

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876a-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The data EEPROM and Flash program memory is readable and writable during normal operation (over the full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are six SFRs used to read and write this memory:

- EECON1
- EECON2
- EEDATA
- EEDATH
- EEADR
- EEADRH

When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 128 or 256 bytes of data EEPROM (depending on the device), with an address range from 00h to FFh. On devices with 128 bytes, addresses from 80h to FFh are unimplemented and will wraparound to the beginning of data EEPROM memory. When writing to unimplemented locations, the on-chip charge pump will be turned off.

When interfacing the program memory block, the EEDATA and EEDATH registers form a two-byte word that holds the 14-bit data for read/write and the EEADR and EEADRH registers form a two-byte word that holds the 13-bit address of the program memory location being accessed. These devices have 4 or 8K words of program Flash, with an address range from 0000h to 0FFFh for the PIC16F873A/874A and 0000h to 1FFFh for the PIC16F876A/877A. Addresses above the range of the respective device will wraparound to the beginning of program memory.

The EEPROM data memory allows single-byte read and write. The Flash program memory allows single-word reads and four-word block writes. Program memory write operations automatically perform an erase-before-write on blocks of four words. A byte write in data EEPROM memory automatically erases the location and writes the new data (erase-before-write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory. Depending on the settings of the write-protect bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed. When code-protected, the device programmer can no longer access data or program memory; this does NOT inhibit internal reads or writes.

3.1 EEADR and EEADRH

The EEADRH:EEADR register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program EEPROM. When selecting a data address value, only the LSByte of the address is written to the EEADR register. When selecting a program address value, the MSByte of the address is written to the EEADRH register and the LSByte is written to the EEADR register.

If the device contains less memory than the full address reach of the address register pair, the Most Significant bits of the registers are not implemented. For example, if the device has 128 bytes of data EEPROM, the Most Significant bit of EEADR is not implemented on access to data EEPROM.

3.2 EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses.

Control bit, EEPGD, determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory.

Control bits, RD and WR, initiate read and write or erase, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write or erase operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write (or erase) operation is interrupted by a $\overline{\text{MCLR}}$ or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

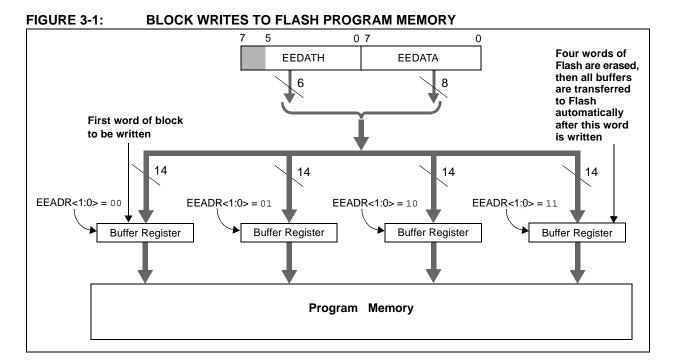
EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

Note: The self-programming mechanism for Flash program memory has been changed. On previous PIC16F87X devices, Flash programming was done in single-word erase/ write cycles. The newer PIC18F87XA devices use a four-word erase/write cycle. See Section 3.6 "Writing to Flash Program Memory" for more information.

3.6 Writing to Flash Program Memory

Flash program memory may only be written to if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT1:WRT0 of the device configuration word (Register 14-1). Flash program memory must be written in four-word blocks. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where EEADR<1:0> = 00. At the same time, all block writes to program memory are done as erase and write operations. The write operation is edge-aligned and cannot occur across boundaries.

To write program data, it must first be loaded into the buffer registers (see Figure 3-1). This is accomplished by first writing the destination address to EEADR and EEADRH and then writing the data to EEDATA and EEDATH. After the address and data have been set up, then the following sequence of events must be executed:

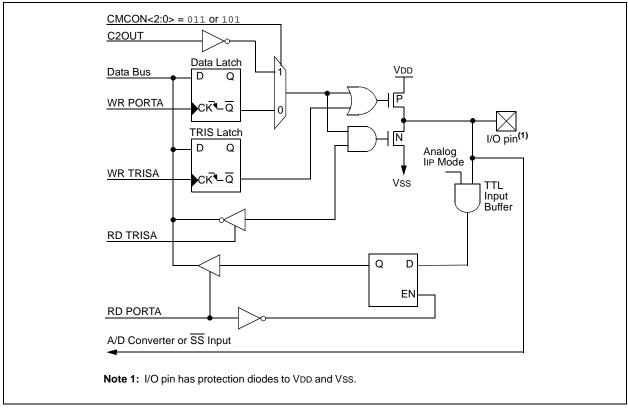

- 1. Set the EEPGD control bit (EECON1<7>).
- 2. Write 55h, then AAh, to EECON2 (Flash programming sequence).
- 3. Set the WR control bit (EECON1<1>).

