

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876a-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 1 4 1	սու	2-3:	

PIC16F876A/877A REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)		Indirect addr.(*)	100h	Indirect addr.(*)	10
TMR0	00n 01h	OPTION REG	80h	TMR0	100h	OPTION_REG	18
PCL	01h 02h		81h	PCL	10111 102h		18
	02n 03h	PCL STATUS	82h	STATUS	10211 103h	PCL STATUS	18
STATUS	03n 04h		83h	FSR	103n 104h		18
FSR		FSR	84h	FSR	1041 105h	FSR	18
PORTA	05h 06h	TRISA	85h	DODTD	105h	TRISB	18
PORTB		TRISB	86h	PORTB	106n 107h	TRISB	18
	07h	TRISC TRISD ⁽¹⁾	87h		1071 108h		18
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		109h		18
PORTE ⁽¹⁾	09h		89h	PCLATH	1091 10Ah	PCLATH	18
PCLATH	0Ah	PCLATH	8Ah		10An 10Bh	INTCON	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bn 10Ch	EECON1	18
PIR1	0Ch	PIE1	8Ch	EEDATA			18
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18
T1CON	10h		90h		110h		19
TMR2	11h	SSPCON2	91h		111h		19
T2CON	12h	PR2	92h		112h		19
SSPBUF	13h	SSPADD	93h		113h		19
SSPCON	14h	SSPSTAT	94h		114h		19
CCPR1L	15h		95h		115h		19
CCPR1H	16h		96h	Conorol	116h	Conorol	19
CCP1CON	17h		97h	General Purpose	117h	General Purpose	19
RCSTA	18h	TXSTA	98h	Register	118h	Register	19
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	19
RCREG	1Ah		9Ah		11Ah		19
CCPR2L	1Bh		9Bh		11Bh		19
CCPR2H	1Ch	CMCON	9Ch		11Ch		19
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19
ADRESH	1Eh	ADRESL	9Eh		11Eh		19
ADCON0	1Fh	ADCON1	9Fh		11Fh		19
	20h		A0h		120h		1A
		General		General		General	
General		Purpose		Purpose		Purpose	
Purpose		Register		Register		Register	
Register		80 Bytes		80 Bytes		80 Bytes	
96 Bytes			EFh		16Fh		1E
		accesses	F0h	200005005	170h	accesses	1F
		70h-7Fh		accesses 70h-7Fh		70h - 7Fh	
_	7Fh		FFh		17Fh		1F
Bank 0		Bank 1		Bank 2		Bank 3	
Unimple	mented d	ata memory locati	ons. read	as '0'.			
	iysical reg	-					

	File Address	<i>I</i>	File Address	<i>I</i>	File Address		File Addres
ndirect addr.(*) 00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch	CMCON	9Ch				
CCP2CON	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		120h		1A0h
General	20h	General	A0h		12011		
Purpose		Purpose		accesses		accesses	
Register		Register		20h-7Fh		A0h - FFh	
96 Bytes		96 Bytes			16Fh		1EFh
		-			170h		1F0h
D 1 2	7Fh		FFh	David C	17Fh	Dersta 0	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
* Not ote 1: The	a physical re se registers	data memory loca egister. are not implemen are reserved; mai	ted on the	PIC16F873A.			

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

	••••••				,,							
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7		DRTB Pull-up										
		B pull-ups ar		ov individual	port latch value	26						
bit 6		PORTB pull-ups are enabled by individual port latch values										
DIL U		pt on rising e										
		pt on falling										
bit 5	TOCS: TM	R0 Clock So	urce Select	t bit								
		tion on RA4/										
	0 = Interna	al instruction	cycle clock	(CLKO)								
bit 4		R0 Source E	•									
		nent on high-										
hit 0		nent on low-t		Sition on RA	4/TUCKI pin							
bit 3		caler Assign aler is assign										
		aler is assign			le							
bit 2-0		Prescaler R										
	Bit Value	TMR0 Rate	WDT Rate	e								
	000	1:2	1:1									
	001 010	1:4	1:2 1:4									
	010	1:8 1:16	1:8									
	100 101	1:32	1 : 16 1 : 32									
	110	1:64 1:128	1:64									
	111	1 : 256	1 : 128									
	1							1				
	Legend:		10/ 1/				:	21				
	R = Reada			Vritable bit	U = Unimple							
	- n = Value	e at POR	1 [°] = E	Bit is set	'0' = Bit is c	lieared	x = Bit is ur	IKNOWN				
	Note:	When using	I ow-Volta	ne ICSP Pro	gramming (LVP) and the n	ull-ups on F	ORTR are				
					r must be clear							
		and ensure	the proper	operation of	the device							

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

NOTES:

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt-on-overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer.

