

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f874at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description				
					PORTB is a bidirectional I/O port. PORTB can be software				
					programmed for internal weak pull-ups on all inputs.				
RB0/INT	21	18		TTL/ST ⁽¹⁾					
RB0			I/O		Digital I/O.				
INT			I		External interrupt.				
RB1	22	19	I/O	TTL	Digital I/O.				
RB2	23	20	I/O	TTL	Digital I/O.				
RB3/PGM	24	21		TTL					
RB3			I/O		Digital I/O.				
PGM			I		Low-voltage (single-supply) ICSP programming enable pir				
RB4	25	22	I/O	TTL	Digital I/O.				
RB5	26	23	I/O	TTL	Digital I/O.				
RB6/PGC	27	24		TTL/ST ⁽²⁾					
RB6			I/O		Digital I/O.				
PGC			I		In-circuit debugger and ICSP programming clock.				
RB7/PGD	28	25		TTL/ST ⁽²⁾					
RB7	-	-	I/O		Digital I/O.				
PGD			I/O		In-circuit debugger and ICSP programming data.				
					PORTC is a bidirectional I/O port.				
RC0/T1OSO/T1CKI	11	8		ST					
RC0		-	I/O		Digital I/O.				
T1OSO			0		Timer1 oscillator output.				
T1CKI			I		Timer1 external clock input.				
RC1/T1OSI/CCP2	12	9		ST					
RC1			I/O		Digital I/O.				
T1OSI			1		Timer1 oscillator input.				
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.				
RC2/CCP1	13	10		ST					
RC2			I/O		Digital I/O.				
CCP1			I/O		Capture1 input, Compare1 output, PWM1 output.				
RC3/SCK/SCL	14	11	1/0	ST					
RC3 SCK			I/O I/O		Digital I/O. Synchronous serial clock input/output for SPI mode.				
SCL			1/O		Synchronous serial clock input/output for Sr I mode.				
RC4/SDI/SDA	15	12	., 0	ST					
RC4	15	12	I/O	51	Digital I/O.				
SDI			., c		SPI data in.				
SDA			I/O		I ² C data I/O.				
RC5/SDO	16	13		ST					
RC5			I/O		Digital I/O.				
SDO			0		SPI data out.				
RC6/TX/CK	17	14		ST					
RC6			I/O		Digital I/O.				
TX			0		USART asynchronous transmit.				
CK			I/O		USART1 synchronous clock.				
RC7/RX/DT	18	15		ST					
RC7			I/O		Digital I/O.				
RX DT			I/O		USART asynchronous receive.				
	0.40	F A			USART synchronous data.				
Vss	8, 19 20	5,6	P		Ground reference for logic and I/O pins. Positive supply for logic and I/O pins.				
Vdd		17	Р						

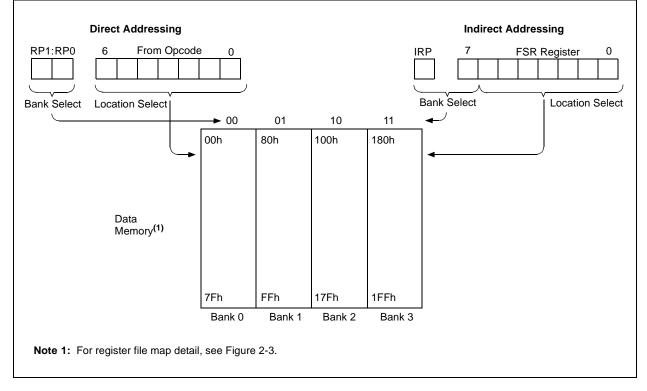
TABLE 1-2: PIC16F873A/876A PINOUT DESCRIPTION (CONTINUE

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = 0) will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (Status<7>) as shown in Figure 2-6. A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			
	:		;yes continue
1			

NOTES:

5.0 TIMER0 MODULE

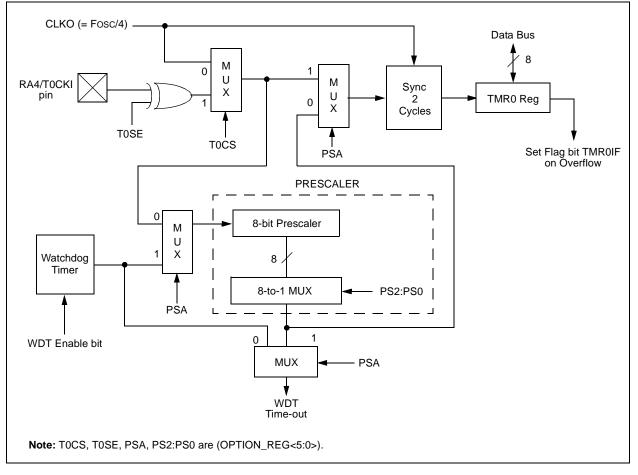
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Additional information on the Timer0 module is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2 "Using Timer0 with an External Clock".

