

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f873a-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1 CLKI	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2 CLKO	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR VPP	1	26	I P	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input.
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	27	I/O I	TTL	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	28	I/O I	TTL	Digital I/O. Analog input 1.
RA2/AN2/VREF-/ CVREF RA2 AN2 VREF- CVREF	4	1	I/O I I O	TTL	Digital I/O. Analog input 2. A/D reference voltage (Low) input. Comparator VREF output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	2	I/O I I	TTL	Digital I/O. Analog input 3. A/D reference voltage (High) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	3	I/O I O	ST	Digital I/O – Open-drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/C2OUT RA5 AN4 SS C2OUT	7	4	I/O I I O	TTL	Digital I/O. Analog input 4. SPI slave select input. Comparator 2 output.
Legena. I = input	0 = 00	ւթու	1/C	v = mput/outpu	

TABLE 1-2:PIC16F873A/876A PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.2.2.8 PCON Register

bit 1

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

Note: BOR is unknown on Power-on Reset. It must be set by the user and checked on subsequent Resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
_	_	—	—		_	POR	BOR
bit 7							bit 0

- bit 7-2 Unimplemented: Read as '0'
 - **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.3 Reading Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). The data is available in the very next cycle in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

EXAMPLE 3-1: DATA EEPROM READ

BSF	STATUS, RP1	;	
BCF	STATUS, RPO	;	Bank 2
MOVF	DATA_EE_ADDR,W	;	Data Memory
MOVWF	EEADR	;	Address to read
BSF	STATUS, RPO	;	Bank 3
BCF	EECON1, EEPGD	;	Point to Data
		;	memory
BSF	EECON1,RD	;	EE Read
BCF	STATUS, RPO	;	Bank 2
MOVF	EEDATA,W	;	W = EEDATA

3.4 Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific write sequence to initiate the write for each byte.

The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2).

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - · Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 3-2: DATA EEPROM WRITE

		BSF	STATUS, RP1	i
		BTFSC	EECON1,WR	;Wait for write
		GOTO		;to complete
		BCF	STATUS, RPU	;Balik 2
		MOVE	DATA_EE_ADDR,W	;Data Memory
		MOVWE	EEADR	;Address to write
		MOVE	DATA_EE_DATA,W	;Data Memory Value
		MOVWF	EEDATA	;to write
		BSF	STATUS, RPO	;Bank 3
		BCF	EECON1, EEPGD	;Point to DATA
				;memory
		BSF	EECON1,WREN	;Enable writes
		BCF	INTCON, GIE	;Disable INTs.
		MOVLW	55h	;
σ	g	MOVWF	EECON2	;Write 55h
uire	len	MOVLW	AAh	;
equ	ed	MOVWF	EECON2	;Write AAh
R	Ś	BSF	EECON1,WR	;Set WR bit to
				;begin write
	-	BSF	INTCON, GIE	Enable INTs.
		BCF	EECON1, WREN	;Disable writes
			•	

3.7 Protection Against Spurious Write

There are conditions when the device should not write to the data EEPROM or Flash program memory. To protect against spurious writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents an EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

3.8 Operation During Code-Protect

When the data EEPROM is code-protected, the microcontroller can read and write to the EEPROM normally. However, all external access to the EEPROM is disabled. External write access to the program memory is also disabled.

When program memory is code-protected, the microcontroller can read and write to program memory normally, as well as execute instructions. Writes by the device may be selectively inhibited to regions of the memory depending on the setting of bits WR1:WR0 of the configuration word (see **Section 14.1 "Configuration Bits"** for additional information). External access to the memory is also disabled.

TABLE 3-1:REGISTERS/BITS ASSOCIATED WITH DATA EEPROM AND
FLASH PROGRAM MEMORIES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
10Ch	EEDATA	EEPROM	EEPROM/Flash Data Register Low Byte xxx								
10Dh	EEADR	EEPRON	//Flash A	ddress R	egister L	ow Byte				xxxx xxxx	uuuu uuuu
10Eh	EEDATH	_	_	EEPROM/Flash Data Register High Byte xxxx xxxx							0 q000
10Fh	EEADRH	_	_	—	EEPROM/Flash Address Register High Byte xxxx xxxx						
18Ch	EECON1	EEPGD		—		WRERR	WREN	WR	RD	x x000	0 q000
18Dh	EECON2	EEPRON	Control Register 2 (not a physical register)								
0Dh	PIR2		CMIF	_	EEIF	BCLIF	_	_	CCP2IF	-0-0 00	-0-0 00
8Dh	PIE2	_	CMIE	—	EEIE	BCLIE	_	—	CCP2IE	-0-0 00	-0-0 00

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM or Flash program memory.

