PTC1, and PTC5 pins support high-current drive output, refer to the PORT_HDRVE register in Port Control chapter for details.
- VDD and VREFH are internally connected. Only one pin (VDD or VREFH) is available on chip.
- VSS and VREFL are internally connected. Only one pin (VSS or VREFL) is available on chip.
- PTA2 and PTA3 are true open-drain pins when operated as output

24	20	16	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
QFN	SOIC	TSS0 P										
1	-	-	PTC5	DISABLED	PTC5	KBI1_P1	FTM2_CH3	BUSOUT				
2	_	_	PTC4	DISABLED	PTC4	KBI1_P0	FTM2_CH2		PWT_IN0			
3	3	3	VDD	VDD							VDD	
3	3	3	VREFH	VDDA/ VREFH						VDDA	VREFH	
4	4	4	VREFL	VREFL							VREFL	
4	4	4	VSS	VSS/ VSSA						VSSA	VSS	
5	5	5	PTB7	EXTAL	PTB7		I2C0_SCL				EXTAL	
6	6	6	PTB6	XTAL	PTB6		I2C0_SDA				XTAL	
7	7	7	PTB5	ACMP1_OUT	PTB5	KBI1_P7	FTM2_CH5	SPI0_PCS	ACMP1_OUT			
8	8	8	PTB4	NMI_b	PTB4	KBI1_P6	FTM2_CH4	SPI0_MISO	ACMP1_IN2	NMI_b		
9	9	-	PTC3	ADC0_SE11	PTC3	KBI1_P5	FTM2_CH3				ADC0_SE11	
10	10	-	PTC2	ADC0_SE10	PTC2	KBI1_P4	FTM2_CH2				ADC0_SE10	
11	11	_	PTC1	ADC0_SE9	PTC1	KBI1_P3	FTM2_CH1				ADC0_SE9	
12	12	1	PTC0	ADC0_SE8	PTC0	KBI1_P2	FTM2_CH0				ADC0_SE8	
13	13	9	PTB3	ADC0_SE7	PTB3	KBI0_P7	SPI0_MOSI	FTM0_CH1			ADC0_SE7	
14	14	10	PTB2	ADC0_SE6	PTB2	KBI0_P6	SPI0_SCK	FTM0_CH0	ACMP0_IN0		ADC0_SE6	
15	15	11	PTB1	ADC0_SE5	PTB1	KBI0_P5	UARTO_TX	SPI0_MISO	TCLK2		ADC0_SE5	
16	16	12	PTB0	ADC0_SE4	PTB0	KBI0_P4	UARTO_RX	SPI0_PCS	PWT_IN1		ADC0_SE4	
17	_	-	PTA7	ADC0_SE3	PTA7		FTM2_FLT2	SPI0_MOSI	ACMP1_IN1		ADC0_SE3	
18	-	-	PTA6	ADC0_SE2	PTA6		FTM2_FLT1	SPI0_SCK	ACMP1_IN0		ADC0_SE2	
19	17	13	PTA3	DISABLED	PTA3	KBI0_P3	UARTO_TX	I2C0_SCL				
20	18	14	PTA2	DISABLED	PTA2	KBI0_P2	UARTO_RX	I2C0_SDA				
21	19	15	PTA1	ADC0_SE1	PTA1	KBI0_P1	FTM0_CH1		ACMP0_IN1		ADC0_SE1	
22	20	16	PTA0	SWD_CLK	PTA0	KBI0_P0	FTM0_CH0	RTCO	ACMP0_IN2	ADC0_SE0	SWD_CLK	
23	1	1	PTA5	RESET_b	PTA5	IRQ	TCLK1				RESET_b	
24	2	2	PTA4	SWD_DIO	PTA4				ACMP0_OUT		SWD_DIO	

8.2 Device pin assignment

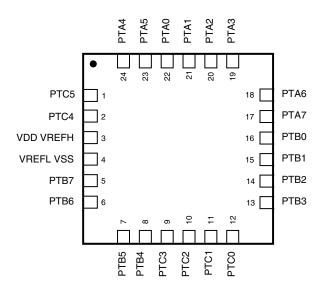


Figure 21. 24-pin QFN package

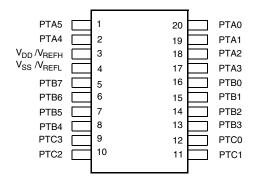


Figure 22. 20-pin SOIC package

nevision history

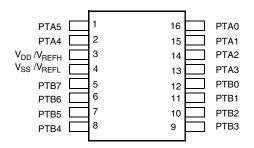


Figure 23. 16-pin TSSOP package

9 Revision history

The following table provides a revision history for this document.

Table 18. Revision history

Rev. No.	Date	Substantial Changes
3	3/2014	Initial public release