

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877a-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F873A
- PIC16F874A
- PIC16F876A
- PIC16F877A

PIC16F873A/876A devices are available only in 28-pin packages, while PIC16F874A/877A devices are available in 40-pin and 44-pin packages. All devices in the PIC16F87XA family share common architecture with the following differences:

- The PIC16F873A and PIC16F874A have one-half of the total on-chip memory of the PIC16F876A and PIC16F877A
- The 28-pin devices have three I/O ports, while the 40/44-pin devices have five
- The 28-pin devices have fourteen interrupts, while the 40/44-pin devices have fifteen
- The 28-pin devices have five A/D input channels, while the 40/44-pin devices have eight
- The Parallel Slave Port is implemented only on the 40/44-pin devices

The available features are summarized in Table 1-1. Block diagrams of the PIC16F873A/876A and PIC16F874A/877A devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the PIC[®] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F873A	PIC16F874A	PIC16F876A	PIC16F877A
Operating Frequency	DC – 20 MHz			
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory (bytes)	128	128	256	256
Interrupts	14	15	14	15
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	_	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Analog Comparators	2	2	2	2
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN

TABLE 1-1:PIC16F87XA DEVICE FEATURES

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses cont	ents of FSR t	o address da	ata memory (not a physic	cal register)	0000 0000	31, 150
01h	TMR0	Timer0 Mo	dule Regist	er						xxxx xxxx	55, 150
02h ⁽³⁾	PCL	Program C	ounter (PC)	Least Sign	ificant Byte				-	0000 0000	30, 150
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22, 150
04h ⁽³⁾	FSR	Indirect Da	ta Memory	Address Po	inter					xxxx xxxx	31, 150
05h	PORTA	_		PORTA Da	ata Latch whe	en written: PO	ORTA pins w	hen read		0x 0000	43, 150
06h	PORTB	PORTB Da	ata Latch wh	nen written:	PORTB pins	when read				xxxx xxxx	45, 150
07h	PORTC	PORTC Da	ata Latch wh	nen written:	PORTC pins	when read				xxxx xxxx	47, 150
08h ⁽⁴⁾	PORTD	PORTD Da	ata Latch wh	nen written:	PORTD pins	when read				xxxx xxxx	48, 150
09h ⁽⁴⁾	PORTE	_		—	_	_	RE2	RE1	RE0	xxx	49, 150
0Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	Counter	0 0000	30, 150
0Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	26, 150
0Dh	PIR2	_	CMIF	—	EEIF	BCLIF	—	_	CCP2IF	-0-0 00	28, 150
0Eh	TMR1L	Holding Re	egister for th	e Least Sig	nificant Byte	of the 16-bit	TMR1 Regis	ter		xxxx xxxx	60, 150
0Fh	TMR1H	Holding Re	egister for th	e Most Sigr	nificant Byte c	of the 16-bit	TMR1 Regist	er		xxxx xxxx	60, 150
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	57, 150
11h	TMR2	Timer2 Mo	dule Regist	er						0000 0000	62, 150
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	61, 150
13h	SSPBUF	Synchrono	us Serial Po	ort Receive	Buffer/Transr	nit Register				xxxx xxxx	79, 150
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	82, 82, 150
15h	CCPR1L	Capture/Co	ompare/PW	M Register	1 (LSB)					xxxx xxxx	63, 150
16h	CCPR1H	Capture/Co	ompare/PW	M Register	1 (MSB)					xxxx xxxx	63, 150
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	64, 150
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	112, 150
19h	TXREG	USART Tra	ansmit Data	Register						0000 0000	118, 150
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	118, 150
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)							xxxx xxxx	63, 150
1Ch	CCPR2H	Capture/C	ompare/PW	M Register	2 (MSB)					xxxx xxxx	63, 150
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	64, 150
1Eh	ADRESH	A/D Result	Register H	igh Byte						xxxx xxxx	133, 150
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	0000 00-0	127, 150

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.

5: Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 2											
100h ⁽³⁾	INDF	Addressing	g this locatio	n uses cont	ents of FSR t	o address da	ata memory (not a physic	cal register)	0000 0000	31, 150
101h	TMR0	Timer0 Mo	dule Registe	ər						xxxx xxxx	55, 150
102h ⁽³⁾	PCL	Program C	Counter's (PC	C) Least Sig	nificant Byte					0000 0000	30, 150
103h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22, 150
104h ⁽³⁾	FSR	Indirect Da	ata Memory	Address Po	inter					xxxx xxxx	31, 150
105h	—	Unimplem	ented							_	—
106h	PORTB	PORTB Da	ata Latch wh	en written:	PORTB pins	when read				xxxx xxxx	45, 150
107h	—	Unimplem	ented							_	_
108h	—	Unimplem	ented							_	—
109h	—	Unimplem	ented							_	—
10Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	Counter	0 0000	30, 150
10Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
10Ch	EEDATA	EEPROM	Data Regist	er Low Byte)					xxxx xxxx	39, 151
10Dh	EEADR	EEPROM	Address Re	gister Low E	Byte					xxxx xxxx	39, 151
10Eh	EEDATH			EEPROM	Data Registe	r High Byte				xx xxxx	39, 151
10Fh	EEADRH	_	_	_	(5)	EEPROM A	Address Regi	ster High B	yte	xxxx	39, 151
Bank 3						-					
180h ⁽³⁾	INDF	Addressing	g this locatio	n uses cont	ents of FSR t	o address da	ata memory (not a physic	cal register)	0000 0000	31, 150
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	23, 150
182h ⁽³⁾	PCL	Program C	Counter (PC)	Least Sign	ificant Byte					0000 0000	30, 150
183h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22, 150
184h ⁽³⁾	FSR	Indirect Da	ata Memory	Address Po	inter					xxxx xxxx	31, 150
185h	_	Unimplem	ented							_	
186h	TRISB	PORTB Da	ata Direction	Register						1111 1111	45, 150
187h	_	Unimplem	ented	-						_	—
188h	—	Unimplem	ented							_	
189h		Unimplem	ented							_	_
18Ah ^(1,3)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter							0 0000	30, 150	
18Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
18Ch	EECON1	EEPGD	—	—	—	WRERR	WREN	WR	RD	x x000	34, 151
18Dh	EECON2	EEPROM	Control Reg	ister 2 (not	a physical re	gister)					39, 151
18Eh	—	Reserved;	maintain cle	ar						0000 0000	—
18Fh	—	Reserved;	Reserved; maintain clear 0000								

TABLE 2-1:	SPECIAL FUNCTION REGISTER	SUMMARY (CON	(INUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.

5: Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
bit 7							bit 0
	al Interrupt E						
	s all unmas es all interru	ked interrupt pts	ts				
PEIE: Peri	oheral Interr	upt Enable b	oit				
		ked peripher eral interrup	•				
TMR0IE: T	MR0 Overfl	ow Interrupt	Enable bit				
	s the TMR0						
	es the TMR	•					
		al Interrupt E					
		NT external	•				
		NT external					
	•	e Interrupt Ei rt change in					
	•	ort change in	•				
	•	ow Interrupt	•				
1 = TMR0	register has	overflowed	(must be cle	ared in soft	ware)		
		al Interrupt F					
1 = The RE	B0/INT exter	nal interrupt	occurred (n		red in softwa	are)	
RBIF: RB I	Port Change	Interrupt Fl	ag bit				
the bit	. Reading F	RB7:RB4 p ORTB will e n software).					
0 = None	of the RB7:F	RB4 pins hav	ve changed	state			
Legend:							
R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit. read as	'0'

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
- n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown	

NOTES:

3.3 Reading Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). The data is available in the very next cycle in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

EXAMPLE 3-1: DATA EEPROM READ

 •			
BSF	STATUS, RP1	;	
BCF	STATUS, RPO	;	Bank 2
MOVF	DATA_EE_ADDR,W	;	Data Memory
MOVWF	EEADR	;	Address to read
BSF	STATUS, RPO	;	Bank 3
BCF	EECON1, EEPGD	;	Point to Data
		;	memory
BSF	EECON1,RD	;	EE Read
BCF	STATUS, RPO	;	Bank 2
MOVF	EEDATA,W	;	W = EEDATA

3.4 Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific write sequence to initiate the write for each byte.

The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2).

