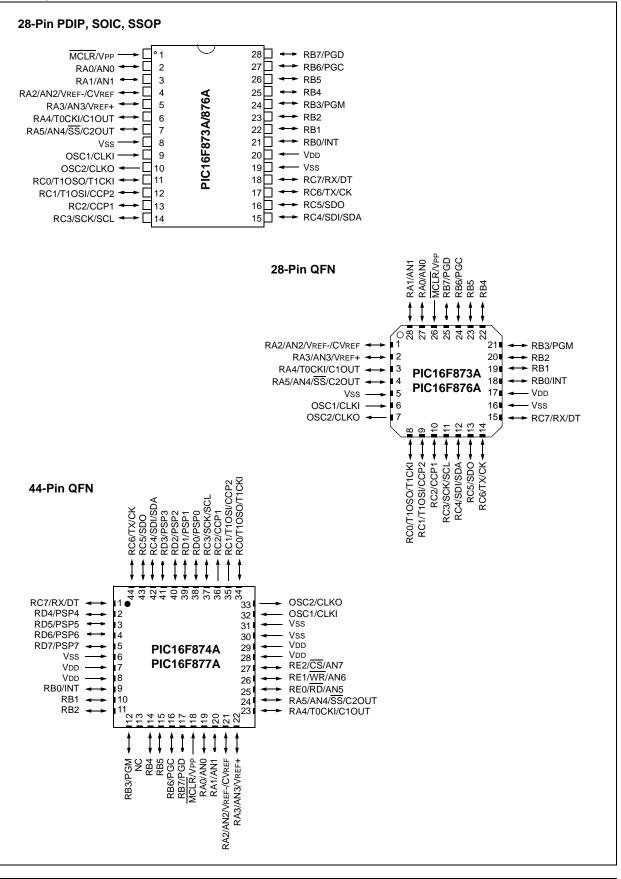


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
					PORTB is a bidirectional I/O port. PORTB can be software
					programmed for internal weak pull-ups on all inputs.
RB0/INT	21	18		TTL/ST ⁽¹⁾	
RB0			I/O		Digital I/O.
INT			I		External interrupt.
RB1	22	19	I/O	TTL	Digital I/O.
RB2	23	20	I/O	TTL	Digital I/O.
RB3/PGM	24	21		TTL	
RB3			I/O		Digital I/O.
PGM			I		Low-voltage (single-supply) ICSP programming enable pir
RB4	25	22	I/O	TTL	Digital I/O.
RB5	26	23	I/O	TTL	Digital I/O.
RB6/PGC	27	24		TTL/ST ⁽²⁾	
RB6			I/O		Digital I/O.
PGC			I		In-circuit debugger and ICSP programming clock.
RB7/PGD	28	25		TTL/ST ⁽²⁾	
RB7	-	-	I/O		Digital I/O.
PGD			I/O		In-circuit debugger and ICSP programming data.
					PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI	11	8		ST	
RC0		-	I/O		Digital I/O.
T1OSO			0		Timer1 oscillator output.
T1CKI			I		Timer1 external clock input.
RC1/T1OSI/CCP2	12	9		ST	
RC1			I/O		Digital I/O.
T1OSI			1		Timer1 oscillator input.
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	13	10		ST	
RC2			I/O		Digital I/O.
CCP1			I/O		Capture1 input, Compare1 output, PWM1 output.
RC3/SCK/SCL	14	11	1/0	ST	District VO
RC3 SCK			I/O I/O		Digital I/O. Synchronous serial clock input/output for SPI mode.
SCL			1/O		Synchronous serial clock input/output for Sr I mode.
RC4/SDI/SDA	15	12	., 0	ST	
RC4	15	12	I/O	51	Digital I/O.
SDI			., c		SPI data in.
SDA			I/O		I ² C data I/O.
RC5/SDO	16	13		ST	
RC5			I/O		Digital I/O.
SDO			0		SPI data out.
RC6/TX/CK	17	14		ST	
RC6			I/O		Digital I/O.
TX			0		USART asynchronous transmit.
CK			I/O		USART1 synchronous clock.
RC7/RX/DT	18	15		ST	
RC7			I/O		Digital I/O.
RX DT			I/O		USART asynchronous receive.
	0.40	F A			USART synchronous data.
Vss	8, 19 20	5,6	P		Ground reference for logic and I/O pins. Positive supply for logic and I/O pins.
Vdd		17	Р		