All four buffer register locations **MUST** be written to with correct data. If only one, two or three words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program location(s) not being written and loads it into the EEDATA and EEDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed. To transfer data from the buffer registers to the program memory, the EEADR and EEADRH must point to the last location in the four-word block (EEADR<1:0> = 11). Then the following sequence of events must be executed:

- 1. Set the EEPGD control bit (EECON1<7>).
- 2. Write 55h, then AAh, to EECON2 (Flash programming sequence).
- Set control bit WR (EECON1<1>) to begin the write operation.


The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (00, 01, 10, 11). When the write is performed on the last word (EEADR<1:0> = 11), the block of four words are automatically erased and the contents of the buffer registers are written into the program memory.

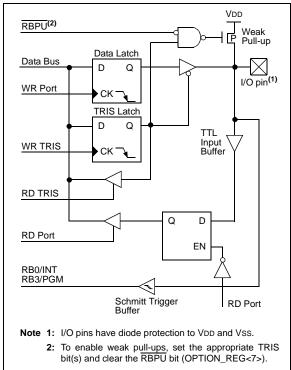
After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms, only during the cycle in which the erase takes place (i.e., the last word of the four-word block). This is not Sleep mode as the clocks and peripherals will continue to run. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction. If the sequence is performed to any other location, the action is ignored.



NOTES:

FIGURE 4-2: BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 4-3: BLOCK DIAGRAM OF RA5 PIN


4.2 **PORTB and the TRISB Register**

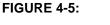
PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Three pins of PORTB are multiplexed with the In-Circuit Debugger and Low-Voltage Programming function: RB3/PGM, RB6/PGC and RB7/PGD. The alternate functions of these pins are described in **Section 14.0 "Special Features of the CPU"**.

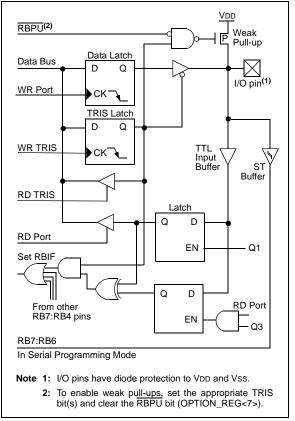
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins, RB7:RB4, have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB port change interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

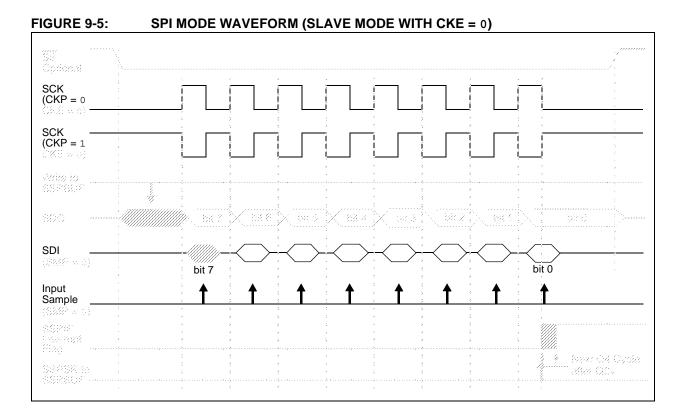
The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.


This interrupt-on-mismatch feature, together with software configurable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the application note, *AN552, "Implementing Wake-up on Key Stroke*" (DS00552).

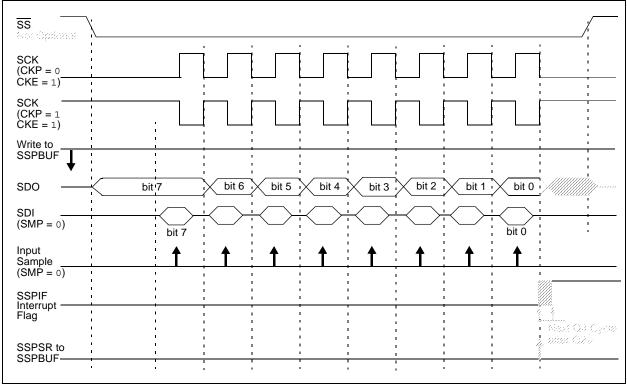
RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

