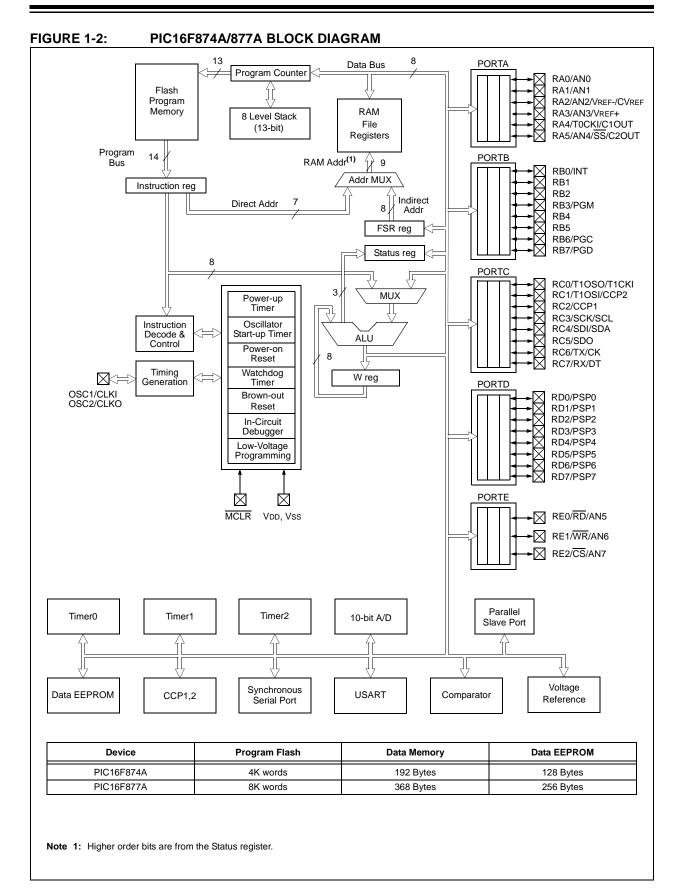


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877a-e-ml

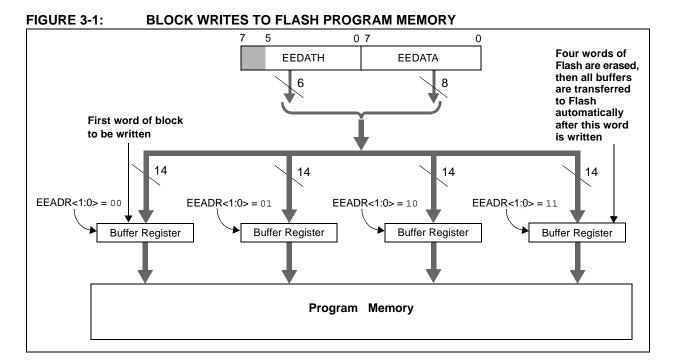
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Writing to Flash Program Memory

Flash program memory may only be written to if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT1:WRT0 of the device configuration word (Register 14-1). Flash program memory must be written in four-word blocks. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where EEADR<1:0> = 00. At the same time, all block writes to program memory are done as erase and write operations. The write operation is edge-aligned and cannot occur across boundaries.

To write program data, it must first be loaded into the buffer registers (see Figure 3-1). This is accomplished by first writing the destination address to EEADR and EEADRH and then writing the data to EEDATA and EEDATH. After the address and data have been set up, then the following sequence of events must be executed:


- 1. Set the EEPGD control bit (EECON1<7>).
- 2. Write 55h, then AAh, to EECON2 (Flash programming sequence).
- 3. Set the WR control bit (EECON1<1>).

All four buffer register locations **MUST** be written to with correct data. If only one, two or three words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program location(s) not being written and loads it into the EEDATA and EEDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed. To transfer data from the buffer registers to the program memory, the EEADR and EEADRH must point to the last location in the four-word block (EEADR<1:0> = 11). Then the following sequence of events must be executed:

- 1. Set the EEPGD control bit (EECON1<7>).
- 2. Write 55h, then AAh, to EECON2 (Flash programming sequence).
- Set control bit WR (EECON1<1>) to begin the write operation.