TABLE 1-2: PIC16F873A/876A PINOUT DESCRIPTION (CONTINUE

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

	PDIP	IP PLCC	TQFP	QFN	I/O/P	Buffer	
Pin Name	Pin#	Pin#	Pin#	Pin#	Туре	Туре	Description
OSC1/CLKI OSC1	13	14	30	32	I	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS.
CLKI					Ι		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2	14	15	31	33	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO					0		In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR	1	2	18	18	I	ST	Master Clear (input) or programming voltage (output) Master Clear (Reset) input. This pin is an active low Reset to the device.
Vpp					Р		Programming voltage input.
			10	10			PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	3	19	19	I/O I	TTL	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	4	20	20	I/O I	TTL	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	5	21	21	I/O I I O	TTL	Digital I/O. Analog input 2. A/D reference voltage (Low) input. Comparator VREF output.
RA3/AN3/Vref+ RA3 AN3 Vref+	5	6	22	22	I/O I I	TTL	Digital I/O. Analog input 3. A/D reference voltage (High) input.
RA4/T0CKI/C1OUT RA4	6	7	23	23	I/O	ST	Digital I/O – Open-drain when configured as output.
T0CKI C1OUT					I O		Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/C2OUT RA5 AN4 SS C2OUT	7	8	24	24	I/O I 0	TTL	Digital I/O. Analog input 4. SPI slave select input. Comparator 2 output.

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input
 Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽³⁾	INDF	Addressing	this locatio	n uses cont	ents of FSR t	o address d	ata memory (not a physic	al register)	0000 0000	31, 150
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	23, 150
82h ⁽³⁾	PCL	Program C	ounter (PC)	Least Sign	ificant Byte					0000 0000	30, 150
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22, 150
84h ⁽³⁾	FSR	Indirect Da	ndirect Data Memory Address Pointer								
85h	TRISA			PORTA Da	ta Direction F	Register				11 1111	43, 150
86h	TRISB	PORTB Da	ata Direction	Register						1111 1111	45, 150
87h	TRISC	PORTC Da	ata Directior	Register						1111 1111	47, 150
88h ⁽⁴⁾	TRISD	PORTD Da	ata Directior	n Register						1111 1111	48, 151
89h ⁽⁴⁾	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Dat	a Direction I	bits	0000 -111	50, 151
8Ah ^(1,3)	PCLATH	—			Write Buffer	for the uppe	er 5 bits of the	e Program C	Counter	0 0000	30, 150
8Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
8Ch	PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	25, 151
8Dh	PIE2	—	CMIE		EEIE	BCLIE	—	_	CCP2IE	-0-0 00	27, 151
8Eh	PCON	_			_		_	POR	BOR	dd	29, 151
8Fh	—	Unimpleme	ented							—	
90h	—	Unimpleme	ented							_	_
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	83, 151
92h	PR2	Timer2 Per	riod Registe	r						1111 1111	62, 151
93h	SSPADD	Synchrono	us Serial Po	ort (I ² C mod	e) Address R	egister				0000 0000	79, 151
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	79, 151
95h	—	Unimpleme	ented		•					—	
96h	_	Unimpleme	ented							—	
97h	—	Unimpleme	ented							—	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	111, 151
99h	SPBRG	Baud Rate	Generator	Register	•					0000 0000	113, 151
9Ah	—	Unimpleme	ented							_	_
9Bh	_	Unimpleme	ented							_	—
9Ch	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	135, 151
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	141, 151
9Eh	ADRESL	A/D Result	Register Lo	w Byte						xxxx xxxx	133, 151
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	128, 151

