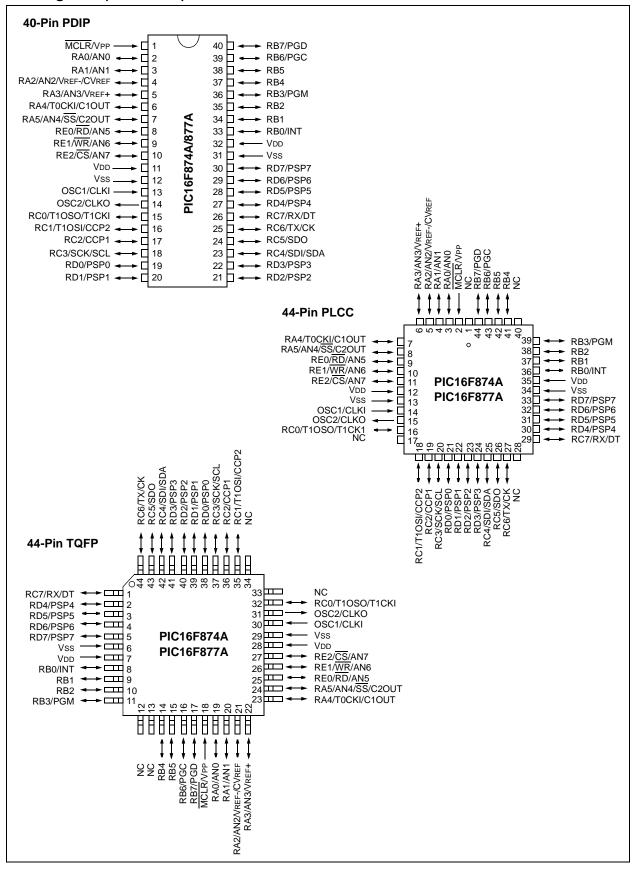


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f874at-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
					PORTB is a bidirectional I/O port. PORTB can be software
					programmed for internal weak pull-ups on all inputs.
RB0/INT	21	18		TTL/ST ⁽¹⁾	
RB0			I/O		Digital I/O.
INT			I		External interrupt.
RB1	22	19	I/O	TTL	Digital I/O.
RB2	23	20	I/O	TTL	Digital I/O.
RB3/PGM	24	21		TTL	
RB3			I/O		Digital I/O.
PGM			I		Low-voltage (single-supply) ICSP programming enable pir
RB4	25	22	I/O	TTL	Digital I/O.
RB5	26	23	I/O	TTL	Digital I/O.
RB6/PGC	27	24		TTL/ST ⁽²⁾	
RB6			I/O		Digital I/O.
PGC			I		In-circuit debugger and ICSP programming clock.
RB7/PGD	28	25		TTL/ST ⁽²⁾	
RB7	-	-	I/O		Digital I/O.
PGD			I/O		In-circuit debugger and ICSP programming data.
					PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI	11	8		ST	
RC0		-	I/O		Digital I/O.
T1OSO			0		Timer1 oscillator output.
T1CKI			I		Timer1 external clock input.
RC1/T1OSI/CCP2	12	9		ST	
RC1			I/O		Digital I/O.
T1OSI			1		Timer1 oscillator input.
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	13	10		ST	
RC2			I/O		Digital I/O.
CCP1			I/O		Capture1 input, Compare1 output, PWM1 output.
RC3/SCK/SCL	14	11	1/0	ST	District VO
RC3 SCK			I/O I/O		Digital I/O. Synchronous serial clock input/output for SPI mode.
SCL			1/O		Synchronous serial clock input/output for J ² C mode.
RC4/SDI/SDA	15	12	., 0	ST	
RC4	15	12	I/O	51	Digital I/O.
SDI			., c		SPI data in.
SDA			I/O		I ² C data I/O.
RC5/SDO	16	13		ST	
RC5			I/O		Digital I/O.
SDO			0		SPI data out.
RC6/TX/CK	17	14		ST	
RC6			I/O		Digital I/O.
TX			0		USART asynchronous transmit.
CK			I/O		USART1 synchronous clock.
RC7/RX/DT	18	15		ST	
RC7			I/O		Digital I/O.
RX DT			I/O		USART asynchronous receive.
	0.40	F A			USART synchronous data.
Vss	8, 19 20	5,6	P		Ground reference for logic and I/O pins. Positive supply for logic and I/O pins.
Vdd		17	Р		