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Freq.	C1	C2		
32 kHz	33 pF	33 pF		
100 kHz	15 pF	15 pF		
200 kHz	15 pF	15 pF		
lues are for o	design guida	nce only.		
Crystals	Tested:			
Epson C-00	1R32.768K-A	± 20 PPM		
Epson C-2 100.00 KC-P ± 20 PPM				
STD XTL 2	200.000 kHz	± 20 PPM		
	32 kHz 100 kHz 200 kHz Iues are for o Crystals Epson C-00 Epson C-2	32 kHz 33 pF 100 kHz 15 pF 200 kHz 15 pF lues are for design guidat Crystals Tested: Epson C-001R32.768K-A		

Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

6.6 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit, TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

ER 9-2:	SSPCON	1: MSSP C	ONTROL F	REGISTER	1 (SPI MC	DE) (ADD	RESS 14h)				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0				
	bit 7							bit 0				
bit 7		/rite Collision	-									
		SSPBUF reg ed in software ollision		en while it i	s still transm	nitting the p	revious wor	d. (Must be				
bit 6	SSPOV: R	Receive Over	flow Indicato	or bit								
	<u>SPI Slave</u>	mode:										
	of ove must cleare	v byte is rece erflow, the da read the SSI ed in software	ata in SSPSF PBUF, even	R is lost. Ov	verflow can o	only occur in	Slave mod	e. The user				
	0 = No ov	0 = No overflow										
	Note:				t is not set to the SSPE			eption (and				
bit 5	SSPEN: S	Synchronous	Serial Port E	Enable bit								
		es serial port les serial por					ial port pins					
	Note:	When enal	oled, these p	oins must be	e properly co	nfigured as	input or out	put.				
bit 4	CKP: Cloo	ck Polarity Se	elect bit									
		ate for clock ate for clock	•									
bit 3-0	SSPM3:S	SPM0: Sync	hronous Ser	ial Port Mod	de Select bits	5						
	 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O 0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled. 0011 = SPI Master mode, clock = TMR2 output/2 0010 = SPI Master mode, clock = Fosc/64 0001 = SPI Master mode, clock = Fosc/16 											
		PI Master mo										
	Note:	Bit combin I ² C mode o		becifically lis	sted here are	either rese	rved or imp	lemented in				
	I a manual.											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)

9.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

9.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When

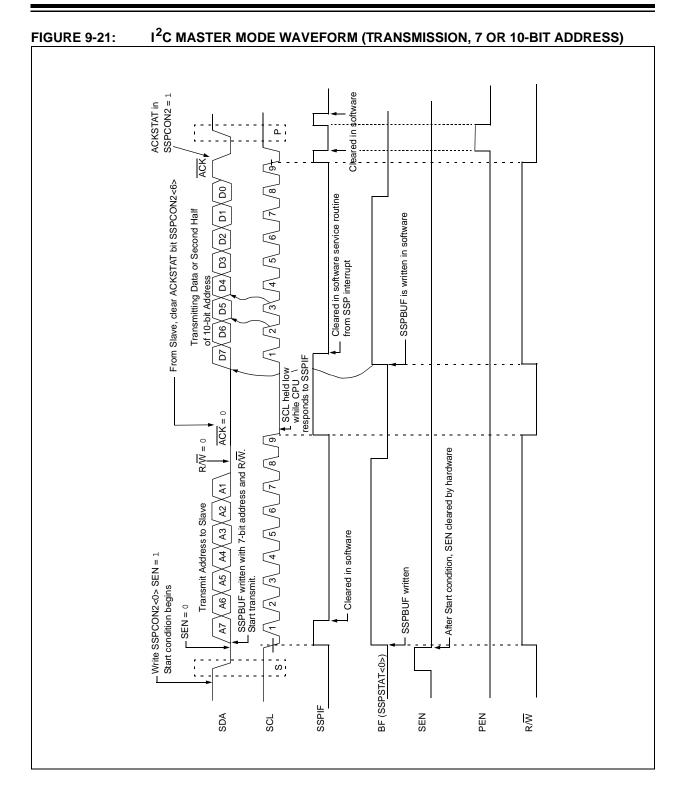
the \overline{SS} pin goes high, the SDO pin is no longer driven even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

