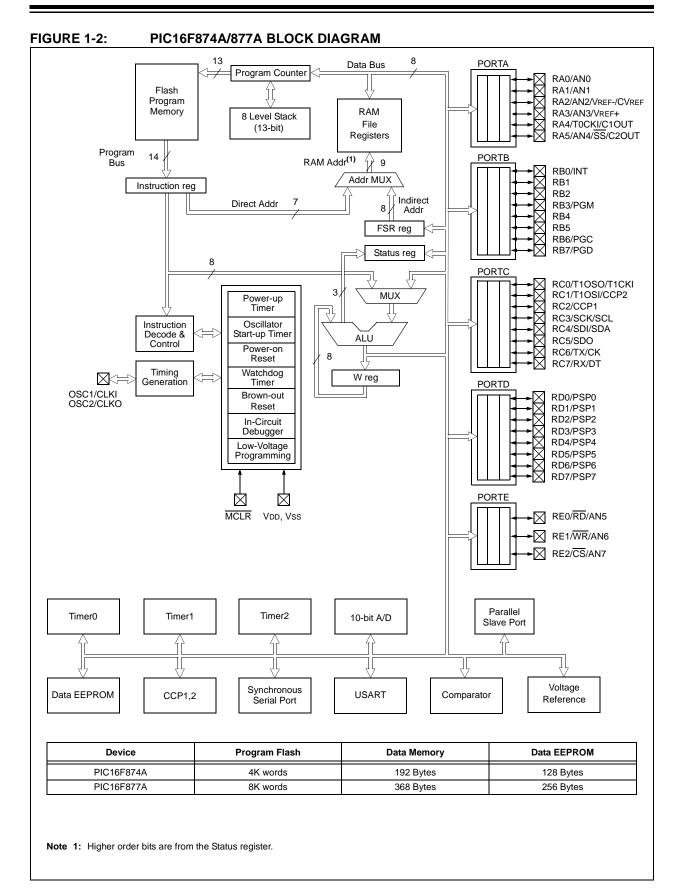


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f874a-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 1 4 1	սու	2-3:	

PIC16F876A/877A REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)		Indirect addr.(*)	100h	Indirect addr.(*)	10
TMR0	00n 01h	OPTION REG	80h	TMR0	100h	OPTION_REG	18
PCL	01h 02h		81h	PCL	10111 102h		18
	02n 03h	PCL STATUS	82h	STATUS	10211 103h	PCL STATUS	18
STATUS	03n 04h		83h	FSR	103n 104h		18
FSR		FSR	84h	FSR	1041 105h	FSR	18
PORTA	05h 06h	TRISA	85h	DODTD	105h	TRISB	18
PORTB		TRISB	86h	PORTB	106n 107h	TRISB	18
	07h	TRISC TRISD ⁽¹⁾	87h		1071 108h		18
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		109h		18
PORTE ⁽¹⁾	09h		89h	PCLATH	1091 10Ah	PCLATH	18
PCLATH	0Ah	PCLATH	8Ah		10An 10Bh	INTCON	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bn 10Ch	EECON1	18
PIR1	0Ch	PIE1	8Ch	EEDATA			18
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18
T1CON	10h		90h		110h		19
TMR2	11h	SSPCON2	91h		111h		19
T2CON	12h	PR2	92h		112h		19
SSPBUF	13h	SSPADD	93h		113h		19
SSPCON	14h	SSPSTAT	94h		114h		19
CCPR1L	15h		95h		115h		19
CCPR1H	16h		96h	Conorol	116h	Conorol	19
CCP1CON	17h		97h	General Purpose	117h	General Purpose	19
RCSTA	18h	TXSTA	98h	Register	118h	Register	19
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	19
RCREG	1Ah		9Ah		11Ah		19
CCPR2L	1Bh		9Bh		11Bh		19
CCPR2H	1Ch	CMCON	9Ch		11Ch		19
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19
ADRESH	1Eh	ADRESL	9Eh		11Eh		19
ADCON0	1Fh	ADCON1	9Fh		11Fh		19
	20h		A0h		120h		1A
		General		General		General	
General		Purpose		Purpose		Purpose	
Purpose		Register		Register		Register	
Register		80 Bytes		80 Bytes		80 Bytes	
96 Bytes			EFh		16Fh		1E
		accesses	F0h	200005005	170h	accesses	1F
		70h-7Fh		accesses 70h-7Fh		70h - 7Fh	
_	7Fh		FFh		17Fh		1F
Bank 0		Bank 1		Bank 2		Bank 3	
Unimple	mented d	ata memory locati	ons. read	as '0'.			
	iysical reg	-					