TABLE 1-2: PIC16F873A/876A PINOUT DESCRIPTION (CONTINUE

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽³⁾	INDF	Addressing	this locatio	n uses cont	ents of FSR t	o address d	ata memory (not a physic	al register)	0000 0000	31, 150
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	23, 150
82h ⁽³⁾	PCL	Program C	ounter (PC)	Least Sign	ificant Byte					0000 0000	30, 150
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22, 150
84h ⁽³⁾	FSR	Indirect Da	ta Memory	Address Po	inter					xxxx xxxx	31, 150
85h	TRISA			PORTA Da	ta Direction F	Register				11 1111	43, 150
86h	TRISB	PORTB Da	ata Direction	Register						1111 1111	45, 150
87h	TRISC	PORTC Da	ata Directior	Register						1111 1111	47, 150
88h ⁽⁴⁾	TRISD	PORTD Da	ata Directior	n Register						1111 1111	48, 151
89h ⁽⁴⁾	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Dat	a Direction I	bits	0000 -111	50, 151
8Ah ^(1,3)	PCLATH	—			Write Buffer	for the uppe	er 5 bits of the	e Program C	Counter	0 0000	30, 150
8Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
8Ch	PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	25, 151
8Dh	PIE2	—	CMIE		EEIE	BCLIE	—	_	CCP2IE	-0-0 00	27, 151
8Eh	PCON	_			_		_	POR	BOR	dd	29, 151
8Fh	_	Unimpleme	Unimplemented								
90h	—	Unimpleme	ented							_	_
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	83, 151
92h	PR2	Timer2 Per	riod Registe	r						1111 1111	62, 151
93h	SSPADD	Synchrono	us Serial Po	ort (I ² C mod	e) Address R	egister				0000 0000	79, 151
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	79, 151
95h	—	Unimpleme	ented		•					—	
96h	_	Unimpleme	ented							—	
97h	—	Unimpleme	ented							—	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	111, 151
99h	SPBRG	Baud Rate	Generator	Register	•					0000 0000	113, 151
9Ah	—	Unimpleme	Unimplemented								_
9Bh	_	Unimpleme	ented							_	—
9Ch	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	135, 151
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	141, 151
9Eh	ADRESL	A/D Result	Register Lo	w Byte						xxxx xxxx	133, 151
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	128, 151

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Legend: Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.

5: Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

3.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The data EEPROM and Flash program memory is readable and writable during normal operation (over the full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are six SFRs used to read and write this memory:

- EECON1
- EECON2
- EEDATA
- EEDATH
- EEADR
- EEADRH

When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 128 or 256 bytes of data EEPROM (depending on the device), with an address range from 00h to FFh. On devices with 128 bytes, addresses from 80h to FFh are unimplemented and will wraparound to the beginning of data EEPROM memory. When writing to unimplemented locations, the on-chip charge pump will be turned off.

When interfacing the program memory block, the EEDATA and EEDATH registers form a two-byte word that holds the 14-bit data for read/write and the EEADR and EEADRH registers form a two-byte word that holds the 13-bit address of the program memory location being accessed. These devices have 4 or 8K words of program Flash, with an address range from 0000h to 0FFFh for the PIC16F873A/874A and 0000h to 1FFFh for the PIC16F876A/877A. Addresses above the range of the respective device will wraparound to the beginning of program memory.

The EEPROM data memory allows single-byte read and write. The Flash program memory allows single-word reads and four-word block writes. Program memory write operations automatically perform an erase-before-write on blocks of four words. A byte write in data EEPROM memory automatically erases the location and writes the new data (erase-before-write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory. Depending on the settings of the write-protect bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed. When code-protected, the device programmer can no longer access data or program memory; this does NOT inhibit internal reads or writes.