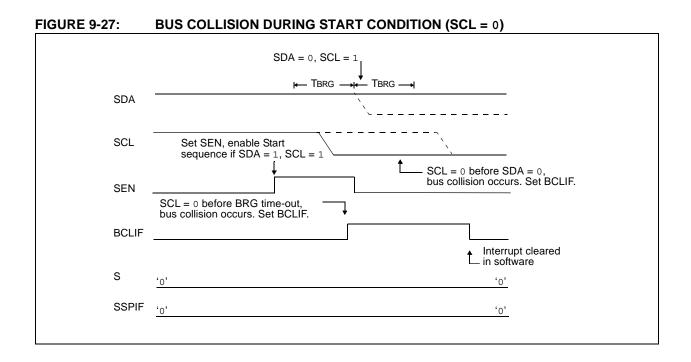
Note 1:	When the SPI is in Slave mode with \overline{SS} pin
	control enabled (SSPCON< $3:0> = 0100$),
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.

2: If the SPI is used in Slave Mode with CKE set, then the SS pin control must be enabled.

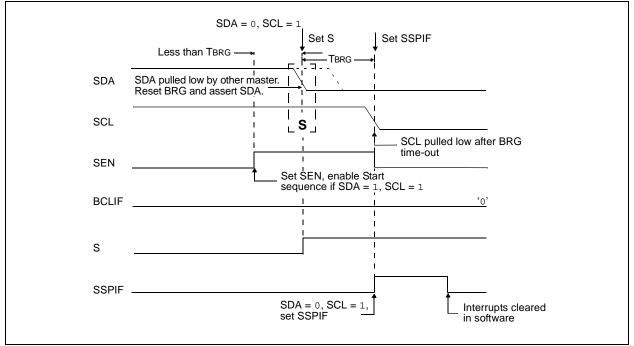
When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

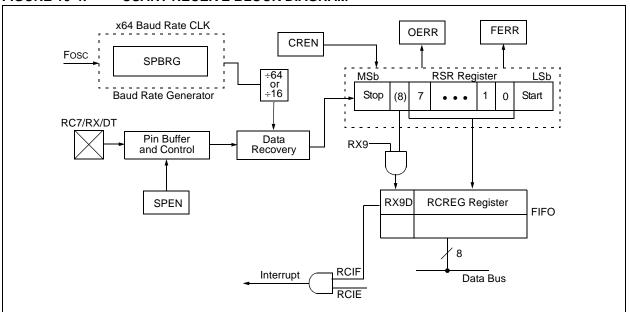

FIGURE 9-4: SLAVE SYNCHRONIZATION WAVEFORM


REGISTER 9-4:	SSPCON1	: MSSP C		EGISTER	1 (I ² C MO	DE) (ADD	RESS 14h		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	
	bit 7							bit 0	
bit 7	WCOL: Wr	rite Collision	Detect bit						
		Fransmit mo							
		e to the SSP smission to t Ilision					itions were	not valid for	
	1 = The S	ansmit mode SPBUF regi d in software	ster is writte	en while it is	s still transm	nitting the p	revious wor	d. (Must be	
		mode (Masi	ter or Slave	modes):					
		lon't care" bi							
bit 6		eceive Over	flow Indicato	r bit					
	-	e is received d in software		SPBUF reg	ister is still h	nolding the p	previous byt	e. (Must be	
	<u>In Transmi</u> This is a "d	<u>t mode:</u> Ion't care" bi	t in Transmit	mode.					
bit 5		ynchronous							
		es the serial pes the serial					ne serial por	t pins	
	Note:	When enab	led, the SDA	and SCL pi	ns must be p	roperly confi	gured as inp	ut or output.	
bit 4	CKP: SCK	Release Co	ontrol bit						
	In Slave m 1 = Releas 0 = Holds o		ock stretch).	(Used to er	nsure data s	etup time.)			
	<u>In Master r</u> Unused in								
bit 3-0	SSPM3:SS	SPM0: Synch	nronous Ser	ial Port Moc	le Select bits	5			
	1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I^2C Firmware Controlled Master mode (Slave Idle) 1000 = I^2C Master mode, clock = Fosc/(4 * (SSPADD + 1)) 0111 = I^2C Slave mode, 10-bit address 0110 = I^2C Slave mode, 7-bit address								
	Note: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.								
	Legend:]	
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'	