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - · Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 3-2: DATA EEPROM WRITE

	BSF	STATUS, RP1	;
	BSF	STATUS, RPO	
	BTFSC	EECON1,WR	;Wait for write
	GOTO	\$-1	;to complete
	BCF	STATUS, RPO	;Bank 2
	MOVF	DATA_EE_ADDR,W	;Data Memory
	MOVWF	EEADR	;Address to write
	MOVF	DATA_EE_DATA,W	;Data Memory Value
	MOVWF	EEDATA	;to write
	BSF	STATUS, RPO	;Bank 3
	BCF	EECON1, EEPGD	;Point to DATA
			;memory
	BSF	EECON1,WREN	;Enable writes
	BCF	INTCON,GIE	;Disable INTs.
	MOVLW	55h	;
g g	MOVWF	EECON2 AAh EECON2	;Write 55h
Required Sequence	MOVLW	AAh	;
Seq	MOVWF	EECON2	;Write AAh
ш ()	BSF	EECON1,WR	;Set WR bit to
			;begin write
	BSF	INTCON, GIE	;Enable INTs.
	BCF	EECON1,WREN	;Disable writes

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other Reset, except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset, or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding R	Register f	or the Leas	t Significan	t Byte of the	e 16-bit TMI	R1 Registe	r	xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	lolding Register for the Most Significant Byte of the 16-bit TMR1 Register								uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

9.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

9.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I²C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

9.2 Control Registers

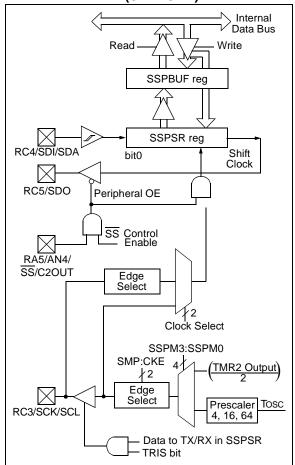
The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON and SSPCON2). The use of these registers and their individual configuration bits differ significantly, depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

9.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL


Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) – RA5/AN4/SS/C2OUT

Figure 9-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 9-1:

MSSP BLOCK DIAGRAM (SPI MODE)

Note:	When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the state of the SS pin can affect the state read back from the TRISC<5> bit. The Peripheral OE signal from the SSP mod- ule in PORTC controls the state that is read back from the TRISC<5> bit (see Section 4.3 "PORTC and the TRISC Register" for information on PORTC). If Read-Modify-Write instructions, such as BSF, are performed on the TRISC register while the SS pin is high, this will cause the TRISC of the table part thus displayed by
	while the SS pin is high, this will cause the TRISC<5> bit to be set, thus disabling the SDO output.

9.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON<5>).

The SSPCON register allows control of the I 2 C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I 2 C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD + 1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

9.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The buffer full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101.

9.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

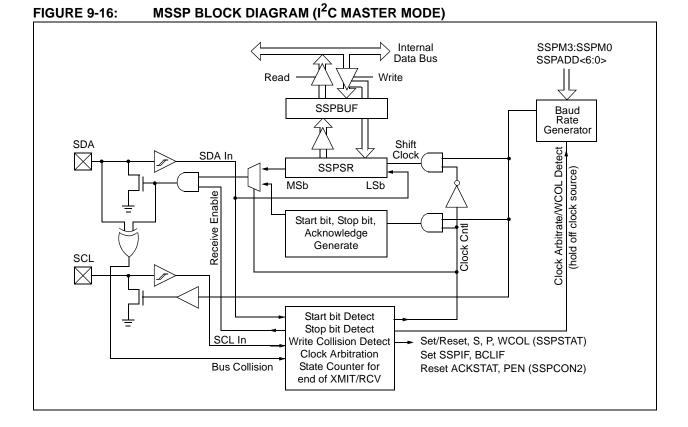
- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

9.4.6 MASTER MODE

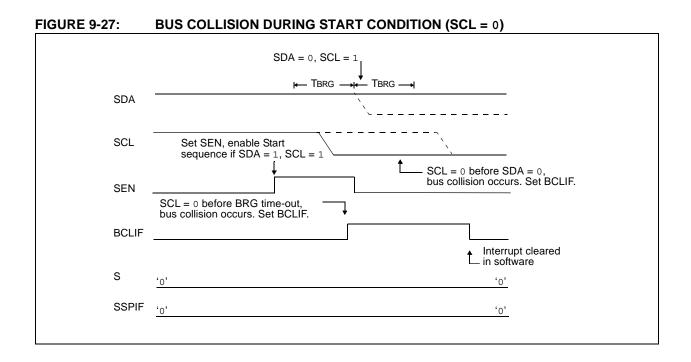
Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

