

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf873a-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP Pin#	PLCC Pin#	TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description		
OSC1/CLKI OSC1 CLKI	13	14	30	32	I	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).		
OSC2/CLKO OSC2 CLKO	14	15	31	33	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.		
MCLR/Vpp MCLR Vpp	1	2	18	18	I P	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input.		
RA0/AN0 RA0	2	3	19	19	I/O	TTL	PORTA is a bidirectional I/O port. Digital I/O.		
ANO RA1/AN1 RA1 AN1	3	4	20	20	 /O 	TTL	Analog input 0. Digital I/O. Analog input 1.		
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	5	21	21	I/O I I O	TTL	Digital I/O. Analog input 2. A/D reference voltage (Low) input. Comparator VREF output.		
RA3/AN3/VREF+ RA3 AN3 VREF+	5	6	22	22	I/O I I	TTL	Digital I/O. Analog input 3. A/D reference voltage (High) input.		
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	7	23	23	I/O I O	ST	Digital I/O – Open-drain when configured as output. Timer0 external clock input. Comparator 1 output.		
RA5/AN4/SS/C2OUT RA5 AN4 SS C2OUT	7	8	24	24	I/O I I O		Digital I/O. Analog input 4. SPI slave select input. Comparator 2 output.		

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input
 Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt-on-overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer.

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq.	C1	C2				
LP	32 kHz	33 pF	33 pF				
	100 kHz	15 pF	15 pF				
	200 kHz	15 pF	15 pF				
These va	lues are for o	design guida	nce only.				
	Crystals	Tested:					
32.768 kHz	Epson C-00	1R32.768K-A	± 20 PPM				
100 kHz Epson C-2 100.00 KC-P ± 20 PPM							
200 kHz STD XTL 200.000 kHz ± 20 PPM							

Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

6.6 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit, TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

9.4.4 CLOCK STRETCHING

Both 7 and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

9.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPCON register is automatically cleared, forcing the SCL output to be held low. The CKP bit being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 9-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

9.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address, with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching, on the basis of the state of the BF bit, only occurs during a data sequence, not an address sequence.

9.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 9-9).

Note 1:	If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
2:	The CKP bit can be set in software

regardless of the state of the BF bit.9.4.4.4Clock Stretching for 10-bit Slave

Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 9-11).

9.4.7 BAUD RATE GENERATOR

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 9-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 9-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 9-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 9-3: I²C CLOCK RATE W/BRG

Fcy	FcY*2	BRG Value	FscL (2 Rollovers of BRG)
10 MHz	20 MHz	19h	400 kHz ⁽¹⁾
10 MHz	20 MHz	20h	312.5 kHz
10 MHz	20 MHz	3Fh	100 kHz
4 MHz	8 MHz	0Ah	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Dh	308 kHz
4 MHz	8 MHz	28h	100 kHz
1 MHz	2 MHz	03h	333 kHz ⁽¹⁾
1 MHz	2 MHz	0Ah	100 kHz
1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16 (X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64 (X + 1))	Baud Rate = Fosc/(16 (X + 1))
1	(Synchronous) Baud Rate = Fosc/(4 (X + 1))	N/A

Legend: X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Value on all other Resets	
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000	-010	0000	-010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
99h	SPBRG	Baud Ra	Baud Rate Generator Register									0000	0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit, SREN (RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive

data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets			
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u			
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000			
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x			
1Ah	RCREG	USART Re	eceive Re	gister						0000 0000	0000 0000			
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000			
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010			
99h	SPBRG	Baud Rate	Generato	0000 0000	0000 0000									

TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception. Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
Ł	pit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	А	Α	А	Α	A	A	Α	А	Vdd	Vss	8/0
0001	А	А	А	Α	VREF+	А	А	А	AN3	Vss	7/1
0010	D	D	D	Α	А	А	А	А	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	А	А	AN3	Vss	4/1
0100	D	D	D	D	А	D	А	А	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	А	А	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	—	0/0
1000	А	А	А	Α	VREF+	VREF-	А	А	AN3	AN2	6/2
1001	D	D	А	А	А	А	А	А	Vdd	Vss	6/0
1010	D	D	А	Α	VREF+	А	А	А	AN3	Vss	5/1
1011	D	D	А	Α	VREF+	VREF-	А	А	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	А	А	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	А	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	А	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device Reset, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTIE	RBIE	TMR0IF	INTIF	RBIF	0000 000x	0000 000u
0Dh	PIR2	—	CMIF	_	_	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
8Dh	PIE2	_	CMIE			BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	Ou 0000
85h	TRISA	_	_	PORTA Data Direction Register					11 1111	11 1111	