An example of the complete four-word write sequence is shown in Example 3-4. The initial address is loaded into the EEADRH:EEADR register pair; the four words of data are loaded using indirect addressing.

EXAMPLE 3-4: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. A valid starting address (the least significant bits = '00') is loaded in ADDRH:ADDRL ; 2. The 8 bytes of data are loaded, starting at the address in DATADDR ; 3. ADDRH, ADDRL and DATADDR are all located in shared data memory 0x70 - 0x7f ; BSF STATUS, RP1 ; ; Bank 2 BCF STATUS, RPO ; Load initial address MOVF ADDRH,W MOVWF EEADRH MOVF ADDRL,W ; MOVWF EEADR MOVF DATAADDR,W ; Load initial data address MOVWF FSR ; Load first data byte into lower LOOP MOVF INDF,W MOVWF EEDATA ; INCF FSR,F ; Next byte INDF,W MOVE ; Load second data byte into upper MOVWF EEDATH : INCF FSR,F ; ; Bank 3 STATUS, RPO BSF EECON1, EEPGD BSF ; Point to program memory ; Enable writes BSF EECON1,WREN BCF INTCON,GIE ; Disable interrupts (if using) MOVLW 55h ; Start of required write sequence: MOVWF EECON2 ; Write 55h MOVLW AAh ; Write AAh MOVWF EECON2 BSF EECON1,WR ; Set WR bit to begin write NOP ; Any instructions here are ignored as processor ; halts to begin write sequence NOP ; processor will stop here and wait for write complete ; after write processor continues with 3rd instruction EECON1,WREN BCF ; Disable writes INTCON, GIE ; Enable interrupts (if using) BSF BCF STATUS, RPO ; Bank 2 INCE EEADR, F ; Increment address ; Check if lower two bits of address are `00' MOVF EEADR,W ANDLW ; Indicates when four words have been programmed 0x03 XORLW 0x03 ; BTFSC STATUS,Z ; Exit if more than four words, GOTO ; Continue if less than four words LOOP

3.7 Protection Against Spurious Write

There are conditions when the device should not write to the data EEPROM or Flash program memory. To protect against spurious writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents an EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

3.8 Operation During Code-Protect

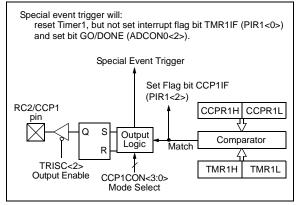
When the data EEPROM is code-protected, the microcontroller can read and write to the EEPROM normally. However, all external access to the EEPROM is disabled. External write access to the program memory is also disabled.

When program memory is code-protected, the microcontroller can read and write to program memory normally, as well as execute instructions. Writes by the device may be selectively inhibited to regions of the memory depending on the setting of bits WR1:WR0 of the configuration word (see **Section 14.1 "Configuration Bits"** for additional information). External access to the memory is also disabled.

TABLE 3-1:REGISTERS/BITS ASSOCIATED WITH DATA EEPROM AND
FLASH PROGRAM MEMORIES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
10Ch	10Ch EEDATA EEPROM/Flash Data Register Low Byte										uuuu uuuu
10Dh	EEADR	EEPRON	1/Flash A	ddress R	egister L	ow Byte				xxxx xxxx	uuuu uuuu
10Eh	EEDATH	_	_	EEPRO	M/Flash [Data Regist	er High By	te		xxxx xxxx	0 q000
10Fh	EEADRH	_	_	_	EEPRO	M/Flash Ad	dress Reg	ister High B	yte	xxxx xxxx	
18Ch	EECON1	EEPGD	_	—	—	WRERR	WREN	WR	RD	x x000	0 q000
18Dh	EECON2	EEPRON	EPROM Control Register 2 (not a physical register)								
0Dh	PIR2	_	CMIF	—	– EEIF BCLIF – – CCP2IF					-0-0 00	-0-0 00
8Dh	PIE2	_	CMIE	_	EEIE	BCLIE	_	_	CCP2IE	-0-0 00	-0-0 00

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM or Flash program memory.


