

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf873at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 1 4 1	սու	2-3:	

PIC16F876A/877A REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)		Indirect addr.(*)	100h	Indirect addr.(*)	10
TMR0	00n 01h	OPTION REG	80h	TMR0	100h	OPTION_REG	18
PCL	01h 02h		81h	PCL	10111 102h		18
	02n 03h	PCL STATUS	82h	STATUS	10211 103h	PCL STATUS	18
STATUS	03n 04h		83h	FSR	103n 104h		18
FSR		FSR	84h	FSR	1041 105h	FSR	18
PORTA	05h 06h	TRISA	85h	DODTD	105h	TRISB	18
PORTB		TRISB	86h	PORTB	106n 107h	TRISB	18
	07h	TRISC TRISD ⁽¹⁾	87h		10711 108h		18
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		109h		18
PORTE ⁽¹⁾	09h		89h	PCLATH	1091 10Ah	PCLATH	18
PCLATH	0Ah	PCLATH	8Ah		10An 10Bh	INTCON	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bn 10Ch	EECON1	18
PIR1	0Ch	PIE1	8Ch	EEDATA			18
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18
T1CON	10h		90h		110h		19
TMR2	11h	SSPCON2	91h		111h		19
T2CON	12h	PR2	92h		112h		19
SSPBUF	13h	SSPADD	93h		113h		19
SSPCON	14h	SSPSTAT	94h		114h		19
CCPR1L	15h		95h		115h		19
CCPR1H	16h		96h	Conorol	116h	Conorol	19
CCP1CON	17h		97h	General Purpose	117h	General Purpose	19
RCSTA	18h	TXSTA	98h	Register	118h	Register	19
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	19
RCREG	1Ah		9Ah		11Ah		19
CCPR2L	1Bh		9Bh		11Bh		19
CCPR2H	1Ch	CMCON	9Ch		11Ch		19
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19
ADRESH	1Eh	ADRESL	9Eh		11Eh		19
ADCON0	1Fh	ADCON1	9Fh		11Fh		19
	20h		A0h		120h		1A
		General		General		General	
General		Purpose		Purpose		Purpose	
Purpose		Register		Register		Register	
Register		80 Bytes		80 Bytes		80 Bytes	
96 Bytes			EFh		16Fh		1E
		accesses	F0h	200005005	170h	accesses	1F
		70h-7Fh		accesses 70h-7Fh		70h - 7Fh	
_	7Fh		FFh		17Fh		1F
Bank 0		Bank 1		Bank 2		Bank 3	
Unimple	mented d	ata memory locati	ons. read	as '0'.			
	iysical reg	-					

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses cont	ents of FSR t	o address da	ata memory (not a physic	cal register)	0000 0000	31, 150
01h	TMR0	Timer0 Mo	ner0 Module Register								55, 150
02h ⁽³⁾	PCL	Program C	ounter (PC)	-	0000 0000	30, 150					
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22, 150
04h ⁽³⁾	FSR	Indirect Da	ta Memory	Address Po	inter					xxxx xxxx	31, 150
05h	PORTA	_		PORTA Da	ata Latch whe	en written: PO	ORTA pins w	hen read		0x 0000	43, 150
06h	PORTB	PORTB Da	ata Latch wh	nen written:	PORTB pins	when read				xxxx xxxx	45, 150
07h	PORTC	PORTC Da	ata Latch wh	nen written:	PORTC pins	when read				xxxx xxxx	47, 150
08h ⁽⁴⁾	PORTD	PORTD Da	ata Latch wh	nen written:	PORTD pins	when read				xxxx xxxx	48, 150
09h ⁽⁴⁾	PORTE	_		—	_	_	RE2	RE1	RE0	xxx	49, 150
0Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	Counter	0 0000	30, 150
0Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	26, 150
0Dh	PIR2	_	CMIF	—	EEIF	BCLIF	—	_	CCP2IF	-0-0 00	28, 150
0Eh	TMR1L	Holding Re	egister for th	e Least Sig	nificant Byte	of the 16-bit	TMR1 Regis	ter		xxxx xxxx	60, 150
0Fh	TMR1H	Holding Re	egister for th	e Most Sigr	nificant Byte c	of the 16-bit	TMR1 Regist	er		xxxx xxxx	60, 150
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	57, 150
11h	TMR2	Timer2 Mo	dule Regist	er						0000 0000	62, 150
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	61, 150
13h	SSPBUF	Synchrono	us Serial Po	ort Receive	Buffer/Transr	nit Register				xxxx xxxx	79, 150
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	82, 82, 150
15h	CCPR1L	Capture/Co	ompare/PW	M Register	1 (LSB)					xxxx xxxx	63, 150
16h	CCPR1H	Capture/Co	ompare/PW	M Register	1 (MSB)					xxxx xxxx	63, 150
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	64, 150
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	112, 150
19h	TXREG	USART Tra	ansmit Data	Register						0000 0000	118, 150
1Ah	RCREG	USART Re	SART Receive Data Register								118, 150
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)								63, 150
1Ch	CCPR2H	Capture/C	Capture/Compare/PWM Register 2 (MSB)							xxxx xxxx	63, 150
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	64, 150
1Eh	ADRESH	A/D Result	Register H		xxxx xxxx	133, 150					
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	0000 00-0	127, 150