TABLE 12-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾ REGISTER 14-1: R/P-1 U-0 **R/P-1** R/P-1 R/P-1 R/P-1 R/P-1 **R/P-1** U-0 U-0 **R/P-1** R/P-1 **R/P-1** R/P-1 CP DEBUG WRT1 WRT0 CPD PWRTEN WDTEN Fosc1 LVP BOREN Fosc0 bit 13 bit0 bit 13 CP: Flash Program Memory Code Protection bit 1 = Code protection off0 = All program memory code-protected bit 12 Unimplemented: Read as '1' DEBUG: In-Circuit Debugger Mode bit bit 11 1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger bit 10-9 WRT1:WRT0 Flash Program Memory Write Enable bits For PIC16F876A/877A: 11 = Write protection off; all program memory may be written to by EECON control 10 = 0000h to 00FFh write-protected; 0100h to 1FFFh may be written to by EECON control 01 = 0000h to 07FFh write-protected; 0800h to 1FFFh may be written to by EECON control 00 = 0000h to 0FFFh write-protected; 1000h to 1FFFh may be written to by EECON control For PIC16F873A/874A: 11 = Write protection off; all program memory may be written to by EECON control 10 = 0000h to 00FFh write-protected; 0100h to 0FFFh may be written to by EECON control 01 = 0000h to 03FFh write-protected; 0400h to 0FFFh may be written to by EECON control 00 = 0000h to 07FFh write-protected; 0800h to 0FFFh may be written to by EECON control bit 8 CPD: Data EEPROM Memory Code Protection bit 1 = Data EEPROM code protection off 0 = Data EEPROM code-protected bit 7 LVP: Low-Voltage (Single-Supply) In-Circuit Serial Programming Enable bit 1 = RB3/PGM pin has PGM function; low-voltage programming enabled 0 = RB3 is digital I/O, HV on MCLR must be used for programming bit 6 BOREN: Brown-out Reset Enable bit 1 = BOR enabled0 = BOR disabled Unimplemented: Read as '1' bit 5-4 **PWRTEN:** Power-up Timer Enable bit bit 3 1 = PWRT disabled 0 = PWRT enabled bit 2 WDTEN: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled Fosc1:Fosc0: Oscillator Selection bits bit 1-0 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator Legend:

R = Readable bit P = Programmable bit

U = Unimplemented bit, read as '0'

n = Value when device is unprogrammed

u = Unchanged from programmed state

Note 1: The erased (unprogrammed) value of the Configuration Word is 3FFFh.

14.3 Reset

The PIC16F87XA differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset (during normal operation)
- WDT Wake-up (during Sleep)
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 14-4. These bits are used in software to determine the nature of the Reset. See Table 14-6 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 14-4.

FIGURE 14-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

16.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

16.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PIC microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature onboard LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

16.22 PICkit[™] 1 Flash Starter Kit

A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.

16.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

16.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

TABLE 17-4:	CLKO AND I/O TIMING REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
10*	TosH2ckL	OSC1 ↑ to CLKO $↓$		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12*	TCKR	CLKO Rise Time		—	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		—	35	100	ns	(Note 1)
14*	TckL2IoV	CLKO ↓ to Port Out Valid		—	_	0.5 Tcy + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO \uparrow	Tosc + 200		—	ns	(Note 1)	
16*	TckH2iol	Port In Hold after CLKO \uparrow	0	_	—	ns	(Note 1)	
17*	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out Va	alid	—	100	255	ns	
18*	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port Input	Standard (F)	100	_	—	ns	
		Invalid (I/O in hold time)	Extended (LF)	200	—	—	ns	
19*	TIOV20sH	Port Input Valid to OSC1 \uparrow (I/O in	setup time)	0	_	—	ns	
20*	TIOR	Port Output Rise Time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
21*	TIOF	Port Output Fall Time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	_	145	ns	
22††*	TINP	INT pin High or Low Time		Тсү		_	ns	
23††*	TRBP	RB7:RB4 Change INT High or Lo	w Time	Тсү	_	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKO output is 4 x Tosc.

*

FIGURE 17-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 17-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү	_	—	ns	
71*	TscH	SCK Input High Time (Slave mode)		TCY + 20	_	_	ns	
72*	TscL	SCK Input Low Time (Slave mode)	TCY + 20	_	-	ns		
73*	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SCI	100	_	—	ns		
74*	TSCH2DIL, TSCL2DIL	Hold Time of SDI Data Input to SCK	100	_	—	ns		
75*	TDOR	SDO Data Output Rise Time	Standard(F) Extended(LF)	_	10 25	25 50	ns ns	
76*	TDOF	SDO Data Output Fall Time	•	_	10	25	ns	
77*	TssH2doZ	SS ↑ to SDO Output High-Impedanc	e	10	_	50	ns	
78*	TSCR	SCK Output Rise Time (Master mode)	Standard(F) Extended(LF)		10 25	25 50	ns ns	
79*	TscF	SCK Output Fall Time (Master mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	Standard(F) Extended(LF)	_		50 145	ns	
81*	TDOV2sCH, TDOV2sCL	SDO Data Output Setup to SCK Edg	e	Тсү		—	ns	
82*	TssL2doV	SDO Data Output Valid after $\overline{SS} \downarrow E_{0}$	dge	_	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 TCY + 40	—	—	ns	

TABLE 17-9: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-15: I²C BUS START/STOP BITS TIMING

NOTES:

FIGURE 18-8: AVERAGE Fosc vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, +25°C)