The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (00, 01, 10, 11). When the write is performed on the last word (EEADR<1:0> = 11), the block of four words are automatically erased and the contents of the buffer registers are written into the program memory.

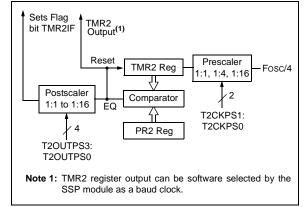
After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms, only during the cycle in which the erase takes place (i.e., the last word of the four-word block). This is not Sleep mode as the clocks and peripherals will continue to run. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction. If the sequence is performed to any other location, the action is ignored.

7.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for the PWM mode of the CCP module(s). The TMR2 register is readable and writable and is cleared on any device Reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.


The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).

Timer2 can be shut-off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

Register 7-1 shows the Timer2 Control register.

Additional information on timer modules is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

FIGURE 7-1: TIMER2 BLOCK DIAGRAM

REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

ER 7-1:	T2CON: T	IMER2 CC	NTROL R	EGISTER	(ADDRESS	5 12h)		
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimplem	nented: Rea	d as '0'					
bit 6-3	TOUTPS3	:TOUTPS0:	Timer2 Out	put Postsca	e Select bits			
	0001 = 1:2	1 postscale 2 postscale 3 postscale						
	1111 = 1 :1	16 postscale						
bit 2	TMR2ON:	Timer2 On I	oit					
	1 = Timer2 0 = Timer2							
bit 1-0	T2CKPS1	:T2CKPS0:	Timer2 Cloc	k Prescale	Select bits			
	00 = Prese 01 = Prese 1x = Prese	caler is 4						
	Logondi							
	Legend:		147 14					(O)
	R = Reada			Vritable bit		-	bit, read as	
	- n = Value	e at POR	`1 <i>`</i> = E	Bit is set	0' = Bit is	s cleared	x = Bit is u	nknown

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (POR, MCLR Reset, WDT Reset or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate the shift clock.

TABLE 7-1:	REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER
$IADEE I^{-1}$.	

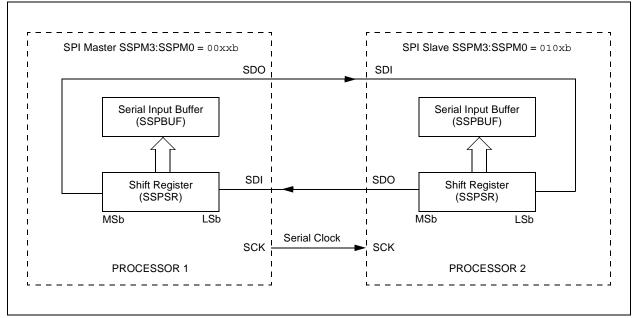
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 M	Timer2 Module's Register 0000					0000	0000	0000			
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2 P	imer2 Period Register							1111	1111	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

9.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISC<4> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

9.3.4 TYPICAL CONNECTION

Figure 9-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

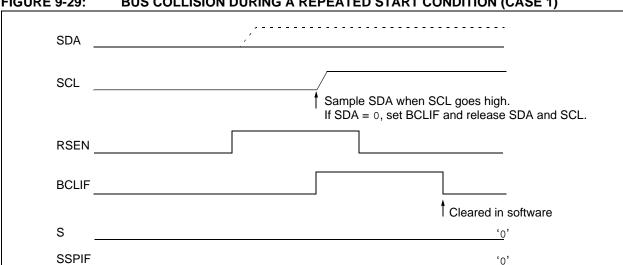
- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 9-2: SPI MASTER/SLAVE CONNECTION

Bus Collision During a Repeated 9.4.17.2 Start Condition

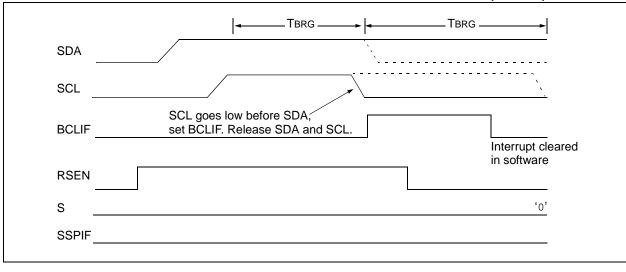
During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 9-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 9-30).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 9-29: **BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)**

NOTES:

14.10 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit 0 is the Brown-out Reset Status bit, BOR. The BOR bit is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if it has been cleared, indicating that a BOR has occurred.

When the Brown-out Reset is disabled, the state of the $\overline{\text{BOR}}$ bit is unpredictable and is, therefore, not valid at any time.

Bit 1 is the Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 14-3:	TIME-OUT IN VARIOUS SITUATIONS
-------------	--------------------------------

Oscillator Configuration	Power	-up	Brown-out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	Sleep	
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms		72 ms	_	

TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	х	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep or Interrupt Wake-up from Sleep

Legend: x = don't care, u = unchanged

TABLE 14-5: RESET CONDITIONS FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

14.11.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising if bit INTEDG (OPTION_REG<6>) is set or falling if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit, INTF (INTCON<1>), is set. This interrupt can be disabled by clearing enable bit, INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from Sleep if bit INTE was set prior to going into Sleep. The status of global interrupt enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See **Section 14.14** "**Power-down Mode** (**Sleep**)" for details on Sleep mode.

14.11.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit, TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). See **Section 5.0 "Timer0 Module"**.

14.11.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<4>). See Section 4.2 "PORTB and the TRISB Register".

14.12 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and Status register). This will have to be implemented in software.

For the PIC16F873A/874A devices, the register W_TEMP must be defined in both Banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 0x20 in Bank 0, it must also be defined at 0xA0 in Bank 1). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in Bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F876A/877A devices, temporary holding registers, W_TEMP, STATUS_TEMP and PCLATH_TEMP, should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 14-1 can be used.

EXAMPLE 14-1:	SAVING STATUS, W AND PCLATH REGISTERS IN RAM
---------------	--

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR)		;(Insert user code here)
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

14.14 Power-down Mode (Sleep)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (Status<3>) is cleared, the TO (Status<4>) bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, powerdown the A/D and disable external clocks. Pull all I/O pins that are high-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

14.14.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or peripheral interrupt.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the Status register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from Sleep:

- 1. PSP read or write (PIC16F874/877 only).
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP Capture mode interrupt.
- 4. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 5. SSP (Start/Stop) bit detect interrupt.
- 6. SSP transmit or receive in Slave mode (SPI/I²C).
- 7. USART RX or TX (Synchronous Slave mode).
- 8. A/D conversion (when A/D clock source is RC).
- 9. EEPROM write operation completion.
- 10. Comparator output changes state.

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

14.14.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

15.2	Instruction	Descriptions
------	-------------	--------------

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

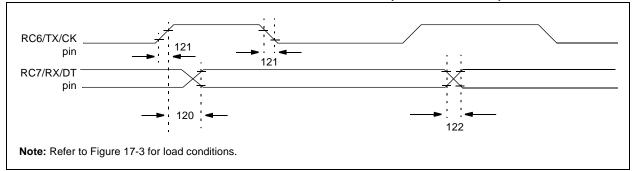
	register.			
ADDWF	Add W and f			
Syntax:	[label] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back			

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

in register 'f'.


BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

NOTES:

FIGURE 17-17: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

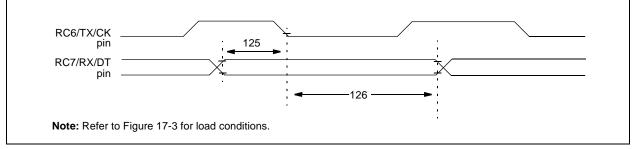


TABLE 17-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
120	TCKH2DTV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock High to Data Out Valid	Standard(F)	_	_	80	ns	
			Extended(LF)	—		100	ns	
121	TCKRF	Clock Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
	(Master mode)	Extended(LF)	—	—	50	ns		
122	Tdtrf	Data Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
			Extended(LF)	_	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-18: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

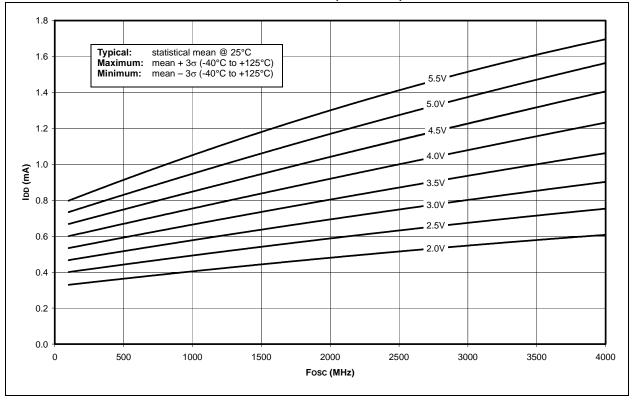
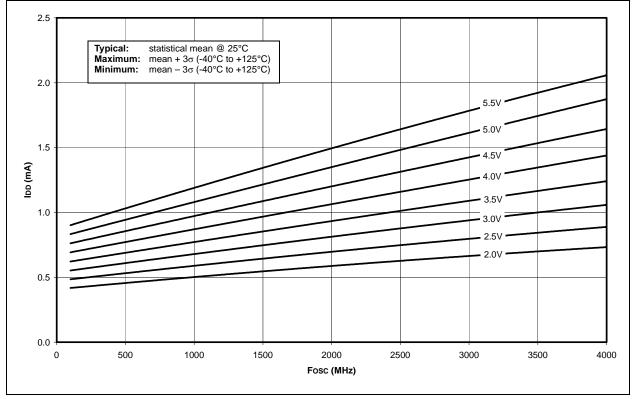
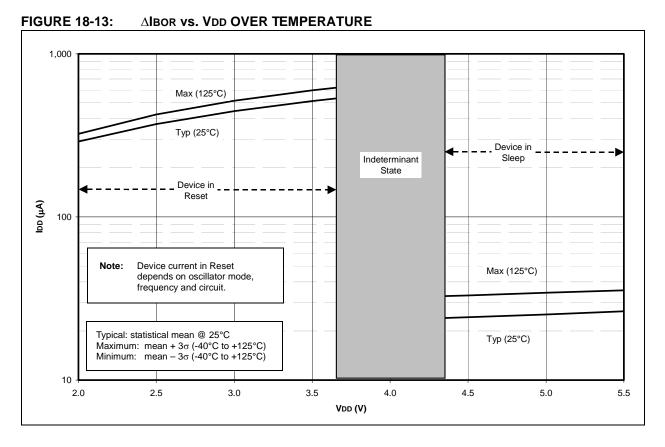
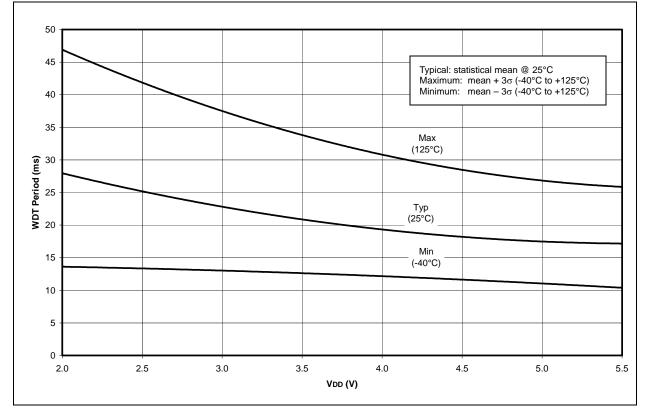