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. **Section 5.3** "**Prescaler**" details the operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Sleep since the timer is shut-off during Sleep.

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

TABLE 5-1:	REGISTERS ASSOCIATED WITH TIMER0
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
01h,101h	TMR0	Timer0 Module Register							xxxx xxxx	uuuu uuuu	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

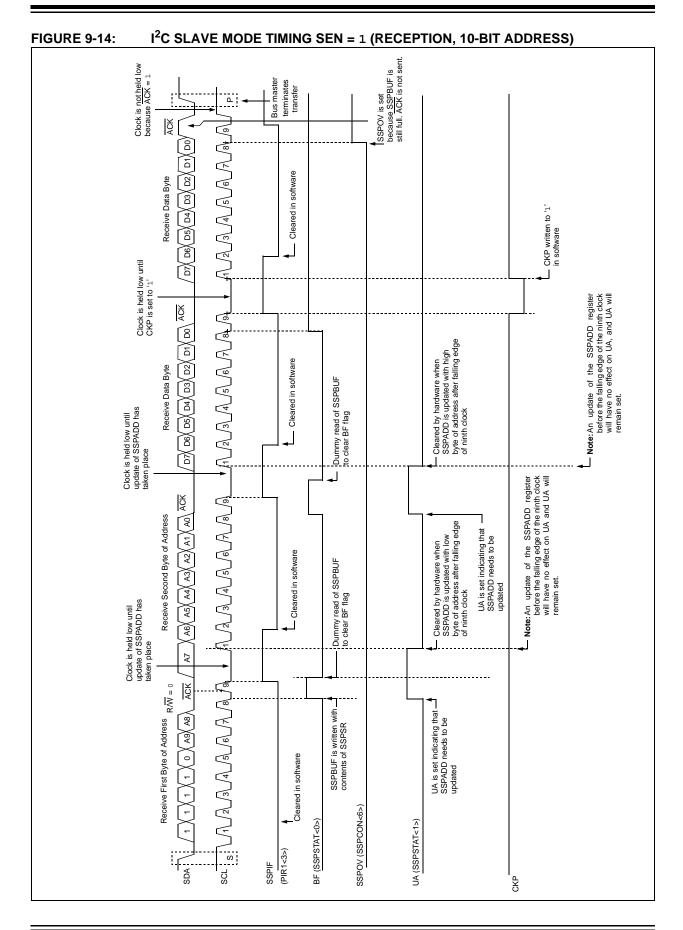
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

9.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the


SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL (SSPCON<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 9-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

EXAMPLE 9-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BRA	SSPSTAT, BF LOOP SSPBUF, W	;Has data been received(transmit complete)? ;No ;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF MOVWF	TXDATA, W SSPBUF	;W reg = contents of TXDATA ;New data to xmit

9.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification, parameter #106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification, parameter #107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurred or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 9-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL, until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

9.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

9.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

9.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does Not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

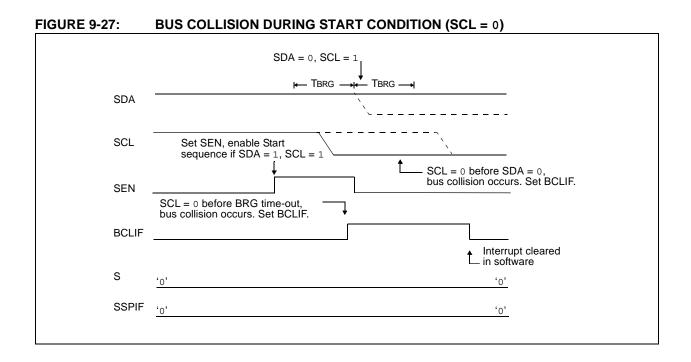
9.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