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.

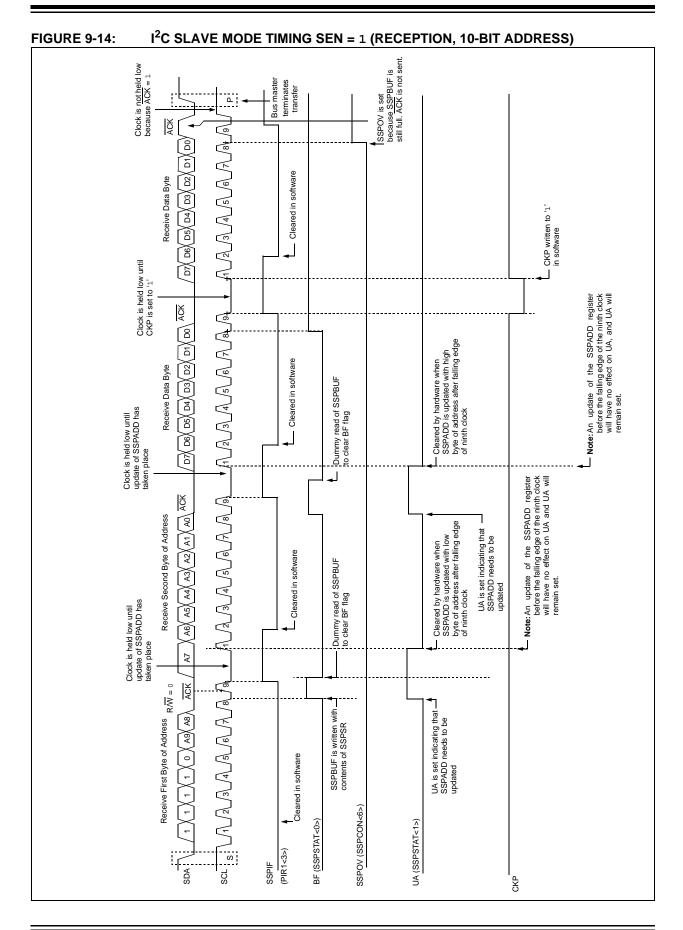
3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.

5: Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

	=			•						_			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	t 3 Bit 2 Bit 1 Bit 0			Value POR,		all o	ie on other sets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	—	_	—	_	—	—	CCP2IE		0		0
87h	TRISC	PORTC D	Data Directio	n Register						1111	1111	1111	1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000	0000	0000	0000
92h	PR2	Timer2 M	odule's Peri	od Register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/C	Compare/PV	VM Registe	r 1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/PV	VM Registe	r 1 (MSB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)									uuuu	uuuu
1Ch	CCPR2H	Capture/C	Capture/Compare/PWM Register 2 (MSB)							xxxx	xxxx	uuuu	uuuu
1Dh	CCP2CON	_	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