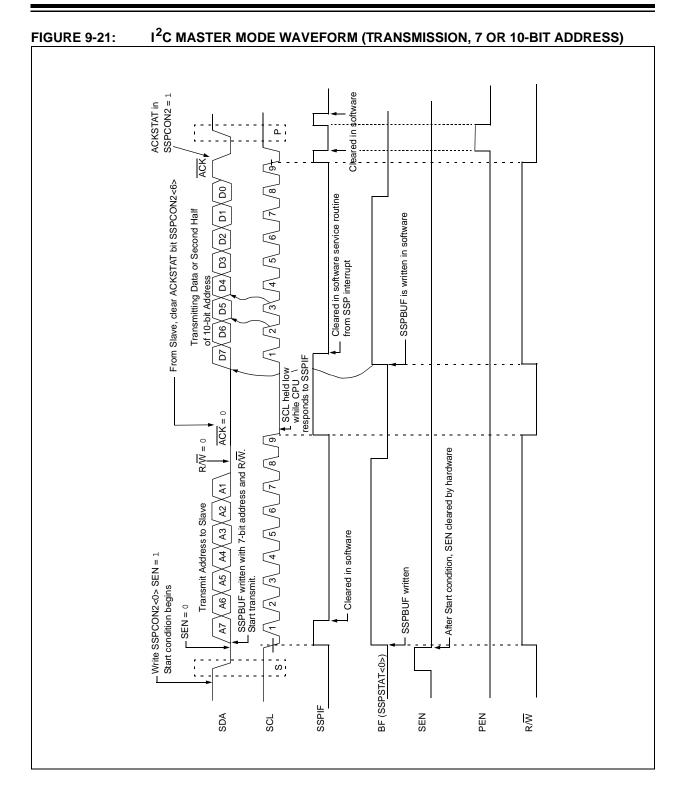
x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Legend: Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.


5: Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5:	PIR1 REGI	STER (AD	DRESS 0	Ch)							
	R/W-0	R/W-0	R-0	, R-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF			
	bit 7							bit 0			
bit 7	PSPIF: Par	allel Slave I	Port Read/W	/rite Interrup	t Flag bit ⁽¹⁾						
	1 = A read 0 = No read	or a write op I or write ha	peration has as occurred	taken place	e (must be cl		tware) maintain this	bit clear.			
bit 6			nterrupt Flag								
	1 = An A/D	conversion									
bit 5	RCIF: USA	RCIF: USART Receive Interrupt Flag bit									
		 1 = The USART receive buffer is full 0 = The USART receive buffer is empty 									
bit 4	TXIF: USAF	RT Transmit	t Interrupt Fl	ag bit							
			nit buffer is e nit buffer is f								
bit 3	-				-						
	from th • SPI - • I ² C M • I ² C M - A f - Th - Th - Th - Th - Th - A f	 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI – A transmission/reception has taken place. I²C Slave – A transmission/reception has taken place. I²C Master A transmission/reception has taken place. The initiated Start condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP module. A start condition occurred while the SSP module was Idle (multi-master system). A Stop condition occurred while the SSP module was Idle (multi-master system). 									
bit 2	CCP1IF: CO	CP1 Interru	pt Flag bit								
	<u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred										
	<u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred										
	<u>PWM mode:</u> Unused in this mode.										
bit 1	TMR2IF: TM	/IR2 to PR2	2 Match Inter	rrupt Flag bit	t						
			ch occurred natch occurr		ared in soft	vare)					
bit 0	1 = TMR1 r	egister over	ow Interrupt rflowed (mus not overflow	st be cleared	d in software)					
	Legend:]			
	R = Readat	ole bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'			
	- n = Value		'1' = B	it is set		s cleared	x = Bit is u				

9.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

9.4.15 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

9.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is at the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

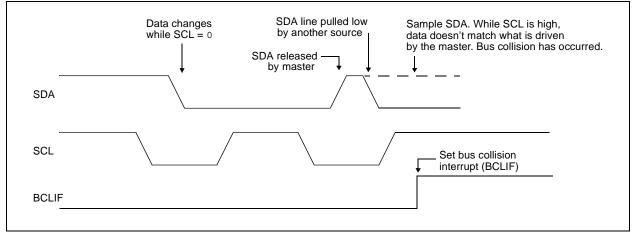
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

9.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF, and reset the I^2C port to its Idle state (Figure 9-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The Master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register or the bus is Idle and the S and P bits are cleared.

