

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1 CLKI	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2 CLKO	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR VPP	1	26	I P	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input.
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	27	I/O I	TTL	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	28	I/O I	TTL	Digital I/O. Analog input 1.
RA2/AN2/VREF-/ CVREF RA2 AN2 VREF- CVREF	4	1	I/O I I O	TTL	Digital I/O. Analog input 2. A/D reference voltage (Low) input. Comparator VREF output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	2	I/O I I	TTL	Digital I/O. Analog input 3. A/D reference voltage (High) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	3	I/O I O	ST	Digital I/O – Open-drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/C2OUT RA5 AN4 SS C2OUT	7	4	I/O I I O	TTL	Digital I/O. Analog input 4. SPI slave select input. Comparator 2 output.
Legena. I = input	0 = 00	ւթու	1/C	v = mput/outpu	

TABLE 1-2:PIC16F873A/876A PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

An example of the complete four-word write sequence is shown in Example 3-4. The initial address is loaded into the EEADRH:EEADR register pair; the four words of data are loaded using indirect addressing.

EXAMPLE 3-4: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. A valid starting address (the least significant bits = '00') is loaded in ADDRH:ADDRL ; 2. The 8 bytes of data are loaded, starting at the address in DATADDR ; 3. ADDRH, ADDRL and DATADDR are all located in shared data memory 0x70 - 0x7f ; BSF STATUS, RP1 ; ; Bank 2 BCF STATUS, RPO ; Load initial address MOVF ADDRH,W MOVWF EEADRH MOVF ADDRL,W ; MOVWF EEADR MOVF DATAADDR,W ; Load initial data address MOVWF FSR ; Load first data byte into lower LOOP MOVF INDF,W MOVWF EEDATA ; INCF FSR,F ; Next byte INDF,W MOVE ; Load second data byte into upper MOVWF EEDATH : INCF FSR,F ; ; Bank 3 STATUS, RPO BSF EECON1, EEPGD BSF ; Point to program memory ; Enable writes BSF EECON1,WREN BCF INTCON, GIE ; Disable interrupts (if using) MOVLW 55h ; Start of required write sequence: MOVWF EECON2 ; Write 55h MOVLW AAh ; Write AAh MOVWF EECON2 BSF EECON1,WR ; Set WR bit to begin write NOP ; Any instructions here are ignored as processor ; halts to begin write sequence NOP ; processor will stop here and wait for write complete ; after write processor continues with 3rd instruction EECON1,WREN BCF ; Disable writes INTCON, GIE ; Enable interrupts (if using) BSF BCF STATUS, RPO ; Bank 2 INCF EEADR, F ; Increment address ; Check if lower two bits of address are `00' MOVF EEADR,W ANDLW ; Indicates when four words have been programmed 0x03 XORLW 0x03 ; BTFSC STATUS,Z ; Exit if more than four words, GOTO ; Continue if less than four words LOOP

FIGURE 4-12: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
08h	PORTD	Port Data	Latch wh	en writte	en; Port pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE	—	_		—	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Directi	on bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873A/876A; always maintain these bits clear.

	TABLE 5-1:	REGISTERS ASSOCIATED WITH TIMERO
--	------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Value on all other Resets	
01h,101h	TMR0	Timer0 N	/lodule Regi	ister						XXXX X	xxxx	uuuu	uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 (000x	0000	000u
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 3	1111	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

9.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register, initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- · Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

© 2001-2013 Microchip Technology Inc.

9.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag (BCLIF) is set, the Start condition is aborted and the I²C module is reset into its Idle state.

9.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 9-19: FIRST START BIT TIMING

9.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 9-26).
- b) SCL is sampled low before SDA is asserted low (Figure 9-27).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 9-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 9-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0 and during this time, if the SCL pin is sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 9-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

NOTES:

10.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

When setting up an Asynchronous Reception with address detect enabled:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

FIGURE 10-6: USART RECEIVE BLOCK DIAGRAM

16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

16.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

16.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial) (Continued)

PIC16LF873A/874A/876A/877A (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC16F873A/874A/876A/877A (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Max	Units	Conditions			
-	IDD	Supply Current ^(2,5)								
D010		16LF87XA	—	0.6	2.0	mA	XT, RC osc configurations, Fosc = 4 MHz, VDD = 3.0V			
D010		16F87XA		1.6	4	mA	XT, RC osc configurations, FOSC = 4 MHz, VDD = 5.5V			
D010A		16LF87XA	_	20	35	μA	LP osc configuration, Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D013		16F87XA	—	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V			
D015	Δ IBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μA	BOR enabled, VDD = 5.0V			