6.1 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

6.2 Timer1 Counter Operation

Timer1 may operate in either a Synchronous, or an Asynchronous mode, depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

FIGURE 6-1: TIMER1 INCREMENTING EDGE

6.3 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during Sleep mode, Timer1 will not increment even if the external clock is present since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

PIC16F87XA

IVE S	TATUS AN	D CONTRO	OL REGIS	FER (ADDI	RESS 18h)	
W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
X9	SREN	CREN	ADDEN	FERR	OERR	RX9D
						bit 0
ort Ena	ble bit					
nabled isabled	l (configures 1	RC7/RX/D1	and RC6/T	X/CK pins a	as serial port	: pins)
ive Ena	able bit					
recep	tion tion					
eceive	Enable bit					
<u>node:</u>						
<u> de – N</u>	Master:					
gle rec	eive					
igle rec	reception is	complete.				
ode – S	Slave:	oompiotoi				
bit 4 CREN: Continuous Receive Enable bit Asynchronous mode:						
tinuou	s receive					
ninuou ode:						
tinuou	s receive un	til enable bit	CREN is cl	eared (CRE	N overrides	SREN)
ntinuou	is receive			·		
s Dete	ect Enable bi	it				
<u>10de 9</u> dress c	<u>-bit (RX9 = 1</u> letection, en	<u>L):</u> ables interru	pt and load	of the receiv	ve buffer whe	en RSR<8>
dress	detection, al	l bytes are r	eceived and	ninth bit ca	n be used a	s parity bit
Error b	oit					
or (can error	be updated	by reading	RCREG reg	ister and red	ceive next va	alid byte)
Error	bit					
or (can error	be cleared l	by clearing t	oit CREN)			
f Rece	ived Data (c	an be parity	bit but must	be calculat	ed by user fi	irmware)
	n Error or (can error of Rece	n Error bit or (can be cleared l error of Received Data (c	n Error bit or (can be cleared by clearing b error of Received Data (can be parity	h Error bit or (can be cleared by clearing bit CREN) error of Received Data (can be parity bit but must	n Error bit or (can be cleared by clearing bit CREN) error of Received Data (can be parity bit but must be calculat	n Error bit or (can be cleared by clearing bit CREN) error of Received Data (can be parity bit but must be calculated by user fi

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate; whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 10-4: USART RECEIVE BLOCK DIAGRAM

TABLE 10-8:	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	x000 -00x
19h	TXREG	USART Tr	USART Transmit Register							0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato	or Register	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 10-9: SYNCHRONOUS TRANSMISSION

FIGURE 10-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

PIC16F87XA

12.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR registers) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it ('0'). Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE registers) and the PEIE bit (INTCON register) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR registers) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

[label] DECFSZ f,d
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
(f) - 1 \rightarrow (destination); skip if result = 0
None
The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2 Tay instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruc- tion is executed. If the result is '0', a NOP is executed instead, making it a 2 Toy instruction

GOTO	Unconditional Branch							
Syntax:	[<i>label</i>] GOTO k							
Operands:	$0 \leq k \leq 2047$							
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>							
Status Affected:	None							
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.							

IORLW	Inclusive OR Literal with W							
Syntax:	[<i>label</i>] IORLW k							
Operands:	$0 \leq k \leq 255$							
Operation:	(W) .OR. $k \rightarrow$ (W)							
Status Affected:	Z							
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.							

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

16.14 PICDEM 1 PIC MCU Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs.

16.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham.

16.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 Flash microcontrollers.

16.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

16.18 PICDEM 4 8/14/18-Pin Demonstration Board

The PICDEM 4 can be used to demonstrate the capabilities of the 8, 14, and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low power operation with the supercapacitor circuit, and jumpers allow on-board hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2x16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.

16.19 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board Flash memory. A generous prototype area is available for user hardware expansion.

16.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

16.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

16.22 PICkit[™] 1 Flash Starter Kit

A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.

16.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

16.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

17.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD -	VOH) x IOH} + Σ (VOI x IOL)
2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80	mA, may cause latch-up.

- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873A/876A devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 17-8: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874A/877A ONLY)

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow or \overline{CS} \uparrow (setup)$	20	_		ns		
63*	TwrH2dtl	\overline{WR} \uparrow or \overline{CS} \uparrow to Data–in Invalid	Standard(F)	20	-	—	ns	
	(hold time)		Extended(LF)	35	-		ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to Data–out Valid	_	-	80	ns		
65	TRDH2DTI	\overline{RD} \uparrow or \overline{CS} \downarrow to Data–out Invalid		10	_	30	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	-	μS	
			400 kHz mode	0.6	_	μS	
			SSP Module	0.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	
			400 kHz mode	1.3	_	μS	
			SSP Module	0.5 TCY	_		
102	Tr	SDA and SCL Rise	100 kHz mode	_	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	_	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup	100 kHz mode	4.7	_	μS	Only relevant for Repeated Start
		Time	400 kHz mode	0.6	_	μS	condition
91	THD:STA	Start Condition Hold	100 kHz mode	4.0	_	μS	After this period, the first clock
		Time	400 kHz mode	0.6	_	μS	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	(Note 2)
			400 kHz mode	100		ns	
92	Tsu:sto	Stop Condition Setup	100 kHz mode	4.7	_	μS	
		Time	400 kHz mode	0.6		μS	
109	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before
			400 kHz mode	1.3	—	μS	a new transmission can start
	Св	Bus Capacitive Loading	9	_	400	pF	

TABLE 17-11: I²C BUS DATA REQUIREMENTS

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode (400 kHz) I²C bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement that, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR MAX. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

FIGURE 17-17: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Characteristic				Units	Conditions
120	ТскН2ртV	SYNC XMIT (MASTER & SLAVE)						
		Clock High to Data Out Valid	Standard(F)	—	—	80	ns	
			Extended(LF)	—	-	100	ns	
121	TCKRF	Clock Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
	(Master mode)		Extended(LF)	—	—	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
			Extended(LF)	_	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-18: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE)					
		Data Setup before $CK \downarrow (DT \text{ setup time})$	15	—	—	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension	_imits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eВ	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX			
Number of Pins	n		28			28			
Pitch	р		.050			1.27			
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64		
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39		
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30		
Overall Width	E	.394	.407	.420	10.01	10.34	10.67		
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59		
Overall Length	D	.695	.704	.712	17.65	17.87	18.08		
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74		
Foot Length	L	.016	.033	.050	0.41	0.84	1.27		
Foot Angle Top	¢	0	4	8	0	4	8		
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33		
Lead Width	В	.014	.017	.020	0.36	0.42	0.51		
Mold Draft Angle Top	α	0	12	15	0	12	15		
Mold Draft Angle Bottom	β	0	12	15	0	12	15		

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-052

28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body, Punch Singulated (QFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			MILLIMETERS*			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α		.033	.039		0.85	1.00
Molded Package Thickness	A2		.026	.031		0.65	0.80
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3		.008 REF			0.20 REF	
Overall Width	E		.236 BSC			6.00 BSC	
Molded Package Width	E1		.226 BSC			5.75 BSC	
Exposed Pad Width	E2	.140	.146	.152	3.55	3.70	3.85
Overall Length	D		.236 BSC			6.00 BSC	
Molded Package Length	D1		.226 BSC			5.75 BSC	
Exposed Pad Length	D2	.140	.146	.152	3.55	3.70	3.85
Lead Width	В	.009	.011	.014	0.23	0.28	0.35
Lead Length	L	.020	.024	.030	0.50	0.60	0.75
Tie Bar Width	R	.005	.007	.010	0.13	0.17	0.23
Tie Bar Length	Q	.012	.016	.026	0.30	0.40	0.65
Chamfer	СН	.009	.017	.024	0.24	0.42	0.60
Mold Draft Angle Top	α			12°			12°