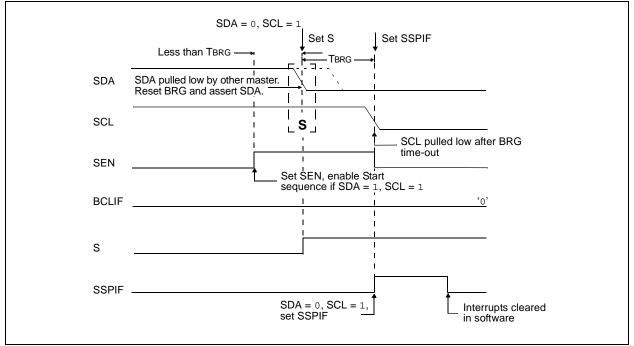
In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register, initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.


Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):


- · Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

© 2001-2013 Microchip Technology Inc.

NOTES:

11.5 A/D Operation During Sleep

The A/D module can operate during Sleep mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in Sleep,
	the A/D clock source must be set to RC
	(ADCS1:ADCS0 = 11). To allow the con-
	version to occur during Sleep, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

11.6 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		-	e on , WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
1Eh	ADRESH	A/D Resu	A/D Result Register High Byte									uuuu	uuuu
9Eh	ADRESL	A/D Resu	lt Registe	r Low Byte	;					xxxx	xxxx	uuuu	uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000	00-0	0000	00-0
9Fh	ADCON1	ADFM	ADCS2	—	_	PCFG3	PCFG2	PCFG1	PCFG0	00	0000	00	0000
85h	TRISA	_	_	PORTA D	PORTA Data Direction Register						1111	11	1111
05h	PORTA	—	_	PORTA Data Latch when written: PORTA pins when read						0x	0000	0u	0000
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV PSPMODE — PORTE Data Direction bits						0000	-111	0000	-111
09h ⁽¹⁾	PORTE		_	_	_	_	RE2	RE1	RE0		-xxx		-uuu

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers are not available on 28-pin devices.

TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS											
Register		Dev	ices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt				
W	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
INDF	73A	74A	76A	77A	N/A	N/A	N/A				
TMR0	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PCL	73A	74A	76A	77A	0000 0000	0000 0000	PC + 1 ⁽²⁾				
STATUS	73A	74A	76A	77A	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾				
FSR	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PORTA	73A	74A	76A	77A	0x 0000	0u 0000	uu uuuu				
PORTB	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PORTC	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PORTD	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PORTE	73A	74A	76A	77A	xxx	uuu	uuu				
PCLATH	73A	74A	76A	77A	0 0000	0 0000	u uuuu				
INTCON	73A	74A	76A	77A	0000 000x	0000 000u	uuuu uuuu (1)				
	73A	74A	76A	77A	r000 0000	r000 0000	ruuu uuuu (1)				
PIR1	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu (1)				
PIR2	73A	74A	76A	77A	-0-0 00	-0-0 00	-u-u uu (1)				
TMR1L	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
TMR1H	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
T1CON	73A	74A	76A	77A	00 0000	uu uuuu	uu uuuu				
TMR2	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
T2CON	73A	74A	76A	77A	-000 0000	-000 0000	-uuu uuuu				
SSPBUF	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
SSPCON	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
CCPR1L	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
CCPR1H	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
CCP1CON	73A	74A	76A	77A	00 0000	00 0000	uu uuuu				
RCSTA	73A	74A	76A	77A	0000 000x	0000 000x	uuuu uuuu				
TXREG	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
RCREG	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
CCPR2L	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
CCPR2H	73A	74A	76A	77A	xxxx xxxx	uuuu uuuu	uuuu uuuu				
CCP2CON	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
ADRESH	73A	74A	76A	77A	xxxx xxxx	uuuu uuuu	uuuu uuuu				
ADCON0	73A	74A	76A	77A	0000 00-0	0000 00-0	uuuu uu-u				
OPTION_REG	73A	74A	76A	77A	1111 1111	1111 1111	uuuu uuuu				
TRISA	73A	74A	76A	77A	11 1111	11 1111	uu uuuu				
TRISB	73A	74A	76A	77A	1111 1111	1111 1111	uuuu uuuu				