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
 - \overline{MCLR} = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
 - **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	—	_	ns	Must also meet
				With Prescaler	10	_	—	ns	parameter 42
41*	T⊤0L	T0CKI Low Pulse	Width	No Prescaler	0.5 Tcy + 20	_	—	ns	Must also meet
				With Prescaler	10	_	—	ns	parameter 42
42*	TT0P	T0CKI Period		No Prescaler	Tcy + 40	Ι	_	ns	
				With Prescaler	Greater of:	Ι	—	ns	N = prescale value
					20 or <u>Tcy + 40</u> N				(2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, Pre	scaler = 1	0.5 TCY + 20		_	ns	Must also meet
		Time	Synchronous,	Standard(F)	15		_	ns	parameter 47
			Prescaler = 2, 4, 8	Extended(LF)	25	Ι	—	ns	
			Asynchronous	Standard(F)	30		_	ns	
				Extended(LF)	50	Ι	—	ns	
46*	46* TT1L T1CKI Low Ti		Synchronous, Pre	0.5 TCY + 20			ns	Must also meet	
			Synchronous,	Standard(F)	15	—		ns	parameter 47
			Prescaler = 2, 4, 8	Extended(LF)	25	—		ns	
			Asynchronous	Standard(F)	30	—	—	ns	
				Extended(LF)	50			ns	
47*	TT1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 or <u>Tcʏ + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
				Extended(LF)	Greater of: 50 or <u>Tcʏ + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	Standard(F)	60	Ι	—	ns	
				Extended(LF)	100	—	—	ns	
	FT1	Timer1 Oscillator (oscillator enable	Input Frequency R d by setting bit T10	Range DSCEN)	DC		200	kHz	
48	TCKEZTMR1	Delay from Extern	nal Clock Edge to T	Fimer Increment	2 Tosc	—	7 Tosc	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	1ILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

Special Function Registers	19 19
Speed, Operating	
SPI Mode	. 71, 77
Associated Registers	79
Bus Mode Compatibility	79
Effects of a Reset	79
Enabling SPI I/O	75
Master Mode	76
Master/Slave Connection	75
Serial Clock	71
Serial Data In	71
Serial Data Out	71
Slave Select	71
Slave Select Synchronization	77
Sleep Operation	79
SPI Clock	76
Typical Connection	75
SPI Mode Requirements	190
SS	71
SSP	
SPI Master/Slave Connection	75
SSPADD Register	
SSPBUF Register	19
SSPCON Register	19
SSPCON2 Register	
55PIF	
	101
R/W Bit	. 84, 85
Slack	30
	30
Statua Pagiatar	
	22
	22
	22
	22 22 1/17
	22, 147
	22 22 147
7 Bit	22, 147
Synchronous Master Recention	
Associated Registers	123
Synchronous Master Transmission	
Associated Registers	122
Synchronous Serial Port Interrupt	
Synchronous Slave Reception	
Associated Registers	125
Synchronous Slave Transmission	
Associated Registers	125
_	
I	
T1CKPS0 Bit	57
T1CKPS1 Bit	57
T1CON Register	19
T1OSCEN Bit	57
T1SYNC Bit	57
T2CKPS0 Bit	61
T2CKPS1 Bit	61

 T2CON Register
 19

 TAD
 131

 Time-out Sequence
 148

Timer0	53
Associated Registers	55
Clock Source Edge Select (T0SE Bit)	23
Clock Source Select (T0CS Bit)	23
External Clock	54
Interrupt	53
Overflow Enable (TMR0IE Bit)	24
Overflow Flag (TMR0IF Bit)	.24, 154
Overflow Interrupt	154
Prescaler	54
TOCKI	54
Timer0 and Timer1 External Clock Requirements	185
Limer1	
Associated Registers	60
Asynchronous Counter Mode	
Reading and writing to	
Counter Operation	
Operation in Timer Mode	
Oscillator	
Capacitor Selection	
Prescaler	60
Resetting OF TIME I Registers	60
Synchronized Counter Mode	
	50
Associated Registers	
Postscaler	
Prescaler	
Prescaler and Postscaler	
Timing Diagrams	
A/D Conversion	195
Acknowledge Sequence	104
Asynchronous Master Transmission	116
Asynchronous Master Transmission	-
(Back to Back)	116
Asynchronous Reception	118
Asynchronous Reception with	
Address Byte First	120
Asynchronous Reception with	
Address Detect	120
Baud Rate Generator with Clock Arbitration	98
BRG Reset Due to SDA Arbitration During	
Start Condition	107
Brown-out Reset	184
Bus Collision During a Repeated	
Start Condition (Case 1)	108
Bus Collision During Repeated	
Start Condition (Case 2)	108
Bus Collision During Start Condition	
(SCL = 0)	107
Bus Collision During Start Condition	
(SDA Only)	106
Bus Collision During Stop Condition	
(Case 1)	109
Bus Collision During Stop Condition	
(Case 2)	109
Bus Collision for Transmit and Acknowledge	105
Capture/Compare/PWM (CCP1 and CCP2)	186
CLKO and I/O	183
Clock Synchronization	91
External Clock	182
First Start Bit	99

W

Wake-up from Sleep143, 1	56
Interrupts149, 1	50
MCLR Reset1	50
WDT Reset1	50
Wake-up Using Interrupts1	56
Watchdog Timer	
Register Summary1	55
Watchdog Timer (WDT)143, 1	55
Enable (WDTE Bit)1	55
Postscaler. See Postscaler, WDT.	
Programming Considerations1	55
RC Oscillator1	55
Time-out Period1	55
WDT Reset, Normal Operation 147, 149, 1	50
WDT Reset, Sleep 147, 149, 1	50
WCOL	04
WCOL Status Flag	99
WWW, On-Line Support	4

NOTES: