

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

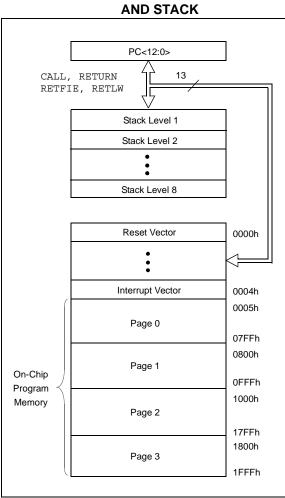
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


PIC16F87XA

NOTES:

2.0 MEMORY ORGANIZATION

There are three memory blocks in each of the PIC16F87XA devices. The program memory and data memory have separate buses so that concurrent access can occur and is detailed in this section. The EEPROM data memory block is detailed in **Section 3.0 "Data EEPROM and Flash Program Memory"**.

Additional information on device memory may be found in the PIC[®] Mid-Range MCU Family Reference Manual (DS33023).

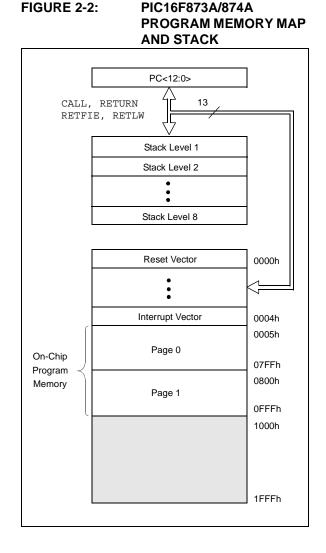


FIGURE 2-1: PIC16F876A/877A PROGRAM MEMORY MAP AND STACK

2.1 Program Memory Organization

The PIC16F87XA devices have a 13-bit program counter capable of addressing an 8K word x 14 bit program memory space. The PIC16F876A/877A devices have 8K words x 14 bits of Flash program memory, while PIC16F873A/874A devices have 4K words x 14 bits. Accessing a location above the physically implemented address will cause a wraparound.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (Status<6>) and RP0 (Status<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	The EEPROM data memory description can
	be found in Section 3.0 "Data EEPROM
	and Flash Program Memory" of this data
	sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register (FSR).

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-/CVREF	bit 2	TTL	Input/output or analog input or VREF- or CVREF.
RA3/AN3/VREF+	bit 3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI/C1OUT	bit 4	ST	Input/output or external clock input for Timer0 or comparator output. Output is open-drain type.
RA5/AN4/SS/C2OUT	bit 5	TTL	Input/output or analog input or slave select input for synchronous serial port or comparator output.

TABLE 4-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA D	ata Direct	ion Regist	er			11 1111	11 1111
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
9Dh	CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
9Fh	ADCON1	ADFM	ADCS2		_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes, where PCFG3:PCFG0 = 0100, 0101, 011x, 1101, 1110, 1111.

4.5 PORTE and TRISE Register

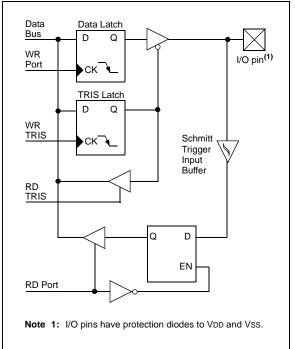
Note:	PORTE and TRISE are not implemented
	on the 28-pin devices.

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7) which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

The PORTE pins become the I/O control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make certain that the TRISE<2:0> bits are set and that the pins are configured as digital inputs. Also, ensure that ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

Register 4-1 shows the TRISE register which also controls the Parallel Slave Port operation.

PORTE pins are multiplexed with analog inputs. When selected for analog input, these pins will read as '0's.


TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

TABLE 4-9: PORTE FUNCTIONS

FIGURE 4-9:

PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit 0	ST/TTL ⁽¹⁾	 I/O port pin or read control input in Parallel Slave Port mode or analog input: RD 1 = Idle 0 = Read operation. Contents of PORTD register are output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit 1	ST/TTL ⁽¹⁾	 I/O port pin or write control input in Parallel Slave Port mode or analog input: WR 1 = Idle 0 = Write operation. Value of PORTD I/O pins is latched into PORTD register (if chip selected).
RE2/CS/AN7	bit 2	ST/TTL ⁽¹⁾	 I/O port pin or chip select control input in Parallel Slave Port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

PIC16F87XA

REGISTER 8-1:	CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS 17h/1Dh)									
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0		
	bit 7							bit 0		
bit 7-6	Unimplem	ented: Rea	d as '0'							
bit 5-4	CCPxX:CC	PxY: PWM	Least Sign	ificant bits						
	<u>Capture mo</u> Unused.	ode:								
	<u>Compare n</u> Unused.	<u>node:</u>								
	<u>PWM mode</u> These bits		LSbs of the	e PWM duty	cycle. The eig	jht MSbs ar	e found in C	CPRxL.		
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits						
	0100 = Ca 0101 = Ca 0110 = Ca 0111 = Ca 1000 = Co 1001 = Co 1010 = Co una 1011 = Co res ena 11xx = PW	pture mode pture mode pture mode mpare mode mpare mode mpare mode affected) mpare mode ets TMR1; abled)	, every fallir , every risin , every 4th r , every 16th e, set outpu e, clear outp e, generate e, trigger sp	ng edge g edge rising edge t on match (out on match software int ecial event (f	ets CCPx mod CCPxIF bit is a (CCPxIF bit i errupt on mat CCPxIF bit is s and starts an A	set) is set) ch (CCPxIF set, CCPx p	in is unaffec	ted); CCP1		
	Legend:									
	R = Reada	ble bit		Vritable bit	•		oit, read as	ʻ0'		
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	nknown		

9.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

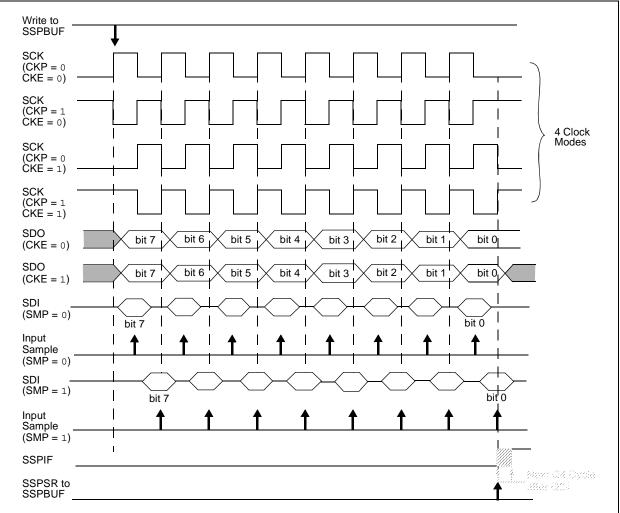
During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 9-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE) (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
	SMP	CKE	D/A	Р	S	R/W	UA	BF		
	bit 7							bit 0		
bit 7	SMP: Sam	ple bit								
	SPI Master									
		ata sampled								
		0 = Input data sampled at middle of data output time								
		<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode.								
bit 6		CKE: SPI Clock Select bit								
	1 = Transm	nit occurs on	transition fr	om active to	ldle clock s	state				
	0 = Transm	nit occurs on	transition fr	om Idle to a	ctive clock s	state				
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).			
bit 5	D/A: Data/	Address bit								
	Used in I ² C	c mode only.								
bit 4	P: Stop bit									
	Used in I ² C	mode only.	This bit is cle	ared when t	he MSSP me	odule is disa	bled, SSPEI	N is cleared.		
bit 3	S: Start bit									
	Used in I ² C	c mode only.								
bit 2	R/W: Read	I/Write bit inf	ormation							
	Used in I ² C	c mode only.								
bit 1	UA: Update	e Address b	it							
	Used in I ² C	c mode only.								
bit 0	BF: Buffer	Full Status b	oit (Receive	mode only)						
	1 = Receive complete, SSPBUF is full									
	0 = Receiv	e not comple	ete, SSPBU	F is empty						
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is ι	Inknown		

9.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 9-2) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON<4>). This then, would give waveforms for SPI communication as shown in Figure 9-3, Figure 9-5 and Figure 9-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

