

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876at-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description		
					PORTB is a bidirectional I/O port. PORTB can be software		
RB0/INT	21	18		TTI /ST(1)			
RB0	21	10	I/O	112/01	Digital I/O.		
INT			I.		External interrupt.		
RB1	22	19	I/O	TTL	Digital I/O.		
RB2	23	20	I/O	TTL	Digital I/O.		
RB3/PGM	24	21		TTL			
RB3			I/O		Digital I/O.		
PGM			I		Low-voltage (single-supply) ICSP programming enable pin.		
RB4	25	22	I/O	TTL	Digital I/O.		
RB5	26	23	I/O	TTL	Digital I/O.		
RB6/PGC	27	24		TTL/ST ⁽²⁾			
RB6			I/O		Digital I/O.		
PGC			I		In-circuit debugger and ICSP programming clock.		
RB7/PGD	28	25		TTL/ST ⁽²⁾			
RB7			I/O		Digital I/O.		
PGD			I/O		In-circuit debugger and ICSP programming data.		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T1CKI	11	8		ST			
RC0			1/0		Digital I/O.		
TICKI					Timer1 oscillator output.		
	12	0	'	ет			
RC1	12	3	1/0	51	Digital I/O		
TIOSI			", U		Timer1 oscillator input.		
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.		
RC2/CCP1	13	10		ST			
RC2			I/O		Digital I/O.		
CCP1			I/O		Capture1 input, Compare1 output, PWM1 output.		
RC3/SCK/SCL	14	11		ST			
RC3			1/0		Digital I/O.		
SCI			1/0		Synchronous serial clock input/output for SPI mode.		
	15	12	1/0	ST	Synomonous sonar slook input output for 1 o mode.		
RC4	15	12	I/O	01	Digital I/O.		
SDI			I		SPI data in.		
SDA			I/O		I ² C data I/O.		
RC5/SDO	16	13		ST			
RC5			I/O		Digital I/O.		
SDO			0		SPI data out.		
RC6/TX/CK	17	14		ST			
RC6 TY			1/0		Digital I/O.		
CK			1/0		USART1 synchronous clock.		
RC7/RX/DT	18	15		ST	· · · · · · · · · · · · · · · · · · ·		
RC7			I/O		Digital I/O.		
RX			I		USART asynchronous receive.		
DT			I/O		USART synchronous data.		
Vss	8, 19	5, 6	Р	—	Ground reference for logic and I/O pins.		
Vdd	20	17	Р	_	Positive supply for logic and I/O pins.		
Legend: I = input O = output I/O = input/output P = power							

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

3.6 Writing to Flash Program Memory

Flash program memory may only be written to if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT1:WRT0 of the device configuration word (Register 14-1). Flash program memory must be written in four-word blocks. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where EEADR<1:0> = 00. At the same time, all block writes to program memory are done as erase and write operations. The write operation is edge-aligned and cannot occur across boundaries.

To write program data, it must first be loaded into the buffer registers (see Figure 3-1). This is accomplished by first writing the destination address to EEADR and EEADRH and then writing the data to EEDATA and EEDATH. After the address and data have been set up, then the following sequence of events must be executed:

- 1. Set the EEPGD control bit (EECON1<7>).
- 2. Write 55h, then AAh, to EECON2 (Flash programming sequence).
- 3. Set the WR control bit (EECON1<1>).

All four buffer register locations **MUST** be written to with correct data. If only one, two or three words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program location(s) not being written and loads it into the EEDATA and EEDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed. To transfer data from the buffer registers to the program memory, the EEADR and EEADRH must point to the last location in the four-word block (EEADR<1:0> = 11). Then the following sequence of events must be executed:

- 1. Set the EEPGD control bit (EECON1<7>).
- 2. Write 55h, then AAh, to EECON2 (Flash programming sequence).
- Set control bit WR (EECON1<1>) to begin the write operation.

The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (00, 01, 10, 11). When the write is performed on the last word (EEADR<1:0> = 11), the block of four words are automatically erased and the contents of the buffer registers are written into the program memory.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms, only during the cycle in which the erase takes place (i.e., the last word of the four-word block). This is not Sleep mode as the clocks and peripherals will continue to run. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction. If the sequence is performed to any other location, the action is ignored.

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

The type of event is configured by control bits, CCP1M3:CCP1M0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an							
	output, a write to the port can cause a Capture condition.							