8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to
	the default low level. This is not the
	PORTC I/O data latch.

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

9.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 9-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE) (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master							
		ata sampled						
		ata sampled	at middle o	r data outpu	tume			
	SMP must	be cleared v	when SPI is	used in Slav	ve mode			
bit 6		Clock Select			o modo.			
	1 = Transm	nit occurs on	transition fr	om active to	ldle clock s	state		
	0 = Transm	nit occurs on	transition fr	om Idle to a	ctive clock s	state		
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).	
bit 5	D/A: Data/	Address bit						
	Used in I ² C	c mode only.						
bit 4	P: Stop bit							
	Used in I ² C	mode only.	This bit is cle	ared when t	he MSSP me	odule is disa	bled, SSPEI	N is cleared.
bit 3	S: Start bit							
	Used in I ² C	c mode only.						
bit 2	R/W: Read	I/Write bit inf	ormation					
	Used in I ² C	c mode only.						
bit 1	UA: Update	e Address b	it					
	Used in I ² C	c mode only.						
bit 0	BF: Buffer	Full Status b	oit (Receive	mode only)				
	1 = Receiv	e complete,	SSPBUF is	full				
	0 = Receiv	e not comple	ete, SSPBU	F is empty				
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is ι	Inknown

ER 9-2:	SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0				
	bit 7							bit 0				
bit 7		/rite Collision	-									
		SSPBUF reg ed in software ollision		en while it i	s still transm	nitting the p	revious wor	d. (Must be				
bit 6	SSPOV: R	Receive Over	flow Indicato	or bit								
	<u>SPI Slave</u>	mode:										
	of ove must cleare	v byte is rece erflow, the da read the SSI ed in software	ata in SSPSF PBUF, even	R is lost. Ov	verflow can o	only occur in	Slave mod	e. The user				
	0 = No ov	0 = No overflow										
	Note:				t is not set to the SSPE			eption (and				
bit 5	SSPEN: S	Synchronous	Serial Port E	Enable bit								
		es serial port les serial por					ial port pins					
	Note:	When enal	oled, these p	oins must be	e properly co	nfigured as	input or out	put.				
bit 4	CKP: Cloo	ck Polarity Se	elect bit									
		ate for clock ate for clock	•									
bit 3-0	SSPM3:S	SPM0: Sync	hronous Ser	ial Port Mod	de Select bits	5						
	0100 = SF 0011 = SF 0010 = SF 0001 = SF	PI Slave mod PI Slave mod PI Master mod PI Master mod PI Master mod	le, clock = S ode, clock = ode, clock = ode, clock =	CK pin. SS TMR2 outpu Fosc/64 Fosc/16	pin control e		can be usec	l as I/O pin.				
		PI Master mo										
	Note:	Bit combin I ² C mode o		becifically lis	sted here are	either rese	rved or imp	lemented in				
	I a manual.											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)