3.1 EEADR and EEADRH

The EEADRH:EEADR register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program EEPROM. When selecting a data address value, only the LSByte of the address is written to the EEADR register. When selecting a program address value, the MSByte of the address is written to the EEADRH register and the LSByte is written to the EEADR register.

If the device contains less memory than the full address reach of the address register pair, the Most Significant bits of the registers are not implemented. For example, if the device has 128 bytes of data EEPROM, the Most Significant bit of EEADR is not implemented on access to data EEPROM.

3.2 EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses.

Control bit, EEPGD, determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory.

Control bits, RD and WR, initiate read and write or erase, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write or erase operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write (or erase) operation is interrupted by a $\overline{\text{MCLR}}$ or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

Note: The self-programming mechanism for Flash program memory has been changed. On previous PIC16F87X devices, Flash programming was done in single-word erase/ write cycles. The newer PIC18F87XA devices use a four-word erase/write cycle. See Section 3.6 "Writing to Flash Program Memory" for more information.

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit 0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit 1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/ Compare2 output/PWM2 output.
RC2/CCP1	bit 2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	bit 3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit 4	ST	RC4 can also be the SPI data in (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit 5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit 6	ST	Input/output port pin or USART asynchronous transmit or synchronous clock.
RC7/RX/DT	bit 7	ST	Input/output port pin or USART asynchronous receive or synchronous data.

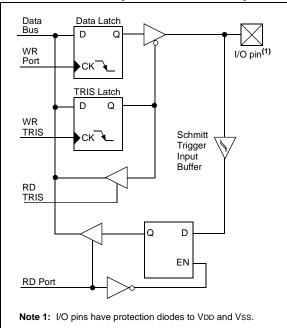
TABLE 4-5:PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 4-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	PORTC Data Direction Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged


4.4 PORTD and TRISD Registers

Note:	PORTD and TRISD are not implemented
	on the 28-pin devices.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 4-8: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 0.
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 2.
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 3.
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 4.
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 5.
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 6.
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 7.

TABLE 4-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORT
--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on: BOR	Valu all o Res	
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx	xxxx	uuuu	uuuu
88h	TRISD	PORTI	PORTD Data Direction Register							1111	1111	1111	1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE I	Data Dire	ction Bits	0000	-111	0000	-111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

9.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 9-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE) (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
	SMP	CKE	D/A	Р	S	R/W	UA	BF		
	bit 7							bit 0		
bit 7	SMP: Sam	ple bit								
	SPI Master									
		ata sampled								
		ata sampled	at middle o	r data outpu	tume					
	SMP must	be cleared v	when SPI is	used in Slav	ve mode					
bit 6		Clock Select			o modo.					
	1 = Transm	nit occurs on	transition fr	om active to	ldle clock s	state				
	0 = Transm	nit occurs on	transition fr	om Idle to a	ctive clock s	state				
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).			
bit 5	D/A: Data/	Address bit								
	Used in I ² C	c mode only.								
bit 4	P: Stop bit									
	Used in I ² C	mode only.	This bit is cle	ared when t	he MSSP me	odule is disa	bled, SSPEI	N is cleared.		
bit 3	S: Start bit									
	Used in I ² C	c mode only.								
bit 2	R/W: Read	I/Write bit inf	ormation							
	Used in I ² C	c mode only.								
bit 1	UA: Update	e Address b	it							
	Used in I ² C	c mode only.								
bit 0	BF: Buffer Full Status bit (Receive mode only)									
	1 = Receive complete, SSPBUF is full									
	0 = Receiv	e not comple	ete, SSPBU	F is empty						
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is ι	Inknown		