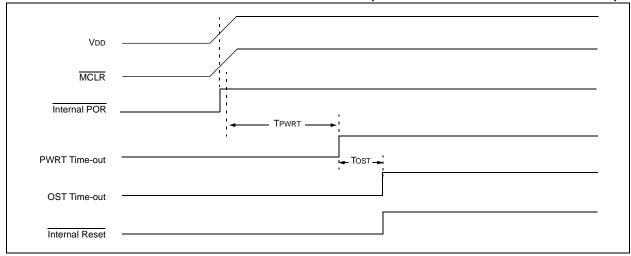
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- 3: See Table 14-5 for Reset value for specific condition.

TABLE 14-6:	INITIA	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register		Devices			Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt				
TRISD	73A	74A	76A	77A	1111 1111	1111 1111	uuuu uuuu				
TRISE	73A	74A	76A	77A	0000 -111	0000 -111	uuuu -uuu				
PIE1	73A	74A	76A	77A	r000 0000	r000 0000	ruuu uuuu				
FICI	73A	74A	76A	77A	0000 0000	0000 0000	սսսս սսսս				
PIE2	73A	74A	76A	77A	-0-0 00	-0-0 00	-u-u uu				
PCON	73A	74A	76A	77A	dd	uu	uu				
SSPCON2	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
PR2	73A	74A	76A	77A	1111 1111	1111 1111	1111 1111				
SSPADD	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
SSPSTAT	73A	74A	76A	77A	00 0000	00 0000	uu uuuu				
TXSTA	73A	74A	76A	77A	0000 -010	0000 -010	uuuu -uuu				
SPBRG	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu				
CMCON	73A	974	76A	77A	0000 0111	0000 0111	uuuu uuuu				
CVRCON	73A	74A	76A	77A	000- 0000	000- 0000	uuu- uuuu				
ADRESL	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu				
ADCON1	73A	74A	76A	77A	00 0000	00 0000	uu uuuu				
EEDATA	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
EEADR	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
EEDATH	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu				
EEADRH	73A	74A	76A	77A	xxxx xxxx	սսսս սսսս	uuuu uuuu				
EECON1	73A	74A	76A	77A	x x000	u u000	u uuuu				
EECON2	73A	74A	76A	77A							


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-5 for Reset value for specific condition.

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)

© 2001-2013 Microchip Technology Inc.

16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

16.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

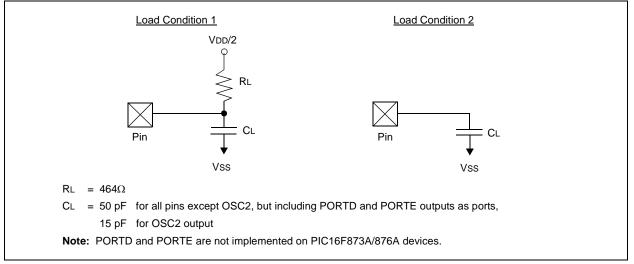
16.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.


The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

17.3 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	bS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
CC	CCP1	OSC	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I	² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	Data input hold	STO	Stop condition
STA	Start condition		