				,
- n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
	bit 7	1		I		I	I	bit 0
bit 7		eneral Call En		-	-			
		e interrupt whe ral call address		call address	(0000h) is	received in	the SSPSF	2
bit 6	bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only)							
		wledge was n wledge was re						
bit 5	ACKDT: A	Acknowledge [Data bit (Mas	ster Receive	mode only)			
	1 = Not A 0 = Ackno	cknowledge wledge						
	Note:	Value that w the end of a		itted when th	e user initia	tes an Ackr	nowledge se	equence at
bit 4	ACKEN:	Acknowledge	Sequence E	nable bit (Ma	ster Receiv	e mode on	ly)	
	1 = Initiat Autor	e Acknowledg matically cleare owledge seque	e sequence d by hardw	e on SDA ar				T data bit.
bit 3	RCEN: R	eceive Enable	bit (Master i	mode only)				
	1 = Enabl 0 = Recei	es Receive mo ve Idle	ode for I ² C					
bit 2	PEN: Stop	o Condition En	able bit (Ma	ster mode or	nly)			
		e Stop conditio	n on SDA a	nd SCL pins.	Automatica	ally cleared	by hardwa	re.
bit 1	RSEN: Repeated Start Condition Enabled bit (Master mode only)							
	 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardv 0 = Repeated Start condition Idle 				hardware.			
bit 0	SEN: Star	t Condition En	abled/Streto	h Enabled bi	t			
	<u>In Master mode:</u> 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle							
		<u>node:</u> stretching is e stretching is e						nabled)
	Legend:							
	R = Read			itable bit	-		bit, read as	
	- n = Valu	e at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown

Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).


10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate; whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 10-4: USART RECEIVE BLOCK DIAGRAM

RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RLF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ \text{prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} , is cleared. Time-out status bit, \overline{TO} , is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.					

SUBLW	Subtract W from Literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \text{ - } (W) \to (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.					

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

SUBWF	Subtract W from f		
Syntax:	[<i>label</i>] SUBWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) - (W) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

16.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

16.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

16.22 PICkit[™] 1 Flash Starter Kit

A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.

16.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

16.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

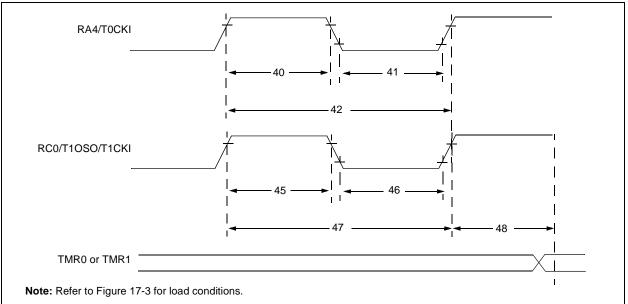
Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

17.2 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial) (Continued)

DC CHARACTERISTICS			Operating	tempe voltag	erature	ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended age as described in DC specification			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Vol	Output Low Voltage							
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D083		OSC2/CLKO (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
	Vон	Output High Voltage							
D090		I/O ports ⁽³⁾	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D092		OSC2/CLKO (RC osc config)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D150*	Vod	Open-Drain High Voltage	—		8.5	V	RA4 pin		
		Capacitive Loading Specs on Output Pins							
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101 D102	Сю Св	All I/O pins and OSC2 (RC mode) SCL, SDA (I ² C mode)	—	_	50 400	pF pF			
		Data EEPROM Memory				•			
D120	ED	Endurance	100K	1M	_	E/W	-40°C to +85°C		
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage		
D122	TDEW	Erase/write cycle time	—	4	8	ms			
		Program Flash Memory				_			
D130	Ер	Endurance	10K	100K	_	E/W	-40°C to +85°C		
D131	Vpr	VDD for read	VMIN	—	5.5	V	VMIN = min. operating voltage		
D132A		VDD for erase/write	Vmin		5.5	V	Using EECON to read/write, VMIN = min. operating voltage		
D133	TPEW	Erase/Write cycle time	—	4	8	ms			

These parameters are characterized but not tested.