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	move value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with this
		;	value
	CLRF MOVLW MOVWF	CLRF CCP1CON MOVLW NEW_CAPT_PS MOVWF CCP1CON	CLRF CCP1CON ; MOVLW NEW_CAPT_PS ; ; MOVWF CCP1CON ; ;

8.3 PWM Mode (PWM)

In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 8.3.3 "Setup for PWM Operation**".

FIGURE 8-3:	SIMPLIFIED PWM BLOCK
	DIAGRAM

A PWM output (Figure 8-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 7.1
	"Timer2 Prescaler and Postscaler") is
	not used in the determination of the PWM
	frequency. The postscaler could be used
	to have a servo update rate at a different
	frequency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM Duty Cycle =(CCPR1L:CCP1CON<5:4>)• Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitch-free PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the following formula.

EQUATION 8-1:

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

9.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

9.3.10 BUS MODE COMPATIBILITY

Table 9-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 9-1: SPI BUS MODES

Standard SPI Mode	Control Bits State			
Terminology	СКР	CKE		
0, 0	0	1		
0, 1	0	0		
1, 0	1	1		
1, 1	1	0		

There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	e on ther sets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
TRISC	PORTC Data Direction Register								1111	1111	1111	1111
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register							xxxx	xxxx	uuuu	uuuu	
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
TRISA	—	PORTA Data Direction Register							11	1111	11	1111
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000	0000	0000	0000

TABLE 9-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on 28-pin devices; always maintain these bits clear.

PIC16F87XA

9.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 9-15).

10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate; whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 10-4: USART RECEIVE BLOCK DIAGRAM

12.0 COMPARATOR MODULE

REGISTER 12-1: CMCON REGISTER

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with I/O port pins RA0 through RA3, while the outputs are multiplexed to pins RA4 and RA5. The on-chip voltage reference (Section 13.0 "Comparator Voltage Reference Module") can also be an input to the comparators. The CMCON register (Register 12-1) controls the comparator input and output multiplexers. A block diagram of the various comparator configurations is shown in Figure 12-1.

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1			
	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0			
	bit 7							bit 0			
hit 7	C2OUT: Co	omnarator 2	Output hit								
	When C2I	When $C2NV = 0$:									
	1 = C2 VIN	<u>+ > C2</u> VIN-									
	0 = C2 VIN	+ < C2 VIN-									
	When C2I	NV = 1:									
	1 = C2 VIN	+ < C2 VIN-									
	0 = C2 VIN	+ > C2 VIN-	O () () (
bit 6		omparator 1	Output bit								
	$\frac{\text{When Chir}}{1 - C1 \text{Vis}}$	$\underline{NV} = 0$: $\underline{NV} = 0$:									
	0 = C1 VIN	i + < C1 Vinv									
	When C1I	NV <u>= 1:</u>									
	1 = C1 VIN	+ < C1 VIN-									
	0 = C1 VIN	+ > C1 VIN-									
bit 5	C2INV: Co	mparator 2 C	Jutput Inver	sion bit							
	1 = C2 out	put inverted	· 1								
	0 = C2 out	put not inver	ted								
bit 4	C1INV: Co	C1INV: Comparator 1 Output Inversion bit									
	1 = C1 out	put invertea	tod								
hit 2		put not inven	Switch hit								
Dit 5	When CM2	2 CMO = 110									
	1 = C1 Vin- connects to RA3/AN3										
	C2 VIN- connects to RA2/AN2										
	0 = C1 VIN	I- connects to	o RAO/ANO								
		1- connects to	0 RA1/AN1								
bit 2		Comparator									
	Figure 12-	1 shows the	Comparator	· modes and		oit settings.					
	Legend:										
	R = Reada	able bit	W = W	/ritable bit	U = Unirr	nplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown			

12.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 12-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 17.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change. Otherwise, a false interrupt may occur.

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC16F87XA can be operated in four different oscillator modes. The user can program two configuration bits (FOsc1 and FOsc0) to select one of these four modes:

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (Figure 14-1). The PIC16F87XA oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKI pin (Figure 14-2).

FIGURE 14-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- A series resistor (*R_s*) may be required for AT strip cut crystals.
- 3: RF varies with the crystal chosen.