FIGURE 17-3: LOAD CONDITIONS

FIGURE 17-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

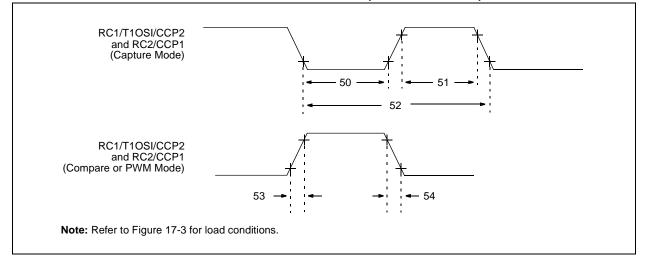
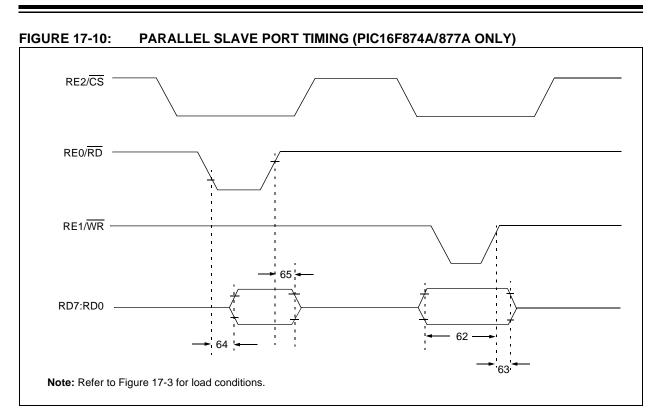
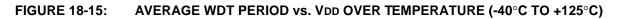



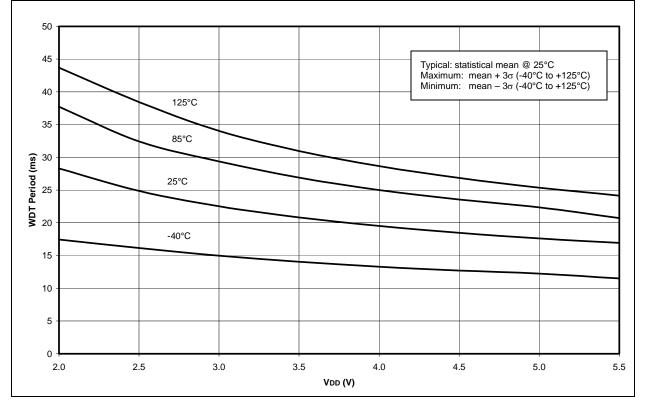
TABLE 17-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Symbol	c	Characteristic		Min	Тур†	Max	Units	Conditions
50* TccL	TccL	CCP1 and CCP2	No Prescaler		0.5 Tcy + 20			ns	
		Input Low Time	With Prescaler	Standard(F)	10	—	_	ns	
			with Prescaler	Extended(LF)	20	_	_	ns	
51* Tc	ТссН	CCP1 and CCP2 Input High Time	No Prescaler	0.5 Tcy + 20	—	_	ns		
			With Prescaler	Standard(F)	10	_	_	ns	
				Extended(LF)	20	_	_	ns	
52*	TCCP	CCP1 and CCP2 Inp	<u>3 Tcy + 40</u> N	_	_	ns	N = prescale value (1, 4 or 16)		
53*	TCCR	CCP1 and CCP2 Out	tput Rise Time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TCCF	CCP1 and CCP2 Out	Standard(F)	—	10	25	ns		
				Extended(LF)	—	25	45	ns	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.




TABLE 17-8: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874A/877A ONLY)

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data In Valid before \overline{WR} \uparrow or \overline{CS} \uparrow (setup	20	_		ns		
63* TwrH2dtl		WR ↑ or CS ↑ to Data–in Invalid	Standard(F)	20	_	_	ns	
		(hold time)	35	_	_	ns		
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to Data–out Valid	_	_	80	ns		
65	TrdH2dtI	\overline{RD} \uparrow or \overline{CS} \downarrow to Data–out Invalid	10	—	30	ns		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

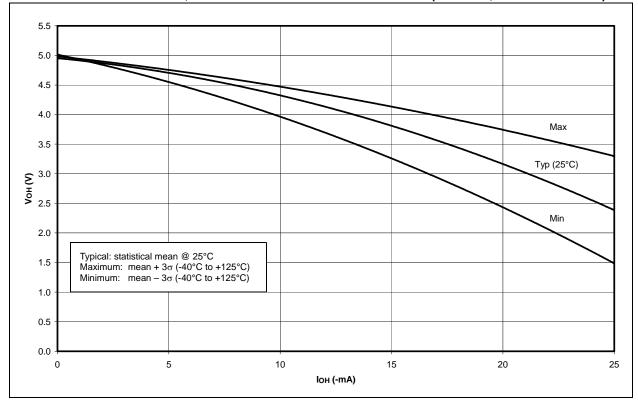


FIGURE 18-16: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)