ER 9-2:	SSPCON	SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0					
	bit 7 bit 0												
bit 7		/rite Collision	-										
		SSPBUF reg ed in software ollision		en while it i	s still transm	nitting the p	revious wor	d. (Must be					
bit 6	SSPOV: R	Receive Over	flow Indicato	or bit									
	<u>SPI Slave</u>	mode:											
	of ove must cleare	v byte is rece erflow, the da read the SSI ed in software	ata in SSPSF PBUF, even	R is lost. Ov	verflow can o	only occur in	Slave mod	e. The user					
	0 = No ov												
	Note:				t is not set to the SSPE			eption (and					
bit 5	SSPEN: S	Synchronous	Serial Port E	Enable bit									
		es serial port les serial por					ial port pins						
	Note:	When enal	oled, these p	oins must be	e properly co	nfigured as	input or out	put.					
bit 4	CKP: Cloo	ck Polarity Se	elect bit										
		ate for clock ate for clock	•										
bit 3-0	SSPM3:S	SPM0: Sync	hronous Ser	ial Port Mod	de Select bits	5							
	0100 = SF 0011 = SF 0010 = SF 0001 = SF	PI Slave mod PI Slave mod PI Master mod PI Master mod PI Master mod	le, clock = S ode, clock = ode, clock = ode, clock =	CK pin. SS TMR2 outpu Fosc/64 Fosc/16	pin control e		can be usec	l as I/O pin.					
		PI Master mo											
	Note:	Bit combin I ² C mode o		becifically lis	sted here are	either rese	rved or imp	lemented in					
	I a manual.												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)

BAUD	F	osc = 20 M	IHz	F	osc = 16 N	IHz	Fosc = 10 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	-	-	-	
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129	
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64	
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15	
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7	
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4	
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4	
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2	
HIGH	1.221	-	255	0.977	-	255	0.610	-	255	
LOW	312.500	-	0	250.000	-	0	156.250	-	0	

TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

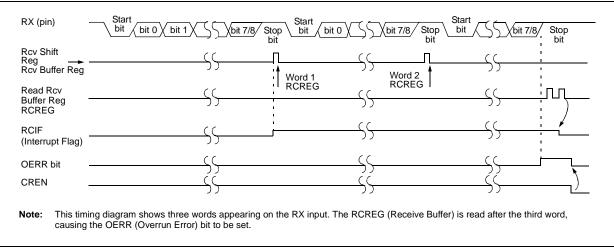

BAUD		Fosc = 4 M	Hz	Fosc = 3.6864 MHz				
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)		
0.3	0.300	0	207	0.3	0	191		
1.2	1.202	0.17	51	1.2	0	47		
2.4	2.404	0.17	25	2.4	0	23		
9.6	8.929	6.99	6	9.6	0	5		
19.2	20.833	8.51	2	19.2	0	2		
28.8	31.250	8.51	1	28.8	0	1		
33.6	-	-	-	-	-	-		
57.6	62.500	8.51	0	57.6	0	0		
HIGH	0.244	-	255	0.225	-	255		
LOW	62.500	-	0	57.6	-	0		

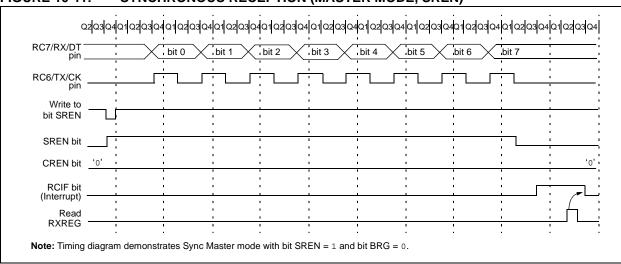
TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	F	osc = 20 M	Hz	F	osc = 16 M	Hz	F	osc = 10 M	Hz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	-	255	3.906	-	255	2.441	-	255
LOW	1250.000	-	0	1000.000		0	625.000	-	0

BAUD	F	osc = 4 MH	łz	Fos	c = 3.6864	MHz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-
1.2	1.202	0.17	207	1.2	0	191
2.4	2.404	0.17	103	2.4	0	95
9.6	9.615	0.16	25	9.6	0	23
19.2	19.231	0.16	12	19.2	0	11
28.8	27.798	3.55	8	28.8	0	7
33.6	35.714	6.29	6	32.9	2.04	6
57.6	62.500	8.51	3	57.6	0	3
HIGH	0.977	-	255	0.9	-	255
LOW	250.000	-	0	230.4	-	0

When setting up an Asynchronous Reception, follow these steps:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.


- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	x00- 0000	0000 -00x
1Ah	RCREG	USART R	eceive Reg	jister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000

TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 10-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in Sleep mode. Slave mode is entered by clearing bit, CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

bit 0

13.0 COMPARATOR VOLTAGE REFERENCE MODULE

The Comparator Voltage Reference Generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 13-1 lists the bit functions of the CVRCON register.

As shown in Figure 13-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC - VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user if a very highimpedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

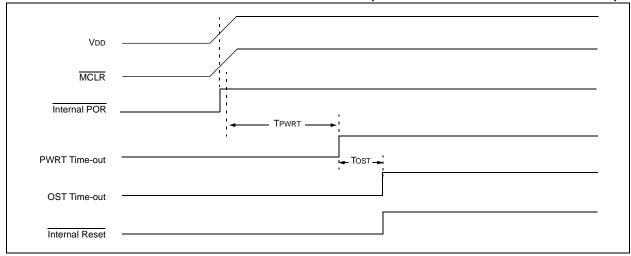
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0
	bit 7							bit (
bit 7	CVREN: C	omparator V	oltage Refe	rence Enabl	e bit			
	1 = CVREF	circuit powe	ered on					

REGISTER 13-1: CVRCON CONTROL REGISTER (ADDRESS 9Dh)

	CVREN. Comparator voltage Reference Enable bit
	1 = CVREF circuit powered on
	0 = CVREF circuit powered down
hit C	· · · · · · · · · · · · · · · · · · ·
bit 6	CVROE: Comparator VREF Output Enable bit
	1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin
	0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	1 = 0 to 0.75 CVRSRC, with CVRSRC/24 step size
	0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
L:L 4	
bit 4	Unimplemented: Read as '0'
bit 3-0	CVR3:CVR0: Comparator VREF Value Selection bits $0 \le VR3:VR0 \le 15$
	When $CVRR = 1$:
	$\overline{\text{CVREF}} = (\text{VR} < 3:0 > / 24) \bullet (\text{CVRSRC})$
	When CVRR = 0:
	$\overline{\text{CVREF}} = 1/4 \bullet (\text{CVRSRC}) + (\text{VR3:VR0/ 32}) \bullet (\text{CVRSRC})$

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 14-0:	ABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)							
Register		Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt		
TRISD	73A	74A	76A	77A	1111 1111	1111 1111	uuuu uuuu	
TRISE	73A	74A	76A	77A	0000 -111	0000 -111	uuuu -uuu	
PIE1	73A	74A	76A	77A	r000 0000	r000 0000	ruuu uuuu	
FICI	73A	74A	76A	77A	0000 0000	0000 0000	սսսս սսսս	
PIE2	73A	74A	76A	77A	-0-0 00	-0-0 00	-u-u uu	
PCON	73A	74A	76A	77A	dd	uu	uu	
SSPCON2	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu	
PR2	73A	74A	76A	77A	1111 1111	1111 1111	1111 1111	
SSPADD	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	73A	74A	76A	77A	00 0000	00 0000	uu uuuu	
TXSTA	73A	74A	76A	77A	0000 -010	0000 -010	uuuu -uuu	
SPBRG	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu	
CMCON	73A	974	76A	77A	0000 0111	0000 0111	uuuu uuuu	
CVRCON	73A	74A	76A	77A	000- 0000	000- 0000	uuu- uuuu	
ADRESL	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu	
ADCON1	73A	74A	76A	77A	00 0000	00 0000	uu uuuu	
EEDATA	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
EEADR	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
EEDATH	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu	
EEADRH	73A	74A	76A	77A	xxxx xxxx	սսսս սսսս	uuuu uuuu	
EECON1	73A	74A	76A	77A	x x000	u u000	u uuuu	
EECON2	73A	74A	76A	77A				


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-5 for Reset value for specific condition.

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)

© 2001-2013 Microchip Technology Inc.

15.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode** which specifies the instruction type and one or more **operands** which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 15-1, while the various opcode fields are summarized in Table 15-1.