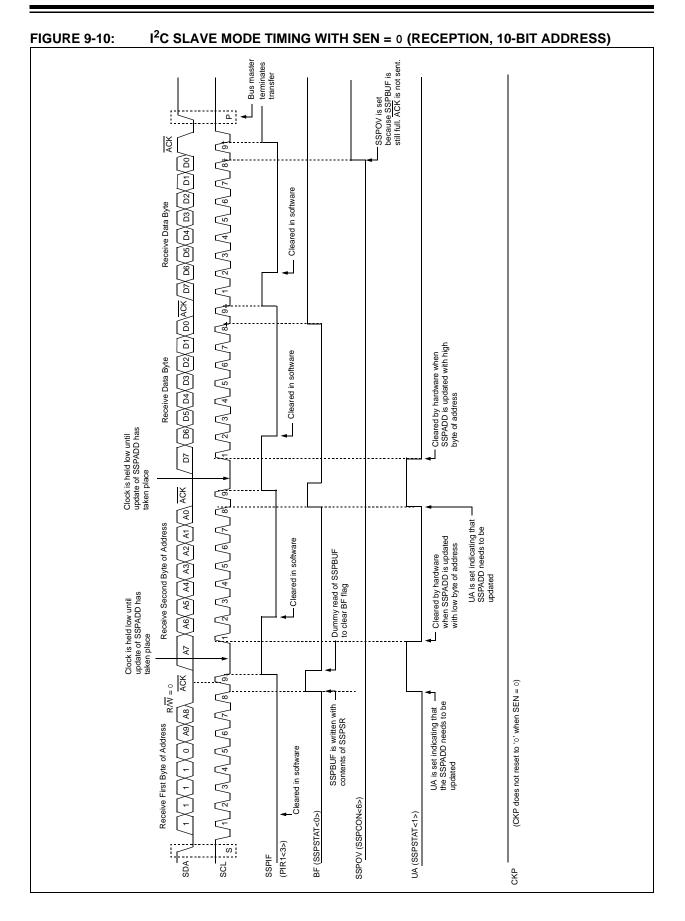
RB0/INT is discussed in detail in **Section 14.11.1 "INT Interrupt**".

BLOCK DIAGRAM OF RB7:RB4 PINS



REGISTER 8-1:	CCP1CON	I REGISTE	ER/CCP2C	ON REGIS	STER (ADDF	RESS 17h	/1Dh)	
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
	bit 7							bit 0
bit 7-6	Unimplem	ented: Rea	d as '0'					
bit 5-4	CCPxX:CC	PxY: PWM	Least Sign	ificant bits				
	<u>Capture mo</u> Unused.	ode:						
	<u>Compare n</u> Unused.	<u>node:</u>						
	<u>PWM mode</u> These bits		LSbs of the	e PWM duty	cycle. The eig	jht MSbs ar	e found in C	CPRxL.
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits				
	0100 = Ca 0101 = Ca 0110 = Ca 0111 = Ca 1000 = Co 1001 = Co 1010 = Co una 1011 = Co res ena 11xx = PW	pture mode pture mode pture mode mpare mode mpare mode mpare mode affected) mpare mode ets TMR1; abled)	, every fallir , every risin , every 4th r , every 16th e, set outpu e, clear outp e, generate e, trigger sp	ng edge g edge rising edge t on match (out on match software int ecial event (f	ets CCPx mod CCPxIF bit is a (CCPxIF bit i errupt on mat CCPxIF bit is s and starts an A	set) is set) ch (CCPxIF set, CCPx p	in is unaffec	ted); CCP1
	Legend:							
	R = Reada	ble bit		Vritable bit	•		oit, read as	ʻ0'
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	nknown