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*				
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44			
Pitch	р		.031			0.80			
Pins per Side	n1		11			11			
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20		
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05		
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15		
Foot Length	L	.018	.024	.030	0.45	0.60	0.75		
Footprint (Reference)	(F)		.039		1.00				
Foot Angle	¢	0	3.5	7	0	3.5	7		
Overall Width	E	.463	.472	.482	11.75	12.00	12.25		
Overall Length	D	.463	.472	.482	11.75	12.00	12.25		
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10		
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10		
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20		
Lead Width	В	.012	.015	.017	0.30	0.38	0.44		
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.026			0.65		
Overall Height	А	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	E	.299	.309	.319	7.59	7.85	8.10	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.396	.402	.407	10.06	10.20	10.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	φ	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

INDEX

Α

A/D	127
Acquisition Requirements	130
ADCON0 Register	127
ADCON1 Register	127
ADIF Bit	129
ADRESH Register	127
ADRESL Register	127
Analog Port Pins	49. 51
Associated Registers and Bits	133
Calculating Acquisition Time	130
Configuring Analog Port Pins	131
Configuring the Interrupt	129
Configuring the Module	129
Conversion Clock	131
Conversions	132
Converter Characteristics	194
Effects of a Reset	133
GO/DONE Bit	129
Internal Sampling Switch (Rss) Impedance	130
Operation During Sleep	133
Result Registers	132
Source Impedance	130
A/D Conversion Requirements	195
Absolute Maximum Ratings	173
ACKSTAT	101
ADCON0 Register	19
ADCON1 Register	
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART.	
ADRESH Register	19
ADRESL Register	20
Analog-to-Digital Converter. See A/D.	
Application Notes	
AN552 (Implementing Wake-up	
on Key Stroke)	
AN556 (Implementing a Table Read)	
Assembler	4.07
MPASM Assembler	167
Asynchronous Reception	440 400
Associated Registers	118, 120
Asynchronous Transmission	110
Associated Registers	110
В	
Banking, Data Memory	16 22
Baud Rate Generator	
Associated Registers	
BCLIF	

()	1
On-Chip Reset Circuit 14	7
PIC16F873A/PIC16F876A Architecture	6
PIC16F874A/PIC16F877A Architecture	7
PORTC	
Peripheral Output Override	
(RC2:0, RC7:5) Pins	6
Peripheral Output Override (RC4:3) Pins	6
PORTD (in I/O Port Mode) 4	8
PORTD and PORTE (Parallel Slave Port)	1
PORTE (In I/O Port Mode) 4	9
RA3 RA0 Pins 4	1
RA4/T0CKI Pin 4	2
RA5 Pin 4	2
RB3 RB0 Pins 4	4
RB7·RB4 Pins 4	.4
RC Oscillator Mode	- А
Recommended MCLR Circuit 14	8
Simplified DW/M Mode	7
	2
Timero Timoro	0
Timer2	0
	0
USART Receive	9
USART Transmit	5
Vatchdog Timer	Э
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	~
BRGH Bit	3
Brown-out Reset (BOR) 143, 147, 148, 149, 15	0
BOR Status (BOR Bit)	9
Bus Collision During a Repeated Start Condition	8
Bus Collision During a Start Condition 10	6
Bus Collision During a Stop Condition 10	9
Bus Collision Interrupt Flag bit, BCLIF 2	8
c	
C .	
C Compilers	
MPLAB C17 16	8
MPLAB C18	0
	8
MPLAB C30 16	8 8
MPLAB C30	8 8 3
MPLAB C30	83
MPLAB C30	83
MPLAB C30	8 3 8 9
MPLAB C30	8 3 3 8 9 5
MPLAB C30	8 3 8 9 5 5
MPLAB C30	8 8 3 8 9 5 5 5
MPLAB C30	883 895553
MPLAB C30	883 895553
MPLAB C30	883 895553 6
MPLAB C30	883 895553 66
MPLAB C30 16 Capture/Compare/PWM (CCP) 6 Associated Registers 6 Capture, Compare and Timer1 6 PWM and Timer2 6 Capture Mode 6 CCP1IF 6 Prescaler 6 CCP Timer Resources 6 Compare 5 Special Event Trigger Output of CCP1 6 Special Event Trigger Output of CCP2 6 Compare Mode 6	883 895553 666
MPLAB C30 16 Capture/Compare/PWM (CCP) 6 Associated Registers 6 Capture, Compare and Timer1 6 PWM and Timer2 6 Capture Mode 6 CCP1IF 6 Prescaler 6 CCP Timer Resources 6 Compare 5 Special Event Trigger Output of CCP1 6 Special Event Trigger Output of CCP2 6 Compare Mode 6 Special Event Trigger Output of CCP2 6 Compare Mode 6 Software Interrupt Mode 6	883 895553 6666

Interaction of Two CCP Modules (table) 63

PWM Mode 67

Duty Cycle67

Example Frequencies/Resolutions (table) 68

PWM Period67

A/D129Analog Input Model130, 139Baud Rate Generator97Capture Mode Operation65

Block Diagrams