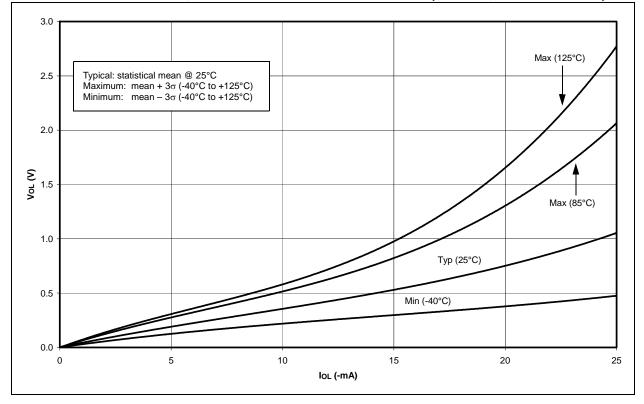
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87XA be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

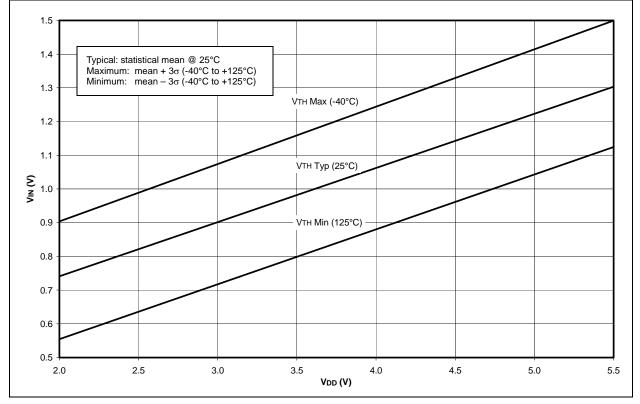
3: Negative current is defined as current sourced by the pin.

*


TABLE 17-0. THERE AND THERE EXTERNAL CLOCK REQUIREMENTS	TABLE 17-6:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---	-------------	---

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
40*	T⊤0H	T0CKI High Pulse	e Width	No Prescaler	0.5 TCY + 20		—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	T⊤0L	T0CKI Low Pulse	Width	No Prescaler	0.5 TCY + 20	_	_	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
42*	TT0P	T0CKI Period		No Prescaler	TCY + 40	_	_	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	—		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, Pre	scaler = 1	0.5 TCY + 20	_	_	ns	Must also meet
		Time	Synchronous,	Standard(F)	15	_	_	ns	parameter 47
			Prescaler = 2, 4, 8	Extended(LF)	25	—	_	ns	
			Asynchronous	Standard(F)	30	—	_	ns	
				Extended(LF)	50	—	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, Pre	scaler = 1	0.5 TCY + 20	_	_	ns	Must also meet
			Synchronous,	Standard(F)	15		_	ns	parameter 47
			Prescaler = 2, 4, 8	Extended(LF)	25		_	ns	
			Asynchronous	Standard(F)	30	—	_	ns	
				Extended(LF)	50	—	_	ns	
47*	Tt1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
				Extended(LF)	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	Standard(F)	60		_	ns	
				Extended(LF)	100	—	—	ns	
	F⊤1	(oscillator enable	Input Frequency R d by setting bit T10	DSCEN)	DC	_	200	kHz	
48	TCKEZTMR1	Delay from Extern	nal Clock Edge to T	Timer Increment	2 Tosc	—	7 Tosc	—	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