TABLE 17-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Setup before $CK \downarrow$ (DT setup time)	15			ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_		ns	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


NOTES:



APPENDIX A: REVISION HISTORY

Revision A (November 2001)

Original data sheet for PIC16F87XA devices. The devices presented are enhanced versions of the PIC16F87X microcontrollers discussed in the *"PIC16F87X Data Sheet"* (DS30292).

Revision B (October 2003)

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in **Section 17.0 "Electrical Characteristics"** have been updated and there have been minor corrections to the data sheet text.

Revision C (January 2013)

Added a note to each package outline drawing.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

	PIC16F873A	PIC16F874A	PIC16F876A	PIC16F877A
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory (bytes)	128	128	256	256
Interrupts	14	15	14	15
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Slave Port	No	Yes	No	Yes
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN

INDEX

Α

A/D	127
Acquisition Requirements	
ADCON0 Register	
ADCON1 Register	
ADIF Bit	
ADRESH Register	
ADRESL Register	
Analog Port Pins	
Associated Registers and Bits	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Interrupt	
Configuring the Module	
Conversion Clock	
Conversions	
Converter Characteristics	194
Effects of a Reset	
GO/DONE Bit	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep	
Result Registers	
Source Impedance	
A/D Conversion Requirements	
Absolute Maximum Ratings	
ACKSTAT	
ADCON0 Register	
ADCON1 Register	
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART.	
ADRESH Register	
ADRESL Register	
Analog-to-Digital Converter. See A/D.	
Application Notes	
AN552 (Implementing Wake-up	
on Key Stroke)	
AN556 (Implementing a Table Read)	
Assembler	
MPASM Assembler	167
Asynchronous Reception	
Associated Registers	118, 120
Asynchronous Transmission	
Associated Registers	116
В	
-	40.00
Banking, Data Memory	
Baud Rate Generator	
Associated Registers	
BCLIF	

MSSP (SPI Mode)	
On-Chip Reset Circuit 1	47
PIC16F873A/PIC16F876A Architecture	. 6
PIC16F874A/PIC16F877A Architecture	. 7
PORTC	
Peripheral Output Override	
(RC2:0, RC7:5) Pins	46
Peripheral Output Override (RC4:3) Pins	46
PORTD (in I/O Port Mode)	
PORTD and PORTE (Parallel Slave Port)	
PORTE (In I/O Port Mode)	
RA3:RA0 Pins	
RA4/T0CKI Pin	
RA5 Pin	
RB3:RB0 Pins	
RB7:RB4 Pins	
RC Oscillator Mode	
Recommended MCLR Circuit	10
Simplified PWM Mode	
Timer0/WDT Prescaler	
Timero/WDT Prescaler	
Timer2	
USART Receive	
USART Transmit	
Watchdog Timer	55
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit 1	
Brown-out Reset (BOR) 143, 147, 148, 149, 1	
BOR Status (BOR Bit)	
Bus Collision During a Repeated Start Condition 1	
Bus Collision During a Start Condition 1	
Bus Collision During a Stop Condition 1	
Bus Collision Interrupt Flag bit, BCLIF	28
С	
-	
C Compilers	
MPLAB C17 1	
MPLAB C18 1	
MPLAB C30 1	
Capture/Compare/PWM (CCP)	63
Associated Registers	
Capture, Compare and Timer1	
PWM and Timer2	69
Capture Mode	65
CCP1IF	65
Prescaler	65
CCP Timer Resources	63
Compare	
Special Event Trigger Output of CCP1	66
Special Event Trigger Output of CCP2	
Compare Mode	
Software Interrupt Mode	
Special Event Trigger	

Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Compare Mode Operation	
Crystal/Ceramic Resonator Operation	
(HS, XT or LP Osc Configuration) .	
External Clock Input Operation	
(HS, XT or LP Osc Configuration).	