9.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

9.3.9 EFFECTS OF A RESET

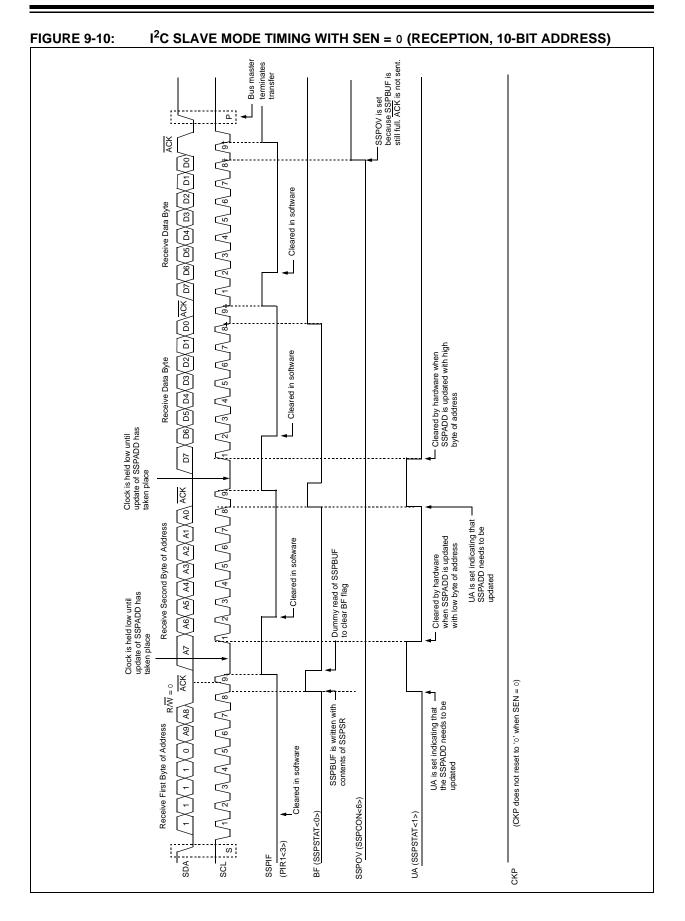
A Reset disables the MSSP module and terminates the current transfer.

9.3.10 BUS MODE COMPATIBILITY

Table 9-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 9-1: SPI BUS MODES

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			


There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	ther
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
TRISC	PORTC D	PORTC Data Direction Register						1111	1111	1111	1111	
SSPBUF	Synchron	Synchronous Serial Port Receive Buffer/Transmit Register						xxxx	xxxx	uuuu	uuuu	
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
TRISA	—	PORTA Data Direction Register						11	1111	11	1111	
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000	0000	0000	0000

TABLE 9-2: REGISTERS ASSOCIATED WITH SPI OPERATION

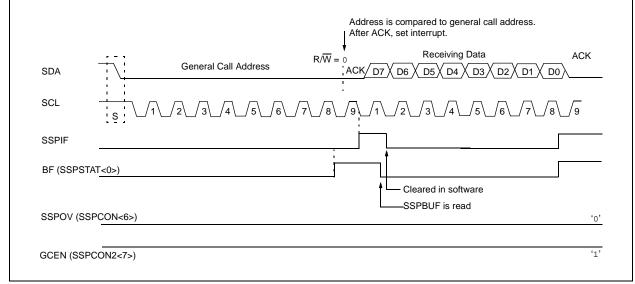
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on 28-pin devices; always maintain these bits clear.

9.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

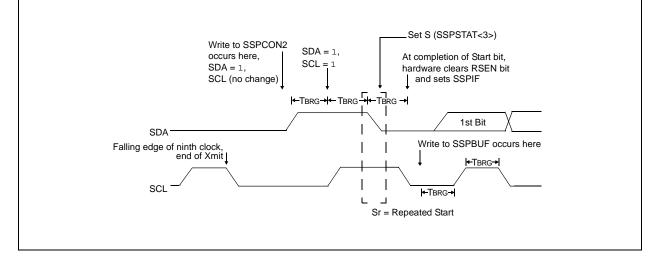
When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 9-15).