FIGURE 14-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1: CERAMIC RESONATORS

Ranges Tested:								
Mode Freq. OSC1 OSC2								
XT	455 kHz	68-100 pF	68-100 pF					
	2.0 MHz	15-68 pF	15-68 pF					
	4.0 MHz	15-68 pF	15-68 pF					
HS	8.0 MHz	10-68 pF	10-68 pF					
	16.0 MHz	10-22 pF	10-22 pF					

These values are for design guidance only. See notes following Table 14-2.

Resonators Used:		
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$
4.0 MHz	Murata Erie CSA4.00MG	$\pm 0.5\%$
8.0 MHz	Murata Erie CSA8.00MT	$\pm 0.5\%$
16.0 MHz	Murata Erie CSA16.00MX	$\pm 0.5\%$
All resonators used did not have built-in capacitors.		

TABLE 14-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes following this table.

Crystals Used		
32 kHz	Epson C-001R32.768K-A	± 20 PPM
200 kHz	STD XTL 200.000KHz	± 20 PPM
1 MHz	ECS ECS-10-13-1	± 50 PPM
4 MHz	ECS ECS-40-20-1	± 50 PPM
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM

- Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** *R*_s may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - When migrating from other PIC[®] devices, oscillator performance should be verified.

14.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-3 shows how the R/C combination is connected to the PIC16F87XA.

PIC16F87XA

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
	C Register f

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} , is cleared. Time-out status bit, \overline{TO} , is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \to PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \text{ - } (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial) (Continued)

PIC16LF873A/874A/876A/877A (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC16F873A/874A/876A/877A (Industrial, Extended)			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Max	Units	Conditions	
	IPD	Power-down Current ^(3,5)						
D020		16LF87XA	_	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C	
D020		16F87XA	_	10.5	42 60	μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT enabled, -40°C to +125°C (extended)	
D021		16LF87XA		0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C	
D021		16F87XA	_	1.5	16 20	μΑ μΑ	VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C (extended)	
D021A		16LF87XA		0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C	
D021A		16F87XA		1.5	19	μA	VDD = 4.0V, WDT disabled, -40°C to +85°C	
D023	Δ IBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V	

Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.
 - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
 - **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

TABLE 17-4:	CLKO AND I/O TIMING REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1 ↑ to CLKO $↓$		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12*	TCKR	CLKO Rise Time		—	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		—	35	100	ns	(Note 1)
14*	TckL2IoV	CLKO \downarrow to Port Out Valid		—	_	0.5 TCY + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO \uparrow		Tosc + 200		—	ns	(Note 1)
16*	TCKH2IOI	Port In Hold after CLKO \uparrow		0	_	—	ns	(Note 1)
17*	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out Va	alid	—	100	255	ns	
18*	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port Input	Standard (F)	100	_	—	ns	
		Invalid (I/O in hold time)	Extended (LF)	200	—	—	ns	
19*	TIOV20sH	Port Input Valid to OSC1 \uparrow (I/O in	setup time)	0	_	—	ns	
20*	TIOR	Port Output Rise Time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
21*	TIOF	Port Output Fall Time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	_	145	ns	
22††*	TINP	INT pin High or Low Time		Тсү		_	ns	
23††*	Trbp	RB7:RB4 Change INT High or Lo	w Time	Тсү	_	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKO output is 4 x Tosc.

*

TABLE 17-8: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874A/877A ONLY)

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow or \overline{CS} \uparrow (setup)$	time)	20	_		ns	
63*	TwrH2dtl	\overline{WR} \uparrow or \overline{CS} \uparrow to Data–in Invalid	Standard(F)	20	-	—	ns	
		(hold time)	Extended(LF)	35	-		ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to Data–out Valid		—	—	80	ns	
65	TrdH2dtI	\overline{RD} \uparrow or \overline{CS} \downarrow to Data–out Invalid		10	_	30	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 17-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