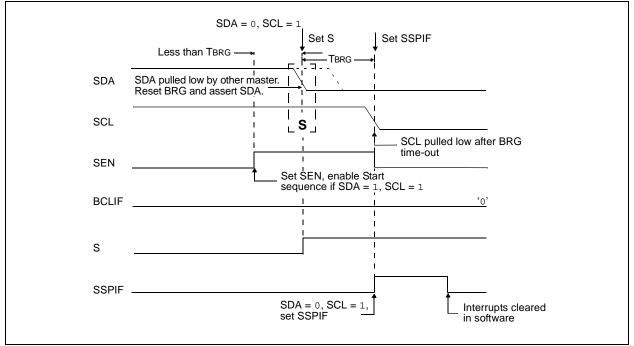
Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

9.4.11.1 BF Status Flag


In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

9.4.11.2 SSPOV Status Flag


In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

9.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

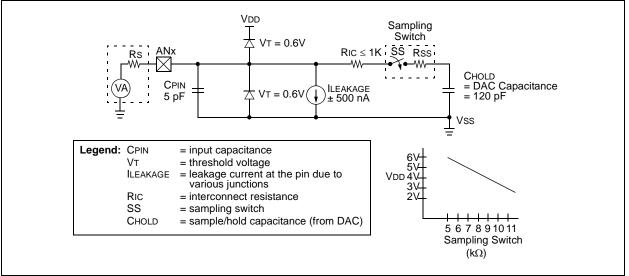
11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch impedance (Rss) directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD); see Figure 11-2. The maximum recommended impedance for analog sources is 2.5 k Ω . As the impedance is decreased, the acquisition time may be

EQUATION 11-1: ACQUISITION TIME

decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 11-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


To calculate the minimum acquisition time, TACQ, see the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2 \mu s + TC + [(Temperature - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$ = CHOLD (RIC + RSs + RS) In(1/2047) = $-120 \text{ pF} (1 \text{ k}\Omega + 7 \text{ k}\Omega + 10 \text{ k}\Omega) \text{ In}(0.0004885)$ = $16.47 \mu s$
TACQ	= $2 \ \mu s + 16.47 \ \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$ = $19.72 \ \mu s$

Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 2.5 k Ω . This is required to meet the pin leakage specification.

12.0 COMPARATOR MODULE

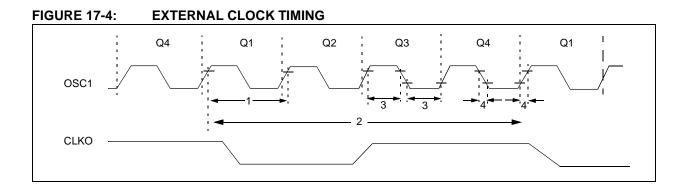
REGISTER 12-1: CMCON REGISTER

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with I/O port pins RA0 through RA3, while the outputs are multiplexed to pins RA4 and RA5. The on-chip voltage reference (Section 13.0 "Comparator Voltage Reference Module") can also be an input to the comparators. The CMCON register (Register 12-1) controls the comparator input and output multiplexers. A block diagram of the various comparator configurations is shown in Figure 12-1.

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	C2OUT : Co	omparator 2	Output bit					
	When C2IN							
		+ > C2 VIN-						
	0 = C2 VIN When C2IN	+ < C2 VIN-						
		$\overline{NV} = \bot$. + < C2 VIN-						
	-	+ > C2 VIN-						
bit 6	C10UT : Co	omparator 1	Output bit					
	When C1IN							
		+ > C1 VIN-						
		+ < C1 VIN-						
	<u>When C1IN</u> 1 = C1 VIN	<u>NV = 1:</u> + < C1 VIN-						
		+ > C1 VIN-						
bit 5	C2INV: Co	mparator 2 (Dutput Inver	sion bit				
		put inverted	·					
		put not inver	ted					
bit 4	C1INV: Co	mparator 1 (Dutput Inver	sion bit				
		put inverted						
	-	put not inver						
bit 3	-	arator Input						
		2:CM0 = 110						
		I- connects t						
	-	- connects t						
		I- connects t						
bit 2	CM2:CM0:	Comparato	r Mode bits					
	Figure 12-7	1 shows the	Comparator	modes and	CM2:CM0	bit settings.		
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	0'
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

NOTES:

17.2 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial)