9.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

9.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 9-20: REPEAT START CONDITION WAVEFORM

NOTES:

bit 0

13.0 COMPARATOR VOLTAGE REFERENCE MODULE

The Comparator Voltage Reference Generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 13-1 lists the bit functions of the CVRCON register.

As shown in Figure 13-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC - VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user if a very highimpedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

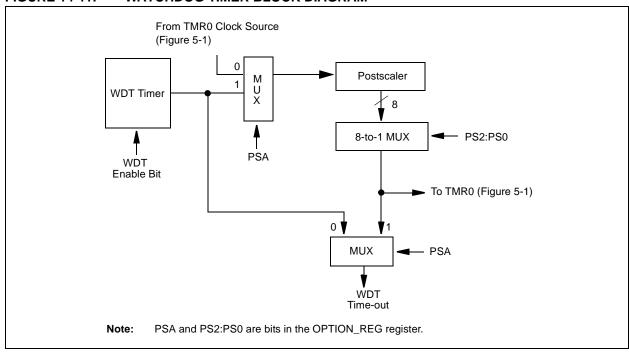
		R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0
		bit 7							bit (
b	it 7	CVREN: Co	omparator V	oltage Refe	rence Enabl	e bit			
		1 = CVREF	circuit powe	ered on					

REGISTER 13-1: CVRCON CONTROL REGISTER (ADDRESS 9Dh)

	1 = CVREF circuit powered on 0 = CVREF circuit powered down
bit 6	CVROE: Comparator VREF Output Enable bit
	1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin
	0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	1 = 0 to 0.75 CVRSRC, with CVRSRC/24 step size
	0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
bit 4	Unimplemented: Read as '0'
bit 3-0	CVR3:CVR0: Comparator VREF Value Selection bits $0 \le VR3:VR0 \le 15$
	When CVRR = 1:
	$\overline{\text{CVREF}} = (\text{VR} < 3:0 > / 24) \bullet (\text{CVRSRC})$
	When CVRR = 0:
	$\overline{\text{CVREF}} = 1/4 \bullet (\text{CVRSRC}) + (\text{VR3:VR0/32}) \bullet (\text{CVRSRC})$

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

14.13 Watchdog Timer (WDT)


The Watchdog Timer is a free running, on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run even if the clock on the OSC1/CLKI and OSC2/CLKO pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the Status register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit, WDTE (Section 14.1 "Configuration Bits").

WDT time-out period values may be found in **Section 17.0** "**Electrical Characteristics**" under parameter #31. Values for the WDT prescaler (actually a postscaler but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- **Note 1:** The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT and prevent it from timing out and generating a device Reset condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared but the prescaler assignment is not changed.