Table 15-2 lists the instructions recognized by the MPASM[™] Assembler. A complete description of each instruction is also available in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

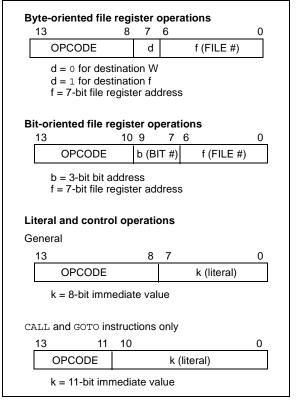
For **bit-oriented** instructions, 'b' represents a bit field designator which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future PIC16F87XA products, do not use
	the OPTION and TRIS instructions.

All instruction examples use the format ' $0 \times hh$ ' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


15.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
ТО	Time-out bit
PD	Power-down bit

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

16.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ[®]
 - PICDEM MSC
 - microID[®]
 - CAN
 - PowerSmart[®]
 - Analog

16.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

16.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

17.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	-65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	/ to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VOH) x IO	H} + ∑(VOI x IOL)
2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may	cause latch-up.

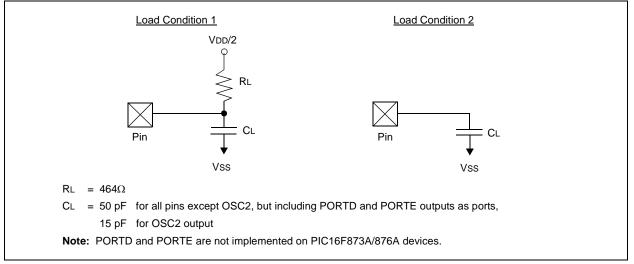
- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873A/876A devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

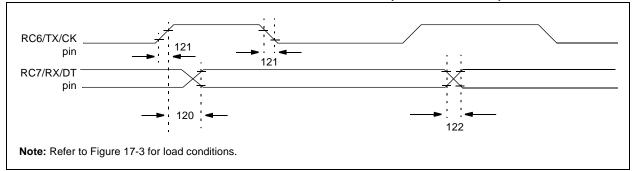
17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended) PIC16LF873A/874A/876A/877A (Industrial)

PIC16LF873A/874A/876A/877A (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC16F873A/874A/876A/877A (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No. Symbol Characteristic/ Device			Min	Тур†	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		16LF87XA	2.0	—	5.5	V	All configurations (DC to 10 MHz)		
D001		16F87XA	4.0		5.5	V	All configurations		
D001A			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See Section 14.5 "Power-on Reset (POR)" for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 14.5 "Power-on Reset (POR)" for details		
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V	BODEN bit in configuration word enabled		

Legend: Rows with standard voltage device data only are shaded for improved readability.


- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
 - MCLR = VDD; WDT enabled/disabled as specified.
 - **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.
 - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
 - **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

17.3 Timing Parameter Symbology


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
CC	CCP1	OSC	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I	² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	Data input hold	STO	Stop condition
STA	Start condition		

FIGURE 17-3: LOAD CONDITIONS

FIGURE 17-17: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

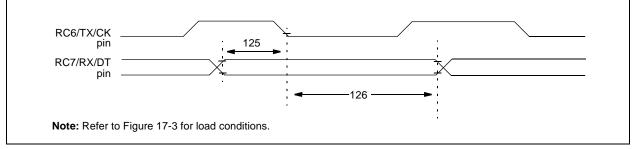


TABLE 17-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic			Тур†	Max	Units	Conditions
120	TCKH2DTV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock High to Data Out Valid	Standard(F)	_	_	80	ns	
			Extended(LF)	—		100	ns	
121	TCKRF	Clock Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
		(Master mode)	Extended(LF)	—	—	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	Standard(F)	—	—	45	ns	
			Extended(LF)	_	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-18: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