FIGURE 9-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

© 2001-2013 Microchip Technology Inc.

10.2 USART Asynchronous Mode

In this mode, the USART uses standard Non-Returnto-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated, 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

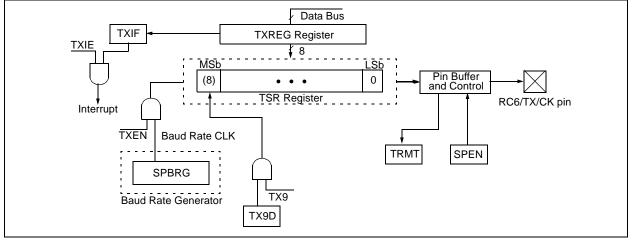
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit, TXIF (PIR1<4>), is set. This interrupt can be


enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit, TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the Baud Rate Generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to high-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTIE	RBIE	TMR0IF	INTIF	RBIF	x000 000x	0000 000u
0Dh	PIR2	_	CMIF	_	_	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
8Dh	PIE2	—	CMIE	—	—	BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	Ou 0000
85h	TRISA	_	—	PORTA D	ata Direc	tion Regis	ster			11 1111	11 1111

TABLE 12-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

14.0 SPECIAL FEATURES OF THE CPU

All PIC16F87XA devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming
- Low-Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87XA devices have a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

Additional information on special features is available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

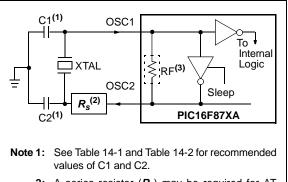
14.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations. The erased or unprogrammed value of the Configuration Word register is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space which can be accessed only during programming.

14.2 Oscillator Configurations

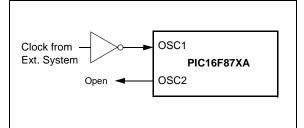
14.2.1 OSCILLATOR TYPES


The PIC16F87XA can be operated in four different oscillator modes. The user can program two configuration bits (FOsc1 and FOsc0) to select one of these four modes:

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (Figure 14-1). The PIC16F87XA oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKI pin (Figure 14-2).


FIGURE 14-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- A series resistor (*R_s*) may be required for AT strip cut crystals.
- 3: RF varies with the crystal chosen.

FIGURE 14-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

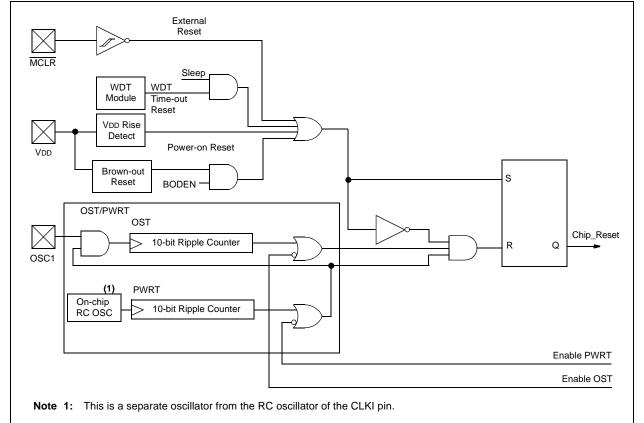
TABLE 14-1: CERAMIC RESONATORS

	Ranges Tested:										
Mode											
XT	455 kHz	68-100 pF	68-100 pF								
	2.0 MHz	15-68 pF	15-68 pF								
	4.0 MHz	15-68 pF	15-68 pF								
HS	8.0 MHz	10-68 pF	10-68 pF								
	16.0 MHz	10-22 pF	10-22 pF								

These values are for design guidance only. See notes following Table 14-2.

Resonators Used:								
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$						
4.0 MHz	$\pm 0.5\%$							
8.0 MHz	Murata Erie CSA8.00MT	$\pm 0.5\%$						
16.0 MHz	Murata Erie CSA16.00MX	$\pm 0.5\%$						
All resonate	ors used did not have built-in	capacitors.						