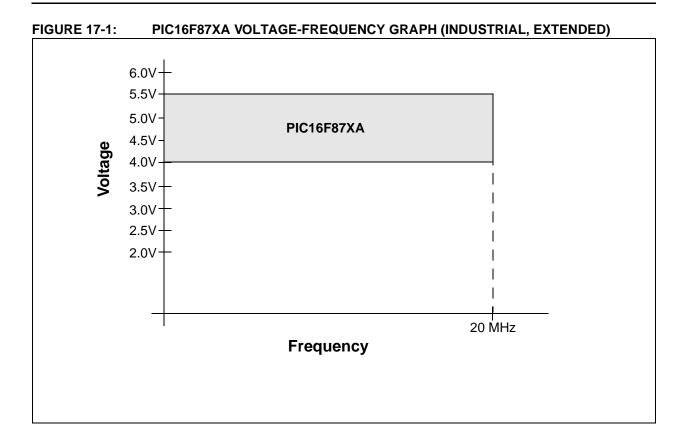
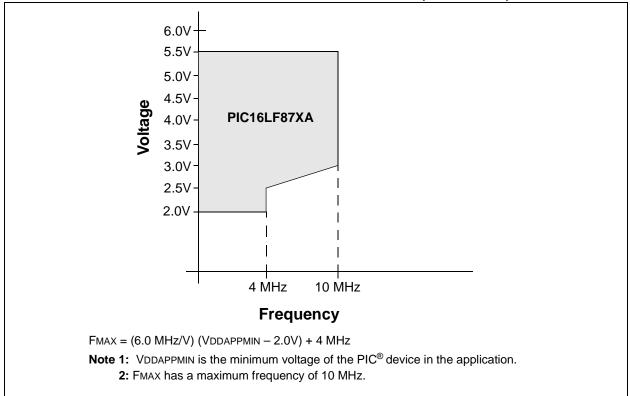
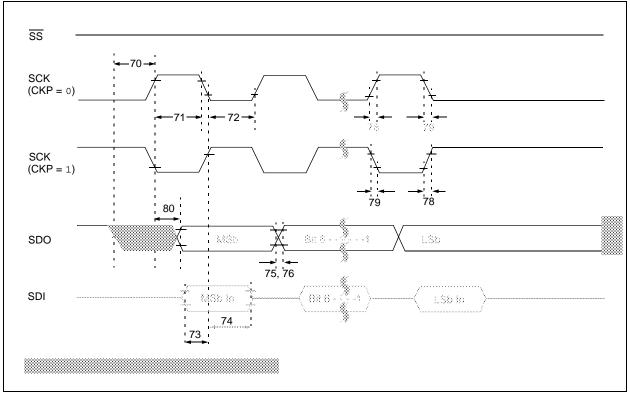
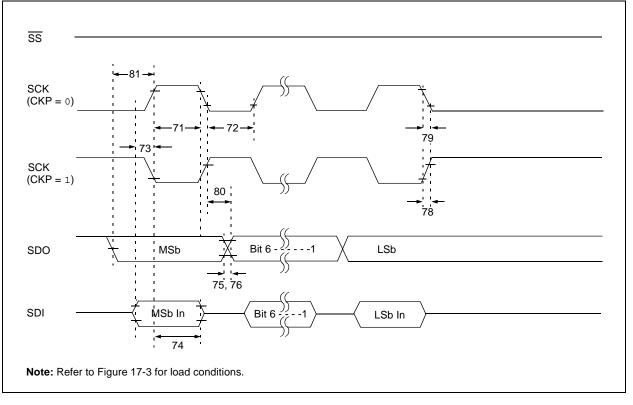

FIGURE 14-11: WATCHDOG TIMER BLOCK DIAGRAM

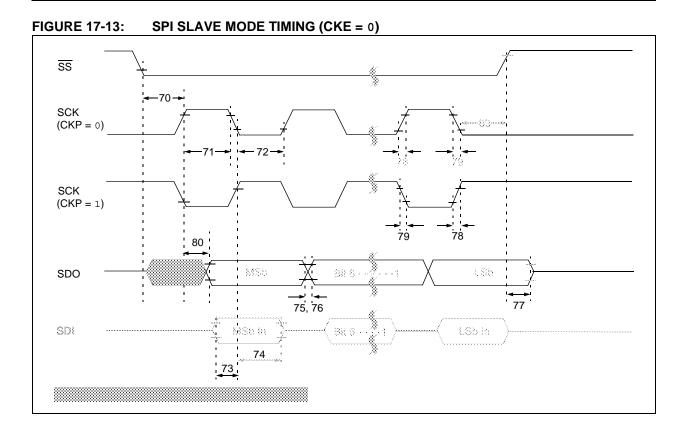
TABLE 14-7: SUMMARY OF WATCHDOG TIMER REGISTERS

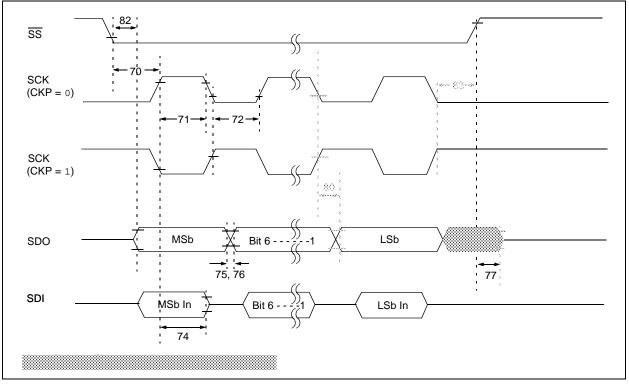

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	Fosc1	Fosc0
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