ER 9-2:	SSPCON	1: MSSP C	ONTROL F	REGISTER	1 (SPI MC	DE) (ADD	RESS 14h)
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0
bit 7		/rite Collision	-					
		SSPBUF reg ed in software ollision		en while it i	s still transm	nitting the p	revious wor	d. (Must be
bit 6	SSPOV: R	Receive Over	flow Indicato	or bit				
	<u>SPI Slave</u>	mode:						
	of ove must cleare	v byte is rece erflow, the da read the SSI ed in software	ata in SSPSF PBUF, even	R is lost. Ov	verflow can o	only occur in	Slave mod	e. The user
	0 = No ov							
	Note:				t is not set to the SSPE			eption (and
bit 5	SSPEN: S	Synchronous	Serial Port E	Enable bit				
		es serial port les serial por					ial port pins	
	Note:	When enal	oled, these p	oins must be	e properly co	nfigured as	input or out	put.
bit 4	CKP: Cloo	ck Polarity Se	elect bit					
		ate for clock ate for clock	•					
bit 3-0	SSPM3:S	SPM0: Sync	hronous Ser	ial Port Mod	de Select bits	5		
	0100 = SF 0011 = SF 0010 = SF 0001 = SF	PI Slave mod PI Slave mod PI Master mod PI Master mod PI Master mod	le, clock = S ode, clock = ode, clock = ode, clock =	CK pin. SS TMR2 outpu Fosc/64 Fosc/16	pin control e		can be usec	l as I/O pin.
		PI Master mo						
	Note:	Bit combin I ² C mode o		becifically lis	sted here are	either rese	rved or imp	lemented in
	I a manual.							


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

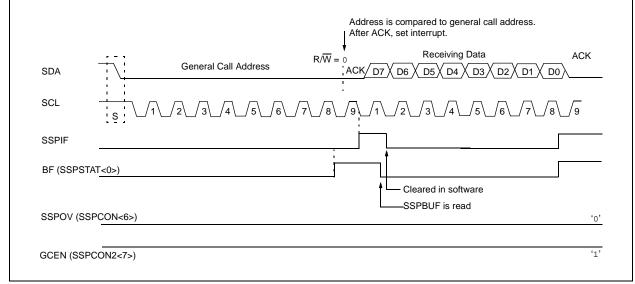
REGISTER 9-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)

FIGURE 9-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

9.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

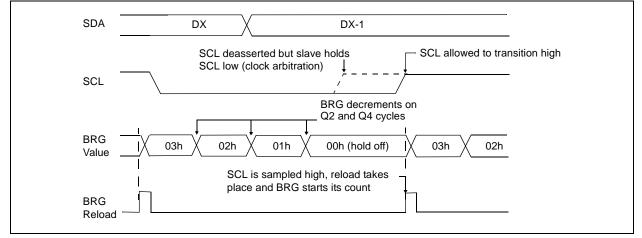
The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

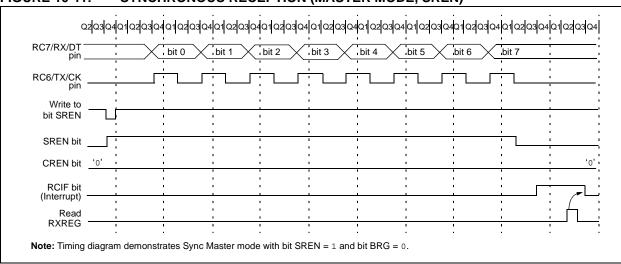

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 9-15).




9.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 9-17).

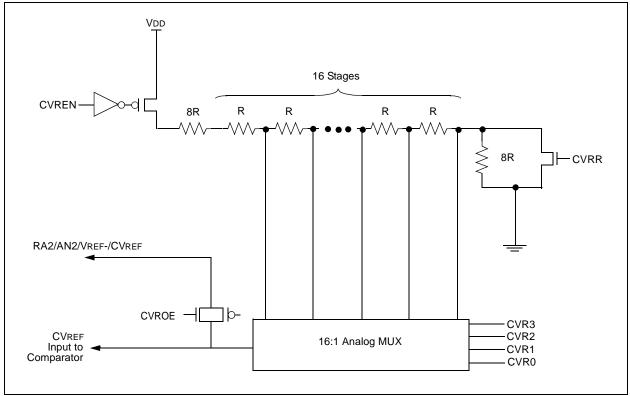
FIGURE 10-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in Sleep mode. Slave mode is entered by clearing bit, CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.


If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 13-1:	REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE
-------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
9Dh	CVRCON	CVREN	CVROE	CVRR		CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits, TO and PD, are set.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W	DECF	Decrement f
Syntax:	[label] CLRW	Syntax:	[label] DECF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
·	$1 \rightarrow Z$	Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.	Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