14.3 Reset

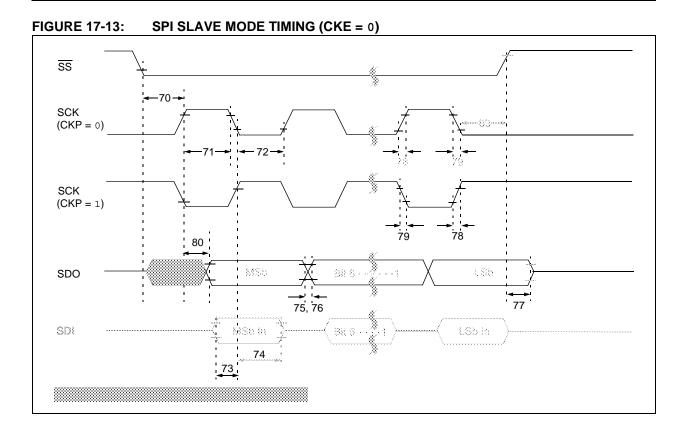

The PIC16F87XA differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset (during normal operation)
- WDT Wake-up (during Sleep)
- Brown-out Reset (BOR)

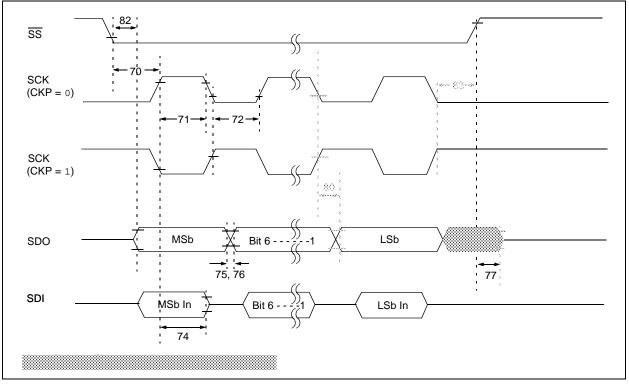
Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 14-4. These bits are used in software to determine the nature of the Reset. See Table 14-6 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 14-4.

FIGURE 14-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT



17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial)


PIC16LF8 (Indus		/876A/877A	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
	PIC16F873A/874A/876A/877A (Industrial, Extended)			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min Typ† Max Units Conditions				Conditions		
	Vdd	Supply Voltage							
D001		16LF87XA	2.0	—	5.5	V	All configurations (DC to 10 MHz)		
D001		16F87XA	4.0		5.5	V	All configurations		
D001A			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 14.5 "Power-on Reset (POR)" for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 14.5 "Power-on Reset (POR)" for details		
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V	BODEN bit in configuration word enabled		

Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
 - MCLR = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.
 - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
 - **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