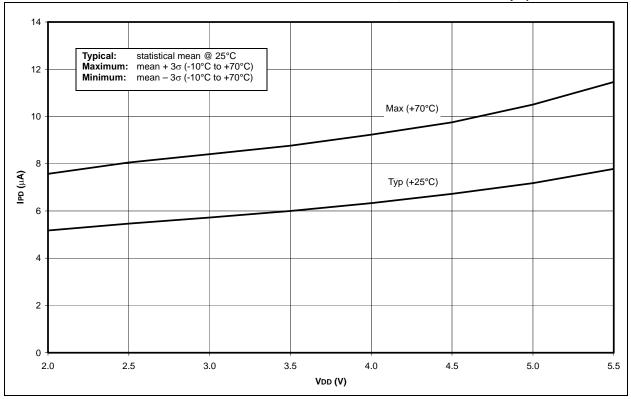

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)}\\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ for industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ for extended \\ \mbox{Operating voltage VDD range as described in DC specification} \\ \mbox{(Section 17.1)} \end{array}$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	VIL	Input Low Voltage								
		I/O ports:								
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range			
D030A			Vss	—	0.8V	V	$4.5V \le V\text{DD} \le 5.5V$			
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V				
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2 Vdd	V				
D033		OSC1 (in XT and LP modes)	Vss	—	0.3V	V	(Note 1)			
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V				
		Ports RC3 and RC4:		—						
D034		with Schmitt Trigger buffer	Vss	—	0.3 Vdd	V	For entire VDD range			
D034A		with SMBus	-0.5	—	0.6	V	For VDD = 4.5 to 5.5V			
	VIH	Input High Voltage			-					
		I/O ports:		—						
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8V		Vdd	V	For entire VDD range			
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range			
D042		MCLR	0.8 Vdd	—	Vdd	V				
D042A		OSC1 (in XT and LP modes)	1.6V	—	Vdd	V	(Note 1)			
		OSC1 (in HS mode)	0.7 Vdd	—	Vdd	V				
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V				
		Ports RC3 and RC4:								
D044		with Schmitt Trigger buffer	0.7 Vdd	—	Vdd	V	For entire VDD range			
D044A		with SMBus	1.4	—	5.5	V	For VDD = 4.5 to 5.5V			
D070	Ipurb	PORTB Weak Pull-up Current	50	250	400	μA	Vdd = 5V, Vpin = Vss, -40°С то +85°С			
	lı∟	Input Leakage Current ^(2, 3)								
D060		I/O ports	_	_	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance			
D061		MCLR, RA4/T0CKI	_	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1	_	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

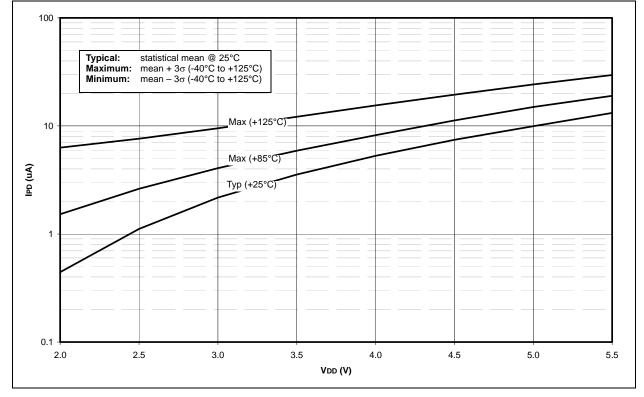
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87XA be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.


TABLE 17-3:	EXTERNAL	CLOCK TIMING REQUIREMENTS
-------------	----------	---------------------------

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKI Frequency	DC	_	1	MHz	XT and RC Osc mode
		(Note 1)	DC	_	20	MHz	HS Osc mode
			DC	_	32	kHz	LP Osc mode
		Oscillator Frequency	DC	_	4	MHz	RC Osc mode
		(Note 1)	0.1	—	4	MHz	XT Osc mode
			4 5	_	20 200	MHz kHz	HS Osc mode LP Osc mode
1	Tosc	External CLKI Period	1000	_		ns	XT and RC Osc mode
	(Note 1)	50	_	_	ns	HS Osc mode	
		5	—	—	μS	LP Osc mode	
	Oscillator Period	250	—	—	ns	RC Osc mode	
		(Note 1)	250	—	1	μS	XT Osc mode
			100	—	250	ns	HS Osc mode
			50	—	250	ns	HS Osc mode
			31.25		—	μS	LP Osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15		—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_		25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	_	15	ns	HS oscillator