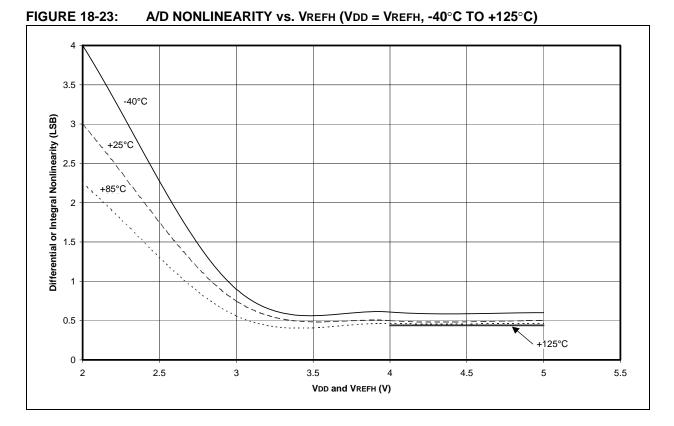
17.2 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)}\\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ for industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ for extended \\ \mbox{Operating voltage VDD range as described in DC specification} \\ \mbox{(Section 17.1)} \end{array}$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports:							
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range		
D030A			Vss	—	0.8V	V	$4.5V \le V\text{DD} \le 5.5V$		
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2 Vdd	V			
D033		OSC1 (in XT and LP modes)	Vss	—	0.3V	V	(Note 1)		
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V			
		Ports RC3 and RC4:		—					
D034		with Schmitt Trigger buffer	Vss	—	0.3 Vdd	V	For entire VDD range		
D034A		with SMBus	-0.5	—	0.6	V	For VDD = 4.5 to 5.5V		
	VIH	Input High Voltage			-				
		I/O ports:		—					
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD + 0.8V		Vdd	V	For entire VDD range		
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range		
D042		MCLR	0.8 Vdd	—	Vdd	V			
D042A		OSC1 (in XT and LP modes)	1.6V	—	Vdd	V	(Note 1)		
		OSC1 (in HS mode)	0.7 Vdd	—	Vdd	V			
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V			
		Ports RC3 and RC4:							
D044		with Schmitt Trigger buffer	0.7 Vdd	—	Vdd	V	For entire VDD range		
D044A		with SMBus	1.4	—	5.5	V	For VDD = 4.5 to 5.5V		
D070	Ipurb	PORTB Weak Pull-up Current	50	250	400	μA	Vdd = 5V, Vpin = Vss, -40°С то +85°С		
	lı∟	Input Leakage Current ^(2, 3)							
D060		I/O ports	_	_	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance		
D061		MCLR, RA4/T0CKI	_	—	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1	_	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		

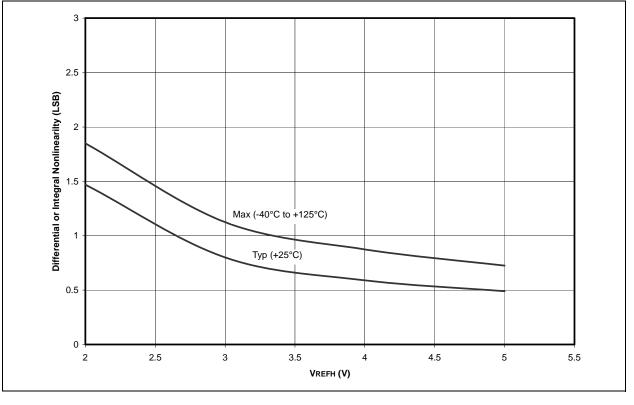
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87XA be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

Param No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μs	
			400 kHz mode	0.6	_	μs	
			SSP Module	0.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μs	
			400 kHz mode	1.3	_	μs	
			SSP Module	0.5 TCY	_		
102	TR	SDA and SCL Rise Time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	_	μs	Only relevant for Repeated Start condition
			400 kHz mode	0.6	_	μs	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μs	After this period, the first clock pulse is generated
			400 kHz mode	0.6	_	μs	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100		ns	
92	TSU:STO	Stop Condition Setup Time	100 kHz mode	4.7	_	μs	
			400 kHz mode	0.6	_	μs	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	_	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free before a new transmission can start
			400 kHz mode	1.3	_	μs	
	Св	Bus Capacitive Loading	_	400	pF		


TABLE 17-11: I²C BUS DATA REQUIREMENTS

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode (400 kHz) I²C bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement that, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR MAX. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: CONVERSION CONSIDERATION