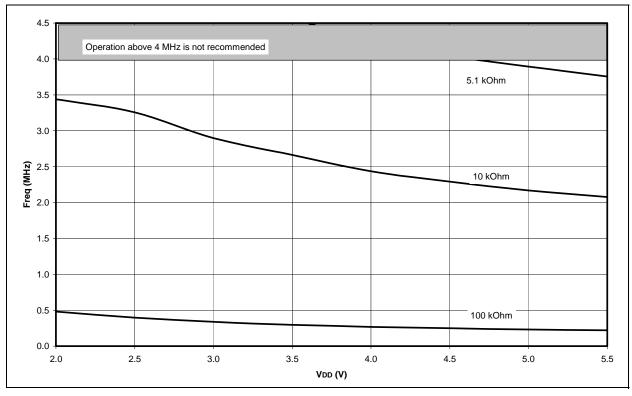
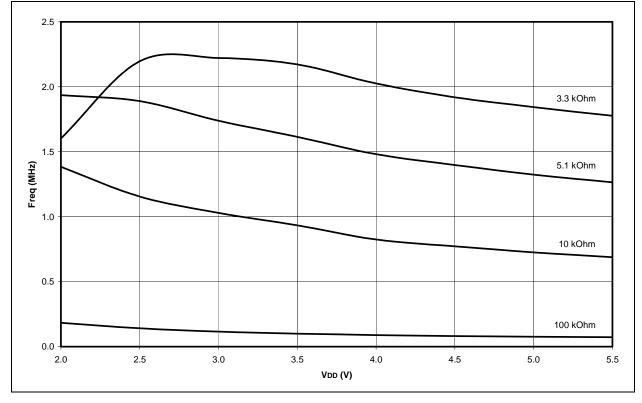
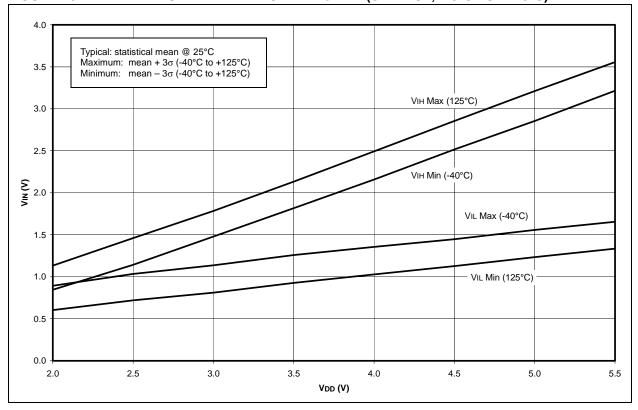
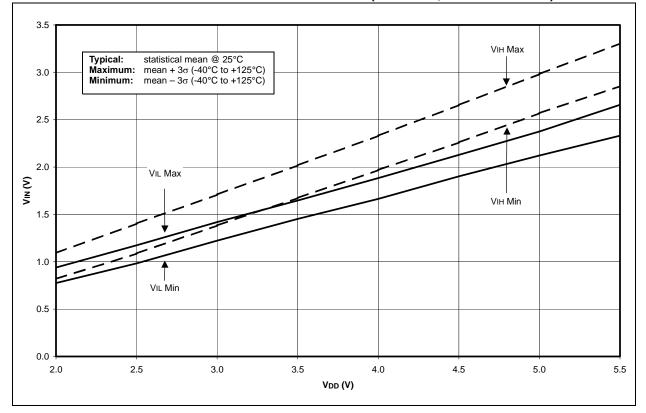

Param No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μs	
			400 kHz mode	0.6	_	μs	
			SSP Module	0.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μs	
			400 kHz mode	1.3	_	μs	
			SSP Module	0.5 TCY	_		
102	Tr	SDA and SCL Rise	100 kHz mode	_	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup	100 kHz mode	4.7	_	μs	Only relevant for Repeated Start
	Tin	Time	400 kHz mode	0.6	_	μs	condition
91	THD:STA	Start Condition Hold	100 kHz mode	4.0	_	μs	After this period, the first clock
		Time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100		ns	
92	Tsu:sto	Stop Condition Setup	100 kHz mode	4.7	_	μs	
		Time	400 kHz mode	0.6	_	μs	
109	ΤΑΑ	Output Valid from	100 kHz mode	_	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free before
			400 kHz mode	1.3	—	μs	a new transmission can start
	Св	Bus Capacitive Loading]	_	400	pF	

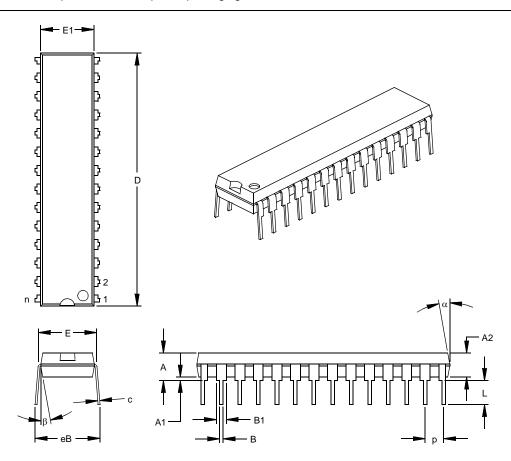
TABLE 17-11: I²C BUS DATA REQUIREMENTS


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode (400 kHz) I²C bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement that, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR MAX. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

FIGURE 18-8: AVERAGE Fosc vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, +25°C)


FIGURE 18-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS		
Dimer	Dimension Limits			MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