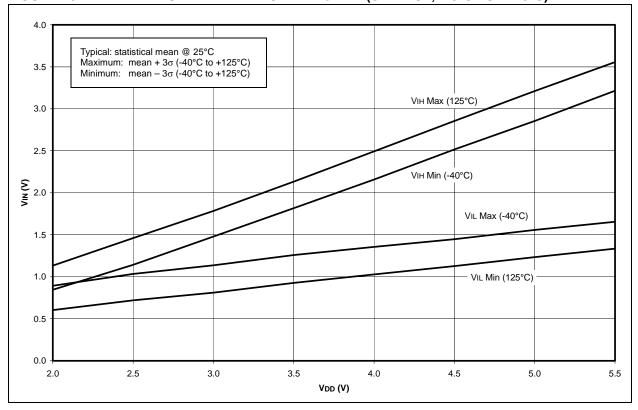
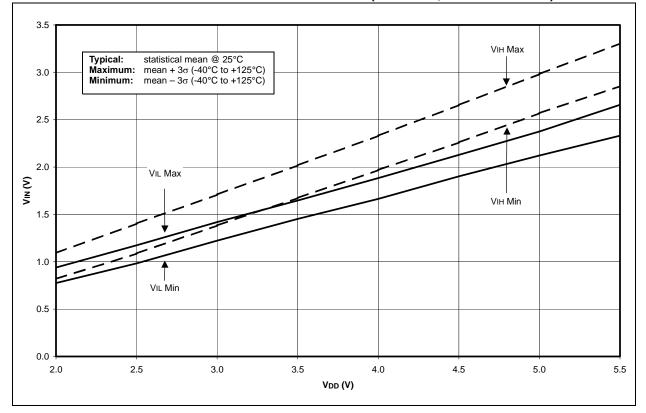



FIGURE 18-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)

INDEX

Α

A/D	127
Acquisition Requirements	
ADCON0 Register	
ADCON1 Register	
ADIF Bit	
ADRESH Register	
ADRESL Register	
Analog Port Pins	
Associated Registers and Bits	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Interrupt	
Configuring the Module	
Conversion Clock	
Conversions	
Converter Characteristics	194
Effects of a Reset	
GO/DONE Bit	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep	
Result Registers	
Source Impedance	
A/D Conversion Requirements	
Absolute Maximum Ratings	
ACKSTAT	
ADCON0 Register	
ADCON1 Register	
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART.	
ADRESH Register	
ADRESL Register	
Analog-to-Digital Converter. See A/D.	
Application Notes	
AN552 (Implementing Wake-up	
on Key Stroke)	44
AN556 (Implementing a Table Read)	
Assembler	
MPASM Assembler	167
Asynchronous Reception	
Associated Registers	18, 120
Asynchronous Transmission	
Associated Registers	116
В	
-	10.00
Banking, Data Memory	
Baud Rate Generator	
Associated Registers	
BCLIF	

MSSP (SPI Mode)	
On-Chip Reset Circuit 1	47
PIC16F873A/PIC16F876A Architecture	. 6
PIC16F874A/PIC16F877A Architecture	. 7
PORTC	
Peripheral Output Override	
(RC2:0, RC7:5) Pins	46
Peripheral Output Override (RC4:3) Pins	46
PORTD (in I/O Port Mode)	
PORTD and PORTE (Parallel Slave Port)	
PORTE (In I/O Port Mode)	
RA3:RA0 Pins	
RA4/T0CKI Pin	
RA5 Pin	
RB3:RB0 Pins	
RB7:RB4 Pins	
RC Oscillator Mode	
Recommended MCLR Circuit	10
Simplified PWM Mode	
Timer0/WDT Prescaler	
Timero/WDT Prescaler	
Timer2	
USART Receive	
USART Transmit	
Watchdog Timer	55
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit 1	
Brown-out Reset (BOR) 143, 147, 148, 149, 1	
BOR Status (BOR Bit)	
Bus Collision During a Repeated Start Condition 1	
Bus Collision During a Start Condition 1	
Bus Collision During a Stop Condition 1	
Bus Collision Interrupt Flag bit, BCLIF	28
С	
-	
C Compilers	
MPLAB C17 1	
MPLAB C18 1	
MPLAB C30 1	
Capture/Compare/PWM (CCP)	63
Associated Registers	
Capture, Compare and Timer1	
PWM and Timer2	69
Capture Mode	65
CCP1IF	65
Prescaler	65
CCP Timer Resources	63
Compare	
Special Event Trigger Output of CCP1	66
Special Event Trigger Output of CCP2	
Compare Mode	
Software Interrupt Mode	
Special Event Trigger	

Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Compare Mode Operation	
Crystal/Ceramic Resonator Operation	
(HS, XT or LP Osc Configuration) .	
External Clock Input Operation	
(HS, XT or LP Osc Configuration).	

BF101

A/D129Analog Input Model130, 139Baud Rate Generator97Capture Mode Operation65

Block Diagrams