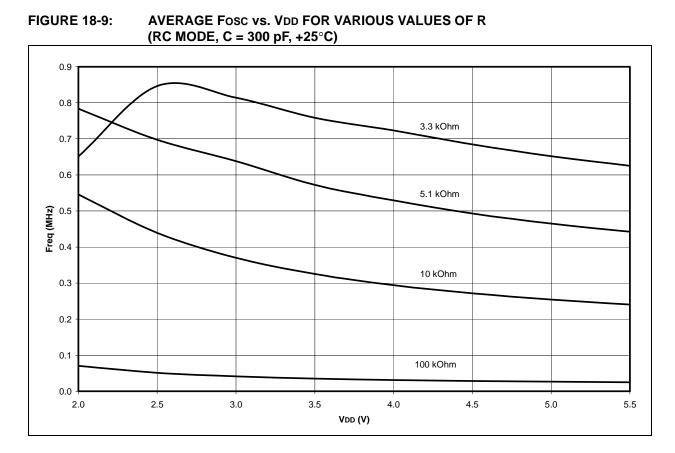

Legend: Shaded cells are not used by the Watchdog Timer.

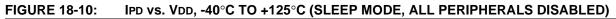
Note 1: See Register 14-1 for operation of these bits.

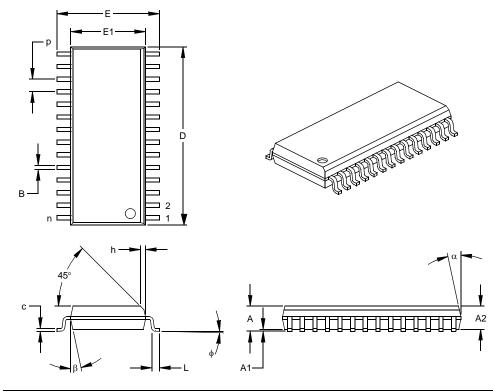





FIGURE 17-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)


FIGURE 17-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)





100 Max (125°C) 10 Max (85°C) 1 IPD (NA) 0.1 0.01 Тур (25°С) Typical: statistical mean @ 25°C **Maximum:** mean + 3σ (-40°C to +125°C) **Minimum:** mean - 3σ (-40°C to +125°C) 0.001 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V)

28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.050			1.27		
Overall Height	А	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	E	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59	
Overall Length	D	.695	.704	.712	17.65	17.87	18.08	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle Top	φ	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-052