9.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

9.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

9.3.10 BUS MODE COMPATIBILITY

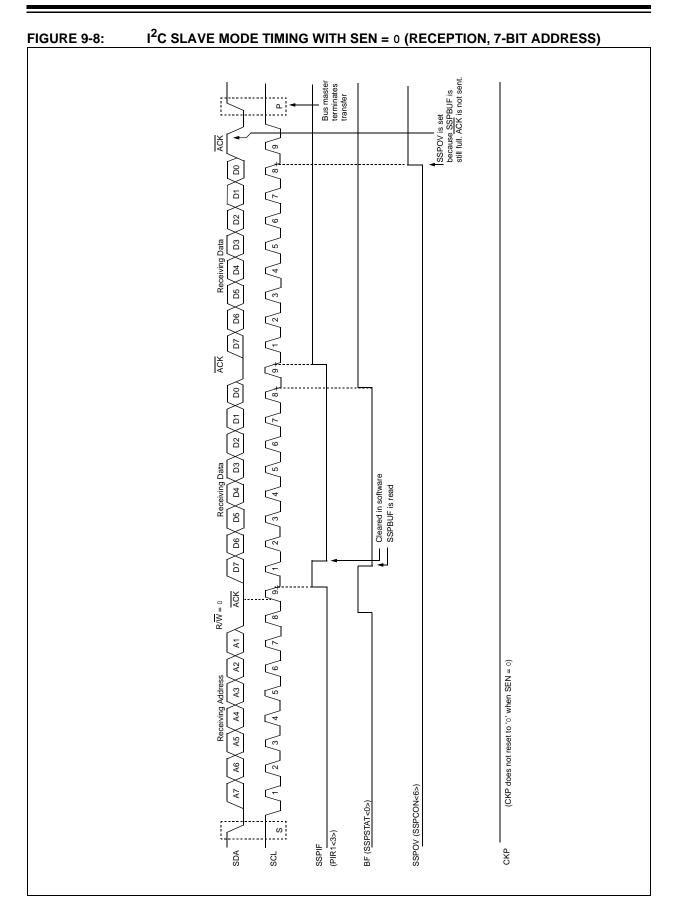
Table 9-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 9-1: SPI BUS MODES

Standard SPI Mode	Control E	Bits State
Terminology	СКР	CKE
0, 0	0	1
0, 1	0	0
1, 0	1	1
1, 1	1	0

There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	ther
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
TRISC	PORTC D	ata Direc	tion Regis	ter					1111	1111	1111	1111
SSPBUF	Synchron	ous Seria	I Port Rec	eive Buffe	er/Transmit	Register			xxxx	xxxx	uuuu	uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
TRISA	—	PORTA Data Direction Register								1111	11	1111
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000	0000	0000	0000

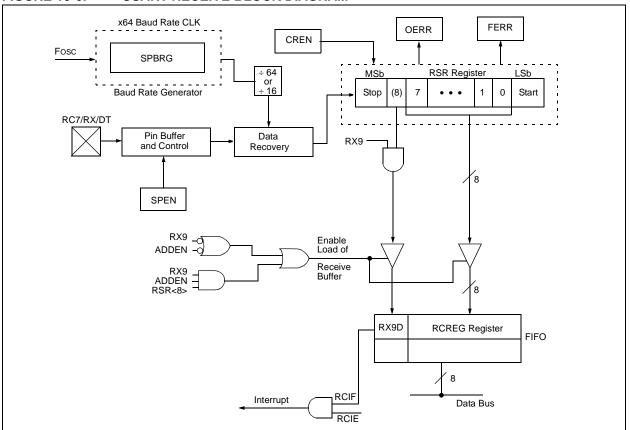

TABLE 9-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

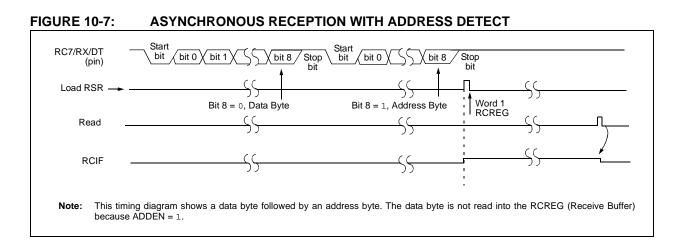
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on 28-pin devices; always maintain these bits clear.