Characteristic	PIC16C7X	PIC16F87X	PIC16F87XA
Pins	28/40	28/40	28/40
Timers	3	3	3
Interrupts	11 or 12	13 or 14	14 or 15
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz	20 MHz
Voltage	2.5V-5.5V	2.2V-5.5V	2.0V-5.5V
A/D	8-bit, 4 conversion clock selects	10-bit, 4 conversion clock selects	10-bit, 7 conversion clock selects
CCP	2	2	2
Comparator	_	_	2
Comparator Voltage Reference	_	_	Yes
Program Memory	4K, 8K EPROM	4K, 8K Flash (Erase/Write on single-word)	4K, 8K Flash (Erase/Write on four-word blocks)
RAM	192, 368 bytes	192, 368 bytes	192, 368 bytes
EEPROM Data	None	128, 256 bytes	128, 256 bytes
Code Protection	On/Off	Segmented, starting at end of program memory	On/Off
Program Memory Write Protection	_	On/Off	Segmented, starting at beginning of program memory
Other		In-Circuit Debugger, Low-Voltage Programming	In-Circuit Debugger, Low-Voltage Programming

Special Function Registers Special Function Registers (SFRs)	
Speed, Operating	
SPI Mode	
Associated Registers	79
Bus Mode Compatibility	
Effects of a Reset	
Enabling SPI I/O	75
Master Mode	
Master/Slave Connection	
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Select	
Slave Select Synchronization	
Sleep Operation	
SPI Clock	
Typical Connection	
SPI Mode Requirements	
SS	71
SSP	
SPI Master/Slave Connection	
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPCON2 Register SSPIF	
	-
SSPOV	
SSPSTAT Register	
R/W Bit	
Overflows	
Underflow	
Status Register	
C Bit	22
DC Bit	
IRP Bit	
PD Bit	
RP1:RP0 Bits	,
TO Bit	
Z Bit	
Synchronous Master Reception	
Associated Registers	123
Synchronous Master Transmission	
Associated Registers	122
Synchronous Serial Port Interrupt	
Synchronous Slave Reception	
Associated Registers	125
Synchronous Slave Transmission	
Associated Registers	125
-	
т	
T1CKPS0 Bit	
T1CKPS1 Bit	-
T1CON Register	
T1OSCEN Bit	
T1SYNC Bit	
T2CKPS0 Bit	
T2CKPS1 Bit	61

 T2CON Register
 19

 TAD
 131

 Time-out Sequence
 148

Timer0	53
Associated Registers	55
Clock Source Edge Select (T0SE Bit)	23
Clock Source Select (T0CS Bit)	23
External Clock	54
Interrupt	
Overflow Enable (TMR0IE Bit)	
Overflow Flag (TMR0IF Bit)	
Overflow Interrupt	
Prescaler	
TOCKI	
Timer0 and Timer1 External Clock Requirements	
Timer1	
Associated Registers	
Asynchronous Counter Mode	
Reading and Writing to	
Counter Operation	
Operation in Timer Mode	
Oscillator Capacitor Selection	
Prescaler Resetting of Timer1 Registers	
Resetting Timer1 Using a CCP Trigger Output	
Synchronized Counter Mode	
TMR1H	
TMR1L	
Timer2	
Associated Registers	
Output	
Postscaler	
Prescaler	
Prescaler and Postscaler	
Timing Diagrams	
A/D Conversion	195
Acknowledge Sequence	
Asynchronous Master Transmission	
Asynchronous Master Transmission	-
(Back to Back)	116
Asynchronous Reception	
Asynchronous Reception with	
Address Byte First	120
Asynchronous Reception with	
Address Detect	120
Baud Rate Generator with Clock Arbitration	98
BRG Reset Due to SDA Arbitration During	
Start Condition	107
Brown-out Reset	184
Bus Collision During a Repeated	
Start Condition (Case 1)	108
Bus Collision During Repeated	
Start Condition (Case 2)	108
Bus Collision During Start Condition	
(SCL = 0)	107
Bus Collision During Start Condition	
(SDA Only)	106
Bus Collision During Stop Condition	
(Case 1)	109
Bus Collision During Stop Condition	
(Case 2)	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM (CCP1 and CCP2)	
CLKO and I/O	
Clock Synchronization	
External Clock	
First Start Bit	99

W

Wake-up from Sleep 143	, 156
Interrupts149	, 150
MCLR Reset	
WDT Reset	. 150
Wake-up Using Interrupts	. 156
Watchdog Timer	
Register Summary	. 155
Watchdog Timer (WDT) 143	, 155
Enable (WDTE Bit)	. 155
Postscaler. See Postscaler, WDT.	
Programming Considerations	. 155
RC Oscillator	. 155
Time-out Period	. 155
WDT Reset, Normal Operation 147, 149	, 150
WDT Reset, Sleep 147, 149	, 150
WCOL	, 104
WCOL Status Flag	99
WWW, On-Line Support	4