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: mMO-220

Drawing No. C04-114

PIC16F87XA

I ² C Rue Doto	1
1^{2} C Dus Data	1
	J
I ² C Master Mode (Reception, 7-bit Address)	3
I ² C Master Mode (Transmission,	
7 or 10-bit Address)102	2
I ² C Slave Mode (Transmission, 10-bit Address) 89	9
I ² C Slave Mode (Transmission, 7-bit Address)87	7
I^2C Slave Mode with SEN = 1 (Reception.	
10-bit Address)	3
I^2 C Slave Mode with SEN = 0 (Reception	-
10-bit Address	R
I^2 C Slove Mede with SEN = 0 (Percention	5
T C Slave Mode with SEN = 0 (Reception,	~
	C
I ² C Slave Mode with SEN = 1 (Reception,	_
7-bit Address)	2
Parallel Slave Port (PIC16F874A/877A Only)	7
Parallel Slave Port (PSP) Read52	2
Parallel Slave Port (PSP) Write52	2
Repeat Start Condition	C
Reset. Watchdog Timer. Start-up Timer	
and Power-up Timer 184	4
Slave Mode General Call Address Sequence	·
(7 or 10 bit Address Mode)	4
(7 01 10-bit Address Mode)	+
	(
Slow Rise Time (MCLR Tied to VDD Via	_
RC Network)152	2
SPI Master Mode (CKE = 0, SMP = 0)	3
SPI Master Mode (CKE = 1, SMP = 1)	3
SPI Mode (Master Mode)76	ô
SPI Mode (Slave Mode with CKE = 0)78	В
SPI Mode (Slave Mode with CKE = 1)	в
SPI Slave Mode (CKE = 0) 189	9
SPI Slave Mode (CKE = 1) 189	ŋ
Stop Condition Receive or Transmit Mode	1
Supervise Reception	т
(Master Made ODEN)	
(Master Mode, SREN)	+
Synchronous Transmission	2
Synchronous Transmission (Through TXEN)	2
Time- <u>out Se</u> quence on Power-up	
(MCLR Not Tied to VDD)	
Case 1 152	2
Case 2 152	2
Time-out Sequence on Power-up (MCLR Tied	
to VDD via RC Network)	1
Timer0 and Timer1 External Clock 185	5
USART Synchronous Receive	-
(Master/Slave) 103	R
LISART Synchronous Transmission	,
(Moster/Slove)	2
	2
wake-up from Sleep via Interrupt	
Timing Parameter Symbology 181	1
IMR0 Register	9
TMR1CS Bit57	7
TMR1H Register19	Э
TMR1L Register	Э
TMR1ON Bit	7
TMR2 Register	9
TMR2ON Bit	1
TMRO Register	1
TOUTPS0 Bit	1
TOUTPS1 Bit	1
TOUTPS2 Bit	1
	1
TDICA Degister	1
1 NION REVISIEI	J

TRISB Register	20
TRISC Register	20
TRISD Register	
TRISE Register	20
IBF Bit	50
IBOV Bit	50
OBF Bit	50
PSPMODE Bit	48, 49, 50, 51
TXREG Register	19
TXSTA Register	20
BRGH Bit	111
CSRC Bit	111
SYNC Bit	111
TRMT Bit	111
TX9 Bit	111
TX9D Bit	111
TXEN Bit	111

U

USART 1	11
Address Detect Enable (ADDEN Bit) 1	12
Asynchronous Mode 1	15
Asynchronous Receive (9-bit Mode) 1	19
Asynchronous Receive with Address Detect.	
See Asynchronous Receive (9-bit Mode).	
Asynchronous Receiver	17
Asynchronous Reception1	18
Asvnchronous Transmitter1	15
Baud Rate Generator (BRG)1	13
Baud Rate Formula1	13
Baud Rates, Asynchronous Mode	-
(BRGH = 0)	14
Baud Rates, Asynchronous Mode	
(BRGH = 1) 1	14
High Baud Rate Select (BRGH Bit)	11
Sampling1	13
Clock Source Select (CSRC Bit) 1	11
Continuous Receive Enable (CREN Bit) 1	12
Framing Error (FERR Bit) 1	12
Mode Select (SYNC Bit)1	11
Overrun Error (OERR Bit) 1	12
Receive Data, 9th Bit (RX9D Bit)	12
Receive Enable, 9-bit (RX9 Bit)1	12
Serial Port Enable (SPEN Bit)111, 1	12
Single Receive Enable (SREN Bit) 1	12
Synchronous Master Mode1	21
Synchronous Master Reception 1	23
Synchronous Master Transmission	21
Synchronous Slave Mode1	24
Synchronous Slave Reception 1	25
Synchronous Slave Transmit1	24
Transmit Data. 9th Bit (TX9D) 1	11
Transmit Enable (TXEN Bit)	11
Transmit Enable, 9-bit (TX9 Bit)	11
Transmit Shift Register Status (TRMT Bit) 1	11
USART Synchronous Receive Requirements 1	93
V	
V	

VDD Pin	
Voltage Reference Specifications	180
Vss Pin	