BF101

A/D129Analog Input Model130, 139Baud Rate Generator97Capture Mode Operation65

Block Diagrams

I

I/O Ports	
I2C Bus Data Requirements	
I ² C Bus Start/Stop Bits Requirements	
I ² C Mode	
Registers	80
I ² C Mode	80
ACK Pulse	
Acknowledge Sequence Timing	
Baud Rate Generator	
Bus Collision	
Repeated Start Condition	
Start Condition	
Stop Condition	
Clock Arbitration	
Effect of a Reset	105
General Call Address Support	94
Master Mode	
Operation	
Repeated Start Timing	100
Master Mode Reception	
Master Mode Start Condition	
Master Mode Transmission	
Multi-Master Communication, Bus Collision	
and Arbitration	105
Multi-Master Mode	105
Read/Write Bit Information (R/W Bit)	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	84
Reception	
Transmission	
Sleep Operation	
Stop Condition Timing	104
Stop Condition Timing ID Locations	104
	104 143, 157
ID Locations In-Circuit Debugger	143, 157 143, 157 143, 157
ID Locations In-Circuit Debugger Resources	104 143, 157 143, 157 157
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP)	143, 157 143, 157 143, 157 143, 157 143, 158
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register	143, 157 143, 157 143, 157 157 157 143, 158 19, 20, 31
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF	
ID Locations In-Circuit Debugger	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF	
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 31
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 31
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 31
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 161 161
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 161 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 161 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 162 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 161 161 161 161 161 161 161 162 162 162 162 162 162 162 162
ID Locations In-Circuit Debugger	104
ID Locations	104

RRF	. 164
SLEEP	. 164
SUBLW	. 164
SUBWF	. 164
SWAPF	. 165
XORLW	. 165
XORWF	. 165
Summary Table	160
INT Interrupt (RB0/INT). See Interrupt Sources.	
INTCON Register	
GIE Bit	
INTE Bit	
INTE Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit2	
TMR0IE Bit	<i>'</i>
TMROIE Bit	
Inter-Integrated Circuit. See I ² C.	24
Internal Reference Signal	407
Internal Sampling Switch (Rss) Impedance	100
Interrupt Sources	, 153
Interrupt-on-Change (RB7:RB4)	
RB0/INT Pin, External9, 11	
TMR0 Overflow	
USART Receive/Transmit Complete	. 111
Interrupts	
Bus Collision Interrupt	
Synchronous Serial Port Interrupt	
Interrupts, Context Saving During	. 154
Interrupts, Enable Bits	
Global Interrupt Enable (GIE Bit)24	, 153
Interrupt-on-Change (RB7:RB4)	
Enable (RBIE Bit)24	
Peripheral Interrupt Enable (PEIE Bit)	
RB0/INT Enable (INTE Bit)	
TMR0 Overflow Enable (TMR0IE Bit)	24
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)24, 44	, 154
RB0/INT Flag (INTF Bit)	24
TMR0 Overflow Flag (TMR0IF Bit)24	
- · · · ·	

L

Loading of PC	30
Low-Voltage ICSP Programming	158
Low-Voltage In-Circuit Serial Programming	

Μ

Master Clear (MCLR)	8
MCLR Reset, Normal Operation147, 149, 1	150
MCLR Reset, Sleep147, 149, 1	150
Master Synchronous Serial Port (MSSP). See MSSP.	
MCLR 1	148
MCLR/VPP	10
Memory Organization	15
Data EEPROM Memory	
Data Memory	16
Flash Program Memory	
Program Memory	15
MPLAB ASM30 Assembler, Linker, Librarian 1	168
MPLAB ICD 2 In-Circuit Debugger 1	169
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator1	169
	-

© 2001-2013 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12