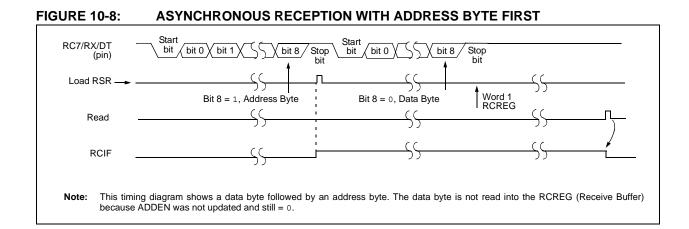
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
	bit 7	1		I		I	I	bit 0			
bit 7		eneral Call En		-	-						
		e interrupt whe ral call address		call address	(0000h) is	received in	the SSPSF	2			
bit 6	ACKSTA	f: Acknowledg	e Status bit	(Master Tran	smit mode o	only)					
		ACKSTAT: Acknowledge Status bit (Master Transmit mode only) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave									
bit 5	ACKDT: A	Acknowledge [Data bit (Mas	ster Receive	mode only)						
	1 = Not A 0 = Ackno	cknowledge wledge									
	Note:	Value that w the end of a		itted when th	e user initia	tes an Ackr	nowledge se	equence at			
bit 4	ACKEN:	Acknowledge	Sequence E	nable bit (Ma	ster Receiv	e mode on	ly)				
	1 = Initiat Autor	e Acknowledg matically cleare owledge seque	e sequence d by hardw	e on SDA ar				T data bit.			
bit 3	RCEN: R	eceive Enable	bit (Master i	mode only)							
	1 = Enabl 0 = Recei	es Receive mo ve Idle	ode for I ² C								
bit 2	PEN: Stop	o Condition En	able bit (Ma	ster mode or	nly)						
		e Stop conditio	n on SDA a	nd SCL pins.	Automatica	ally cleared	by hardwa	re.			
bit 1	RSEN: Re	epeated Start (Condition Er	nabled bit (Ma	aster mode	only)					
	 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 										
bit 0	SEN: Start Condition Enabled/Stretch Enabled bit										
	In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle										
		<u>node:</u> stretching is e stretching is e						nabled)			
	Legend:										
	R = Read			itable bit	-		bit, read as				
	- n = Valu	e at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown			

Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).



10.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT


When setting up an Asynchronous Reception with address detect enabled:


- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

FIGURE 10-6: USART RECEIVE BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Red	ceive Reg	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit, SREN (RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive

data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 10-9. REGISTERS ASSOCIATED WITTSTRETIKOROOS MASTER RECEPTION											
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u	
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x	
RCREG	USART Re	eceive Re	gister						0000 0000	0000 0000	
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010	
SPBRG	Baud Rate	Baud Rate Generator Register								0000 0000	
	Name INTCON PIR1 RCSTA RCREG PIE1 TXSTA	NameBit 7INTCONGIEPIR1PSPIF ⁽¹⁾ RCSTASPENRCREGUSART RePIE1PSPIE ⁽¹⁾ TXSTACSRC	NameBit 7Bit 6INTCONGIEPEIEPIR1PSPIF(1)ADIFRCSTASPENRX9RCREGUSART Receive RePIE1PSPIE(1)ADIETXSTACSRCTX9	NameBit 7Bit 6Bit 5INTCONGIEPEIETMR0IEPIR1PSPIF ⁽¹⁾ ADIFRCIFRCSTASPENRX9SRENRCREGUSART Receive RegisterPIE1PSPIE ⁽¹⁾ ADIEPIE1PSPIE ⁽¹⁾ ADIERCIETXSTACSRCTX9TXEN	NameBit 7Bit 6Bit 5Bit 4INTCONGIEPEIETMROIEINTEPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFRCSTASPENRX9SRENCRENRCREGUSART Receive RegisterFIE1PSPIE ⁽¹⁾ ADIERCIETXIETXSTACSRCTX9TXENSYNC	NameBit 7Bit 6Bit 5Bit 4Bit 3INTCONGIEPEIETMROIEINTERBIEPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFRCSTASPENRX9SRENCREN—RCREGUSART Receive RegisterFIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIEPIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIETXSTACSRCTX9TXENSYNC—	NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2INTCONGIEPEIETMR0IEINTERBIETMR0IFPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFRCSTASPENRX9SRENCREN—FERRRCREGUSART Receive RegisterFFFFPIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IETXSTACSRCTX9TXENSYNC—BRGH	NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1INTCONGIEPEIETMROIEINTERBIETMROIFINTFPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFTMR2IFRCSTASPENRX9SRENCREN—FERROERRRCREGUSART Receive RegisterFIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IETMR2IETXSTACSRCTX9TXENSYNC—BRGHTRMT	NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0INTCONGIEPEIETMROIEINTERBIETMROIFINTFROIFPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFRCSTASPENRX9SRENCREN—FERROERRRX9DRCREGUSART Receive RegisterFIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IETMR2IETMR1IETXSTACSRCTX9TXENSYNC—BRGHTRMTTX9D	NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Value on: POR, BORINTCONGIEPEIETMROIEINTERBIETMROIFINTFROIF0000000xPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IF00000000RCSTASPENRX9SRENCREN—FERROERRRX9D0000-00xRCREGUSART Receive RegisterSYPIECCP1IETMR2IETMR1IE00000000PIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IETMR2IETMR1IE00000000TXSTACSRCTX9TXENSYNC—BRGHTRMTTX9D0000-011	

TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

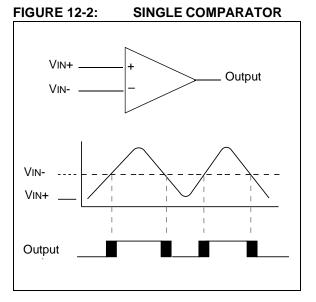
PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	А	А	А	А	А	А	А	А	Vdd	Vss	8/0
0001	А	А	А	А	VREF+	А	А	А	AN3	Vss	7/1
0010	D	D	D	А	А	А	А	А	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	А	А	AN3	Vss	4/1
0100	D	D	D	D	А	D	А	А	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	А	А	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	—	0/0
1000	А	А	А	А	VREF+	VREF-	А	А	AN3	AN2	6/2
1001	D	D	А	А	А	А	А	А	Vdd	Vss	6/0
1010	D	D	А	А	VREF+	А	А	А	AN3	Vss	5/1
1011	D	D	А	А	VREF+	VREF-	А	А	AN3	AN2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	А	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	А	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device Reset, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.


NOTES:

12.2 Comparator Operation

A single comparator is shown in Figure 12-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 12-2 represent the uncertainty due to input offsets and response time.

12.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 12-2).

12.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSS and VDD and can be applied to either pin of the comparator(s).

12.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 13.0 "Comparator Voltage Reference Module" contains a detailed description of the Comparator Voltage Reference module that provides this signal. The internal reference signal is used when comparators are in mode, CM<2:0> = 110 (Figure 12-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

12.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 17.0 "Electrical Characteristics").

12.5 Comparator Outputs

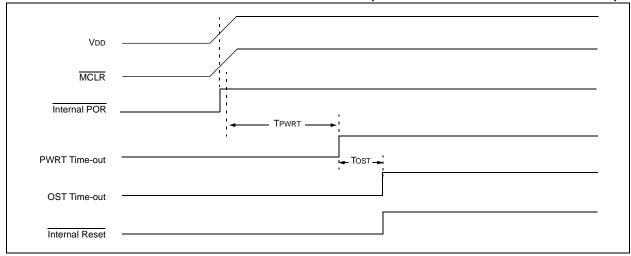
The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexors in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 12-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<4:5>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.
 - **3:** RA4 is an open collector I/O pin. When used as an output, a pull-up resistor is required.

TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)								
Register		Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt		
TRISD	73A	74A	76A	77A	1111 1111	1111 1111	uuuu uuuu	
TRISE	73A	74A	76A	77A	0000 -111	0000 -111	uuuu -uuu	
PIE1	73A	74A	76A	77A	r000 0000	r000 0000	ruuu uuuu	
FICI	73A	74A	76A	77A	0000 0000	0000 0000	սսսս սսսս	
PIE2	73A	74A	76A	77A	-0-0 00	-0-0 00	-u-u uu	
PCON	73A	74A	76A	77A	dd	uu	uu	
SSPCON2	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu	
PR2	73A	74A	76A	77A	1111 1111	1111 1111	1111 1111	
SSPADD	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	73A	74A	76A	77A	00 0000	00 0000	uu uuuu	
TXSTA	73A	74A	76A	77A	0000 -010	0000 -010	uuuu -uuu	
SPBRG	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu	
CMCON	73A	974	76A	77A	0000 0111	0000 0111	uuuu uuuu	
CVRCON	73A	74A	76A	77A	000- 0000	000- 0000	uuu- uuuu	
ADRESL	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu	
ADCON1	73A	74A	76A	77A	00 0000	00 0000	uu uuuu	
EEDATA	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
EEADR	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
EEDATH	73A	74A	76A	77A	xxxx xxxx	սսսս սսսս	uuuu uuuu	
EEADRH	73A	74A	76A	77A	xxxx xxxx	սսսս սսսս	uuuu uuuu	
EECON1	73A	74A	76A	77A	x x000	u u000	u uuuu	
EECON2	73A	74A	76A	77A				