INDEX

Α

A/D	127
Acquisition Requirements	130
ADCON0 Register	127
ADCON1 Register	127
ADIF Bit	129
ADRESH Register	127
ADRESL Register	127
Analog Port Pins	49. 51
Associated Registers and Bits	133
Calculating Acquisition Time	130
Configuring Analog Port Pins	131
Configuring the Interrupt	129
Configuring the Module	129
Conversion Clock	131
Conversions	132
Converter Characteristics	194
Effects of a Reset	133
GO/DONE Bit	129
Internal Sampling Switch (Rss) Impedance	130
Operation During Sleep	133
Result Registers	132
Source Impedance	130
A/D Conversion Requirements	195
Absolute Maximum Ratings	173
ACKSTAT	101
ADCON0 Register	19
ADCON1 Register	
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART.	
ADRESH Register	19
ADRESL Register	20
Analog-to-Digital Converter. See A/D.	
Application Notes	
AN552 (Implementing Wake-up	
on Key Stroke)	
AN556 (Implementing a Table Read)	
Assembler	4.07
MPASM Assembler	167
Asynchronous Reception	440 400
Associated Registers	118, 120
Asynchronous Transmission	110
Associated Registers	110
В	
Banking, Data Memory	16 22
Baud Rate Generator	
Associated Registers	113
BCLIF	

On Ohin Depart Cinquit	
On-Chip Reset Circuit	147
PIC16F873A/PIC16F876A Architecture	6
PIC16F874A/PIC16F877A Architecture	7
PORTC	
Peripheral Output Override	
(RC2:0, RC7:5) Pins	46
Peripheral Output Override (RC4:3) Pins	46
PORTD (in I/O Port Mode)	48
PORTD and PORTE (Parallel Slave Port)	51
PORTE (In I/O Port Mode)	49
RA3 RA0 Pins	. 41
RA4/T0CKI Pin	42
RA5 Pin	42
RB3 RB0 Pins	44
RB7·RB4 Pins	
RC Oscillator Mode	1/6
Recommended MCLR Circuit	148
Simplified DWM Mode	67
	07
Timero/WDT Frescaler	55
	00 61
	110
USART Receive	119
USART Hansmit	115
Watchdog Limer	155
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit	113
Brown-out Reset (BOR) 143, 147, 148, 149,	150
BOR Status (BOR Bit)	29
Bus Collision During a Repeated Start Condition	108
Pue Colligion During a Stort Condition	
Bus Collision During a Start Condition	106
Bus Collision During a Start Condition	106 109
Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF	106 109 28
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF	106 109 28
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF	106 109 28
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C Compilers	106 109 28
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C Compilers MPLAB C17	106 109 28 168
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18	106 109 28 168 168
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C30	106 109 28 168 168 168
C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP)	106 109 28 168 168 168 63
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers	106 109 28 168 168 168 63
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1	106 109 28 168 168 168 63 68
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2	106 109 28 168 168 168 63 63 68 69
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode	106 109 28 168 168 168 63 63 69 65
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF	106 109 28 168 168 168 63 63 69 65 65
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler	106 109 28 168 168 168 168 63 63 65 65 65
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C C Compilers MPLAB C17 MPLAB C18 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler CCP Timer Resources	106 109 28 168 168 168 63 63 65 65 65 63
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C C Compilers MPLAB C17 MPLAB C18 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler CCP Timer Resources Compare	106 109 28 168 168 168 168 63 63 65 65 63
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler CCP Timer Resources Compare Special Event Trigger Output of CCP1	106 109 28 168 168 168 168 63 63 65 65 65 63 66
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler CCP Timer Resources Compare Special Event Trigger Output of CCP1 Special Event Trigger Output of CCP2	106 109 28 168 168 168 63 63 65 65 65 65 63 66 66
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler CCP Timer Resources Compare Special Event Trigger Output of CCP1 Special Event Trigger Output of CCP2 Compare Mode	106 109 28 168 168 168 168 63 63 65 65 65 65 63 66 66 66
Bus Collision During a Start Condition Bus Collision During a Stop Condition Bus Collision Interrupt Flag bit, BCLIF C C Compilers MPLAB C17 MPLAB C18 MPLAB C30 Capture/Compare/PWM (CCP) Associated Registers Capture, Compare and Timer1 PWM and Timer2 Capture Mode CCP1IF Prescaler CCP Timer Resources Compare Special Event Trigger Output of CCP1 Special Event Trigger Output of CCP2 Compare Mode Software Interrupt Mode	106 109 28 168 168 168 168 168 168 63 65 65 65 65 66 66 66 66

Interaction of Two CCP Modules (table) 63

PWM Mode 67

Duty Cycle67

Example Frequencies/Resolutions (table) 68

PWM Period67

A/D129Analog Input Model130, 139Baud Rate Generator97Capture Mode Operation65

Block Diagrams

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12