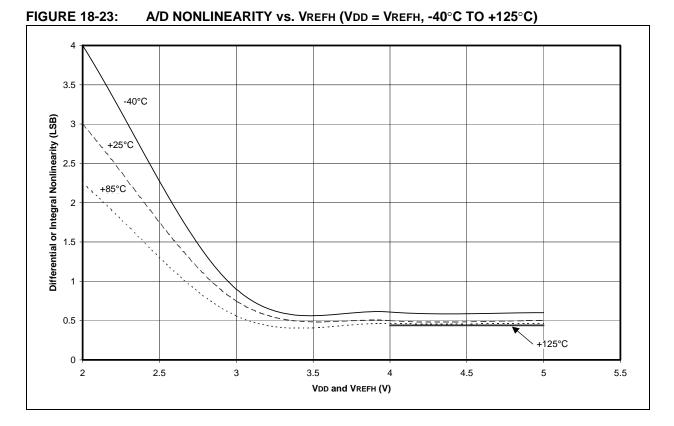
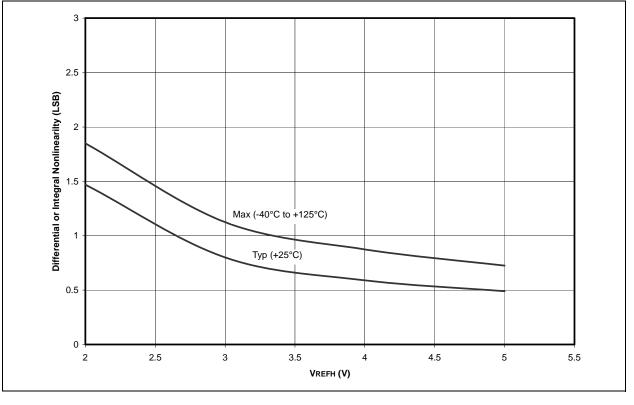
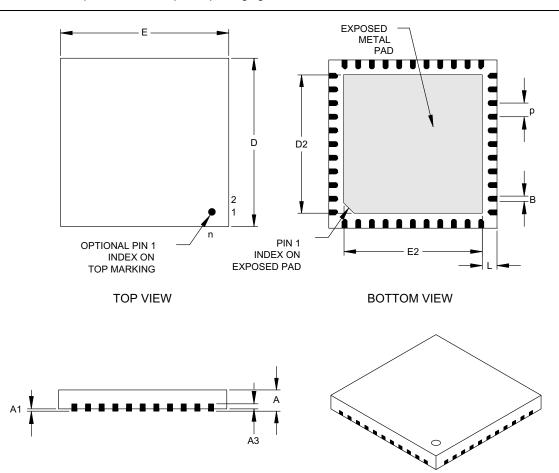


TABLE 17-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS


Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Setup before $CK \downarrow$ (DT setup time)	15			ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15			ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16F87XA



44-Lead Plastic Quad Flat No Lead Package (ML) 8x8 mm Body (QFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES		MILLIMETERS*			
	Dimension Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р	.026 BSC		0.65 BSC			
Overall Height	A	.031	.035	.039	0.80	0.90	1.00
Standoff	A1	.000	.001	.002	0	0.02	0.05
Base Thickness	A3	.010 REF		0.25 REF			
Overall Width	E	.315 BSC		8.00 BSC			
Exposed Pad Width	E2	.262	.268	.274	6.65	6.80	6.95
Overall Length	D	.315 BSC		8.00 BSC			
Exposed Pad Length	D2	.262	.268	.274	6.65	6.80	6.95
Lead Width	В	.012	.013	.013	0.30	0.33	0.35
Lead Length	L	.014	.016	.018	0.35	0.40	0.45

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: M0-220

Drawing No. C04-103

W

Wake-up from Sleep 143	, 156
Interrupts149	, 150
MCLR Reset	
WDT Reset	. 150
Wake-up Using Interrupts	. 156
Watchdog Timer	
Register Summary	. 155
Watchdog Timer (WDT) 143	, 155
Enable (WDTE Bit)	. 155
Postscaler. See Postscaler, WDT.	
Programming Considerations	. 155
RC Oscillator	. 155
Time-out Period	. 155
WDT Reset, Normal Operation 147, 149	, 150
WDT Reset, Sleep 147, 149	, 150
WCOL	, 104
WCOL Status Flag	99
WWW, On-Line Support	4

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
From	: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Appli	ication (optional):						
Wou	ld you like a reply?YN						
Devi	ce: PIC16F87XA	Literature Number: DS39582C					
Ques	stions:						
1. What are the best features of this document?							
-							
2. H	How does this document meet your hardware and software	re development needs?					
_							
- 3. E	B. Do you find the organization of this document easy to follow? If not, why?						
_							
-							
4. V	What additions to the document do you think would enhar	nce the structure and subject?					
-							
5. V	. What deletions from the document could be made without affecting the overall usefulness?						
6. l	s there any incorrect or misleading information (what and	where)?					
-							
7. H	How would you improve this document?						
-							

DS39582C-page 230