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

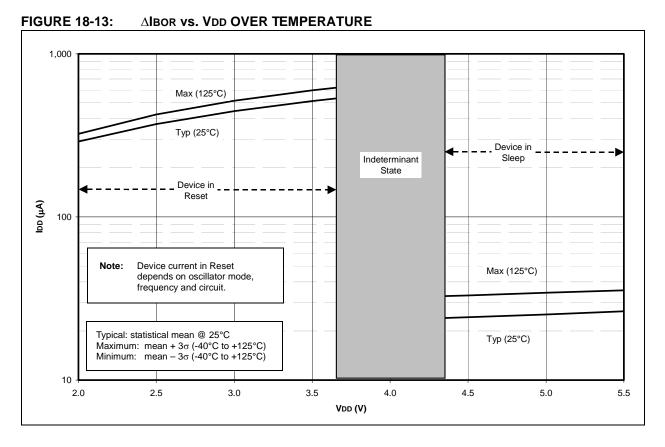
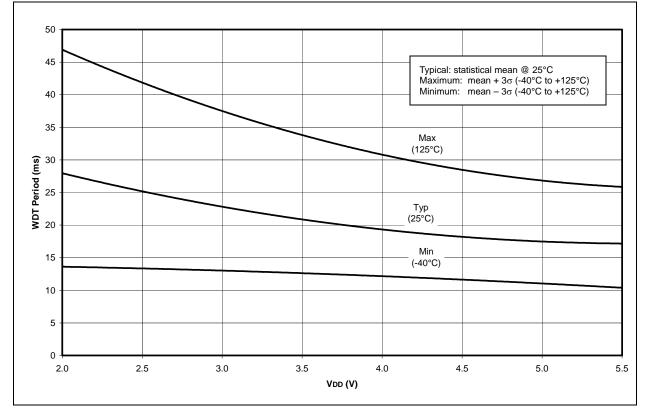
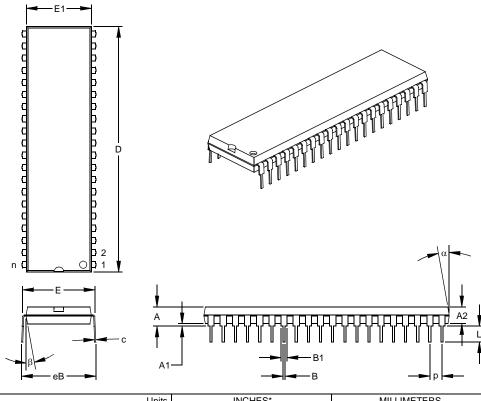

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 18-11: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)





40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*		MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: CONVERSION CONSIDERATION

Characteristic	PIC16C7X	PIC16F87X	PIC16F87XA
Pins	28/40	28/40	28/40
Timers	3	3	3
Interrupts	11 or 12	13 or 14	14 or 15
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz	20 MHz
Voltage	2.5V-5.5V	2.2V-5.5V	2.0V-5.5V
A/D	8-bit, 4 conversion clock selects	10-bit, 4 conversion clock selects	10-bit, 7 conversion clock selects
CCP	2	2	2
Comparator	_	_	2
Comparator Voltage Reference	_	_	Yes
Program Memory	4K, 8K EPROM	4K, 8K Flash (Erase/Write on single-word)	4K, 8K Flash (Erase/Write on four-word blocks)
RAM	192, 368 bytes	192, 368 bytes	192, 368 bytes
EEPROM Data	None	128, 256 bytes	128, 256 bytes
Code Protection	On/Off	Segmented, starting at end of program memory	On/Off
Program Memory Write Protection	_	On/Off	Segmented, starting at beginning of program memory
Other		In-Circuit Debugger, Low-Voltage Programming	In-Circuit Debugger, Low-Voltage Programming