I

I/O Ports	
I2C Bus Data Requirements	
I ² C Bus Start/Stop Bits Requirements	
I ² C Mode	
Registers	80
I ² C Mode	80
ACK Pulse	
Acknowledge Sequence Timing	
Baud Rate Generator	
Bus Collision	
Repeated Start Condition	
Start Condition	
Stop Condition	
Clock Arbitration	
Effect of a Reset	105
General Call Address Support	94
Master Mode	
Operation	
Repeated Start Timing	100
Master Mode Reception	
Master Mode Start Condition	
Master Mode Transmission	
Multi-Master Communication, Bus Collision	
and Arbitration	105
Multi-Master Mode	
Read/Write Bit Information (R/W Bit)	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	
Reception	
Transmission	
Sleep Operation	
Stop Condition Timing	104
Stop Condition Timing ID Locations	104
	104 143, 157
ID Locations In-Circuit Debugger	143, 157 143, 157 143, 157
ID Locations In-Circuit Debugger Resources	143, 157 143, 157 143, 157 157
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP)	143, 157 143, 157 143, 157 157 143, 158
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF	
ID Locations In-Circuit Debugger	
ID Locations In-Circuit Debugger Resources In-Circuit Serial Programming (ICSP) INDF Register Indirect Addressing FSR Register Instruction Format Instruction Set ADDLW ADDWF	
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 16 169 169 161 161 161 161 161 161
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 16 169 169 161 161 161 161 161 161
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 16 169 169 161 161 161 161 161 161 161 161 162
ID Locations In-Circuit Debugger	104 143, 157 143, 157 143, 157 143, 158 19, 20, 31 16 169 169 161 161 161 161 161 161 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 161 162 162 162 162
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 161 162 162 162 162
ID Locations In-Circuit Debugger	104
ID Locations In-Circuit Debugger	104 104 143, 157 143, 157 143, 158 19, 20, 31 31 16 169 169 161 161 161 161 161 161 162 162 162 162 162 162 162
ID Locations In-Circuit Debugger	104

RRF	164
SLEEP	164
SUBLW	164
SUBWF	164
SWAPF	165
XORLW	165
XORWF	165
Summary Table	160
INT Interrupt (RB0/INT). See Interrupt Sources.	
INTCON Register	24
GIE Bit	
INTE Bit	
INTE Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit24	
TMROIE Bit	·
TMROIE Bit	
	24
Inter-Integrated Circuit. See I ² C.	407
Internal Reference Signal	137
Internal Sampling Switch (Rss) Impedance	
Interrupt Sources	153
Interrupt-on-Change (RB7:RB4)	
RB0/INT Pin, External9, 11,	
TMR0 Overflow	
USART Receive/Transmit Complete	111
Interrupts	
Bus Collision Interrupt	
Synchronous Serial Port Interrupt	
Interrupts, Context Saving During	154
Interrupts, Enable Bits	
Global Interrupt Enable (GIE Bit)24,	153
Interrupt-on-Change (RB7:RB4)	
Enable (RBIE Bit)24,	154
Peripheral Interrupt Enable (PEIE Bit)	24
RB0/INT Enable (INTE Bit)	24
TMR0 Overflow Enable (TMR0IE Bit)	24
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)24, 44,	154
RB0/INT Flag (INTF Bit)	24
TMR0 Overflow Flag (TMR0IF Bit)24,	
· · · · · · · · · · · · · · · · ·	

L

Loading of PC	30
Low-Voltage ICSP Programming	158
Low-Voltage In-Circuit Serial Programming	

Μ

Master Clear (MCLR)	8
MCLR Reset, Normal Operation147, 149, 1	150
MCLR Reset, Sleep147, 149, 1	150
Master Synchronous Serial Port (MSSP). See MSSP.	
MCLR 1	148
MCLR/VPP	10
Memory Organization	15
Data EEPROM Memory	
Data Memory	16
Flash Program Memory	
Program Memory	15
MPLAB ASM30 Assembler, Linker, Librarian 1	168
MPLAB ICD 2 In-Circuit Debugger 1	169
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator1	169
	-

© 2001-2013 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769621

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.