I

I/O Ports	
I2C Bus Data Requirements	
I ² C Bus Start/Stop Bits Requirements	
I ² C Mode	
Registers	80
I ² C Mode	80
ACK Pulse	
Acknowledge Sequence Timing	
Baud Rate Generator	
Bus Collision	
Repeated Start Condition	
Start Condition	
Stop Condition	
Clock Arbitration	
Effect of a Reset	105
General Call Address Support	94
Master Mode	
Operation	
Repeated Start Timing	100
Master Mode Reception	
Master Mode Start Condition	
Master Mode Transmission	
Multi-Master Communication, Bus Collision	
and Arbitration	105
Multi-Master Mode	105
Read/Write Bit Information (R/W Bit)	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	84
Reception	
Transmission	
Sleep Operation	
Stop Condition Timing	104
Stop Condition Timing ID Locations	104 143, 157
Stop Condition Timing	104 143, 157
Stop Condition Timing ID Locations In-Circuit Debugger	143, 157 143, 157 143, 157
Stop Condition Timing ID Locations In-Circuit Debugger Resources	104 143, 157 143, 157 157
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP)	143, 157 143, 157 143, 157 143, 157 143, 158
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register	143, 157 143, 157 143, 157 157 157 143, 158 19, 20, 31
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF ANDLW	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ANDLW ANDLW ANDLW	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF ANDLW	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ANDLW ANDLW ANDLW	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDWF ANDLW ANDWF BCF BSF	
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDLW ADDWF BCF BSF BSF BTFSC	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 31
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDWF ANDLW ANDLW BCF BSF BTFSC BTFSS	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 31
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDWF ANDLW ANDLW BCF BSF BTFSC BTFSS CALL	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 161 161
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDWF ANDLW ANDLW BCF BSF BTFSC BTFSS	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 161 161
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDWF ANDLW ANDLW BCF BSF BTFSC BTFSS CALL	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 161 162 162
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDLW ADDWF BCF BSF BSF BTFSC BTFSS CALL CLRF CLRW	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 161 162 162 162
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDLW ADDWF BCF BSF BSF BTFSC BTFSS CALL CLRF CLRW CLRW CLRWDT	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 162 162 162 162
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF ANDLW BCF BSF BTFSC BTFSS CALL CLRW CLRWDT COMF	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDLW ADDWF BCF BSF BSF BTFSC BTFSS CALL CLRW CLRW CLRWDT COMF DECF	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162 162
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF ANDLW BCF BSF BTFSC BTFSS CALL CLRW CLRWDT COMF	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162 162
Stop Condition Timing ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDLW ADDLW ADDWF BCF BSF BSF BTFSC BTFSS CALL CLRW CLRW CLRWDT COMF DECF	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 162 162 162 162 162 162 162 162
Stop Condition Timing ID Locations In-Circuit Debugger	104
Stop Condition Timing ID Locations In-Circuit Debugger	104
Stop Condition Timing ID Locations In-Circuit Debugger	104
Stop Condition Timing ID Locations In-Circuit Debugger	104
Stop Condition Timing ID Locations In-Circuit Debugger	104
Stop Condition Timing ID Locations In-Circuit Debugger	104
Stop Condition Timing ID Locations In-Circuit Debugger	104

RRF	164
SLEEP	164
SUBLW	164
SUBWF	164
SWAPF	165
XORLW	165
XORWF	165
Summary Table	160
INT Interrupt (RB0/INT). See Interrupt Sources.	
INTCON Register	
GIE Bit	
INTE Bit	
INTE Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit	
TMROIE Bit	· ·
TMR0IF Bit	
Inter-Integrated Circuit. See I ² C.	24
Internal Reference Signal	107
Internal Sampling Switch (Rss) Impedance	. 137
Interrupt Sources	3, 153
Interrupt-on-Change (RB7:RB4)	
RB0/INT Pin, External9, 1	
TMR0 Overflow	
USART Receive/Transmit Complete	111
Interrupts	
Bus Collision Interrupt	
Synchronous Serial Port Interrupt	
Interrupts, Context Saving During	154
Interrupts, Enable Bits	
Global Interrupt Enable (GIE Bit)24	4, 153
Interrupt-on-Change (RB7:RB4)	
Enable (RBIE Bit)24	
Peripheral Interrupt Enable (PEIE Bit)	
RB0/INT Enable (INTE Bit)	
TMR0 Overflow Enable (TMR0IE Bit)	24
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)24, 44	4, 154
RB0/INT Flag (INTF Bit)	24
TMR0 Overflow Flag (TMR0IF Bit)24	
- · · · · · · · · · · · · · · · · · · ·	

L

Loading of PC	30
Low-Voltage ICSP Programming	158
Low-Voltage In-Circuit Serial Programming	

Μ

Master Clear (MCLR)	8
MCLR Reset, Normal Operation147, 149, 1	150
MCLR Reset, Sleep147, 149, 1	150
Master Synchronous Serial Port (MSSP). See MSSP.	
MCLR 1	148
MCLR/VPP	10
Memory Organization	15
Data EEPROM Memory	
Data Memory	16
Flash Program Memory	
Program Memory	15
MPLAB ASM30 Assembler, Linker, Librarian 1	168
MPLAB ICD 2 In-Circuit Debugger 1	169
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator1	169
	-

© 2001-2013 Microchip Technology Inc.