I ² C Bus Data191	1
I ² C Bus Start/Stop Bits	
I ² C Master Mode (Reception, 7-bit Address)	3
I ² C Master Mode (Transmission,	
7 or 10-bit Address)102	
I ² C Slave Mode (Transmission, 10-bit Address) 89	9
I ² C Slave Mode (Transmission, 7-bit Address)87	7
I^2C Slave Mode with SEN = 1 (Reception,	
10-bit Address)93	3
I^2C Slave Mode with SEN = 0 (Reception,	-
10-bit Address)	ρ
$I^{2}C$ Slave Mode with SEN = 0 (Reception,	5
	~
7-bit Address)	D
I^2C Slave Mode with SEN = 1 (Reception,	_
7-bit Address)92	
Parallel Slave Port (PIC16F874A/877A Only)	
Parallel Slave Port (PSP) Read52	2
Parallel Slave Port (PSP) Write	2
Repeat Start Condition	
Reset, Watchdog Timer, Start-up Timer	
and Power-up Timer	4
Slave Mode General Call Address Sequence	
(7 or 10-bit Address Mode)	4
Slave Synchronization	(
Slow Rise Time (MCLR Tied to VDD via	_
RC Network)152	
SPI Master Mode (CKE = 0, SMP = 0)	8
SPI Master Mode (CKE = 1, SMP = 1)	В
SPI Mode (Master Mode)76	ô
SPI Mode (Slave Mode with CKE = 0)78	8
SPI Mode (Slave Mode with CKE = 1)78	
SPI Slave Mode (CKE = 0)	
SPI Slave Mode (CKE = 1)	9
Stop Condition Receive or Transmit Mode	
Synchronous Reception	Ŧ
(Master Mode, SREN) 124	
Synchronous Transmission	
Synchronous Transmission (Through TXEN)	2
Time-out Sequence on Power-up	
(MCLR Not Tied to VDD)	
Case 1 152	2
Case 2 152	2
Time-out Sequence on Power-up (MCLR Tied	
to VDD via RC Network)151	1
Timer0 and Timer1 External Clock	
USART Synchronous Receive	
(Master/Slave)	R
USART Synchronous Transmission	0
	0
(Master/Slave)	
Wake-up from Sleep via Interrupt	
Timing Parameter Symbology	
TMR0 Register	
TMR1CS Bit	
TMR1H Register19	
TMR1L Register	9
TMR1ON Bit	
TMR2 Register	9
TMR2ON Bit61	
TMRO Register	
TOUTPS0 Bit	
TOUTPS1 Bit	
TOUTPS2 Bit	
TOUTPS2 Bit	
TRISA Register	J

TRISB Register	20
TRISC Register	
TRISD Register	
TRISE Register	20
IBF Bit	50
IBOV Bit	50
OBF Bit	50
PSPMODE Bit	
TXREG Register	19
TXSTA Register	
BRGH Bit	111
CSRC Bit	111
SYNC Bit	111
TRMT Bit	111
TX9 Bit	
TX9D Bit	111
TXEN Bit	111

U

USART 1	11
Address Detect Enable (ADDEN Bit) 1	
Asynchronous Mode 1	
Asynchronous Receive (9-bit Mode) 1	
Asynchronous Receive with Address Detect.	
See Asynchronous Receive (9-bit Mode).	
Asynchronous Receiver	17
Asynchronous Reception1	
Asynchronous Transmitter1	
Baud Rate Generator (BRG) 1	
Baud Rate Formula 1	
Baud Rates, Asynchronous Mode	-
(BRGH = 0)	14
Baud Rates, Asynchronous Mode	
(BRGH = 1) 1	14
High Baud Rate Select (BRGH Bit) 1	
Sampling 1	
Clock Source Select (CSRC Bit) 1	
Continuous Receive Enable (CREN Bit) 1	
Framing Error (FERR Bit) 1	
Mode Select (SYNC Bit) 1	
Overrun Error (OERR Bit) 1	
Receive Data, 9th Bit (RX9D Bit) 1	
Receive Enable, 9-bit (RX9 Bit) 1	
Serial Port Enable (SPEN Bit)111, 1	
Single Receive Enable (SREN Bit) 1	
Synchronous Master Mode 1	
Synchronous Master Reception 1	
Synchronous Master Transmission1	
Synchronous Slave Mode 1	24
Synchronous Slave Reception1	
Synchronous Slave Transmit 1	
Transmit Data, 9th Bit (TX9D) 1	
Transmit Enable (TXEN Bit) 1	
Transmit Enable, 9-bit (TX9 Bit) 1	
Transmit Shift Register Status (TRMT Bit)	
USART Synchronous Receive Requirements	
V	
V	

VDD Pin	
Voltage Reference Specifications	180
Vss Pin	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
From	1: Name			
	Company			
	Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Appli	ication (optional):			
Wou	ld you like a reply?YN			
Devi	ce: PIC16F87XA	Literature Number: DS39582C		
Ques	stions:			
1. V	What are the best features of this document?			
-				
2. H	How does this document meet your hardware and software	re development needs?		
_				
- 3. E	. Do you find the organization of this document easy to follow? If not, why?			
_				
-				
4. V	What additions to the document do you think would enhar	nce the structure and subject?		
-				
5. V	What deletions from the document could be made without	affecting the overall usefulness?		
6. l	s there any incorrect or misleading information (what and	where)?		
-				
7. H	How would you improve this document?			
-				

DS39582C-page 230