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

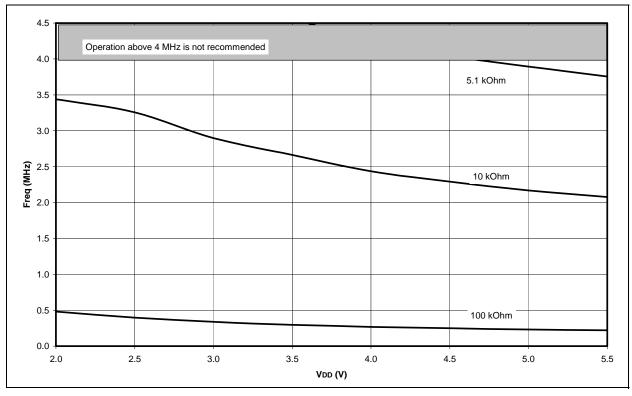
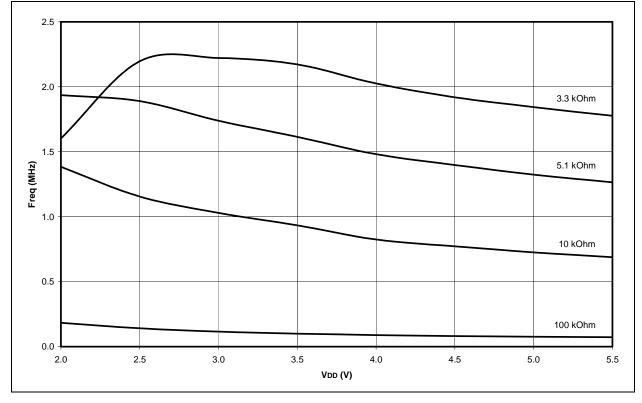

3: See Table 14-5 for Reset value for specific condition.

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)



© 2001-2013 Microchip Technology Inc.

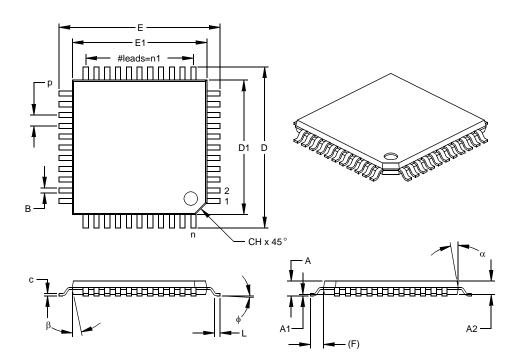


FIGURE 18-8: AVERAGE Fosc vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, +25°C)

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	А	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039		1.00		
Foot Angle	φ	0	3.5	7	0	3.5	7
Overall Width	E	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

W

Wake-up from Sleep143	, 156
Interrupts149	, 150
MCLR Reset	
WDT Reset	. 150
Wake-up Using Interrupts	. 156
Watchdog Timer	
Register Summary	. 155
Watchdog Timer (WDT)143	, 155
Enable (WDTE Bit)	. 155
Postscaler. See Postscaler, WDT.	
Programming Considerations	. 155
RC Oscillator	. 155
Time-out Period	. 155
WDT Reset, Normal Operation 147, 149	, 150
WDT Reset, Sleep 147, 149	, 150
WCOL	, 104
WCOL Status Flag	99
WWW, On-Line Support	4