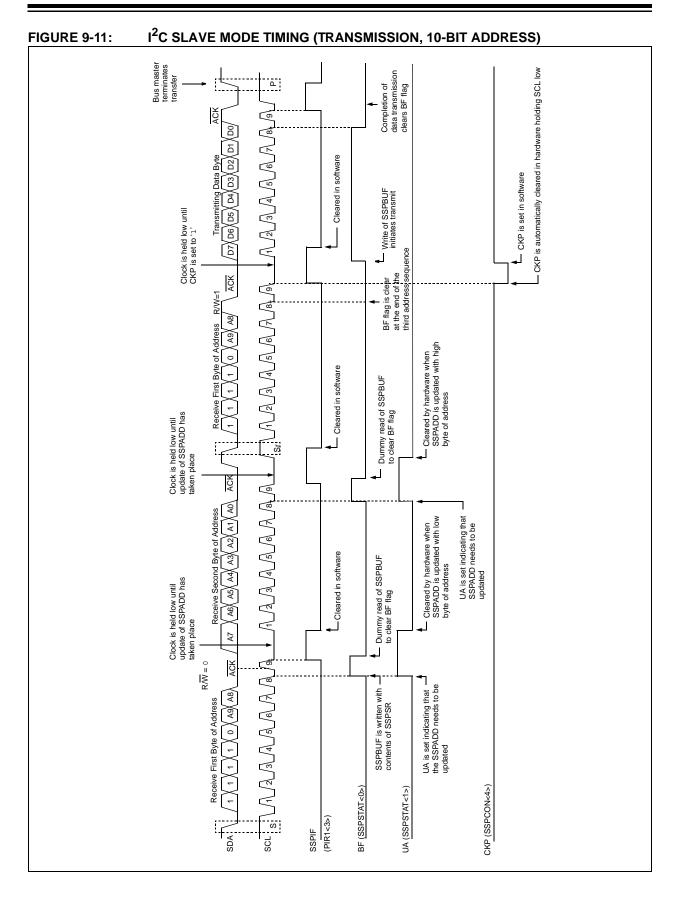

Figure 9-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 9-3: SPI MODE WAVEFORM (MASTER MODE)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
	bit 7	1		I		I	I	bit 0	
bit 7		eneral Call En		-	-				
		e interrupt whe ral call address		call address	(0000h) is	received in	the SSPSF	2	
bit 6	ACKSTA	f: Acknowledg	e Status bit	(Master Tran	smit mode o	only)			
		wledge was n wledge was re							
bit 5	ACKDT: A	Acknowledge [Data bit (Mas	ster Receive	mode only)				
	1 = Not A 0 = Ackno	cknowledge wledge							
	Note:	Value that w the end of a		itted when th	e user initia	tes an Ackr	nowledge se	equence at	
bit 4	ACKEN:	Acknowledge	Sequence E	nable bit (Ma	ster Receiv	e mode on	ly)		
	 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence Idle 								
bit 3	RCEN: R	eceive Enable	bit (Master i	mode only)					
	 1 = Enables Receive mode for I²C 0 = Receive Idle 								
bit 2	PEN: Stop Condition Enable bit (Master mode only)								
	 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle 						re.		
bit 1	RSEN: Repeated Start Condition Enabled bit (Master mode only)								
	 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 								
bit 0	SEN: Star	t Condition En	abled/Streto	h Enabled bi	t				
In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by harc 0 = Start condition Idle					by hardwa	re.			
	In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is enabled for slave transmit only (PIC16F87X compatibility)								
	Legend:								
	R = Read			itable bit	-		bit, read as		
	- n = Valu	e at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown	

Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

10.2 USART Asynchronous Mode

In this mode, the USART uses standard Non-Returnto-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated, 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

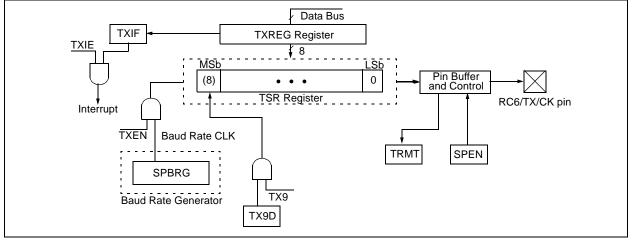
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit, TXIF (PIR1<4>), is set. This interrupt can be


enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit, TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the Baud Rate Generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to high-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

XORLW	Exclusive OR Literal with W				
Syntax:	[label] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.				

16.9 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

16.10 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PIC microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory, and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

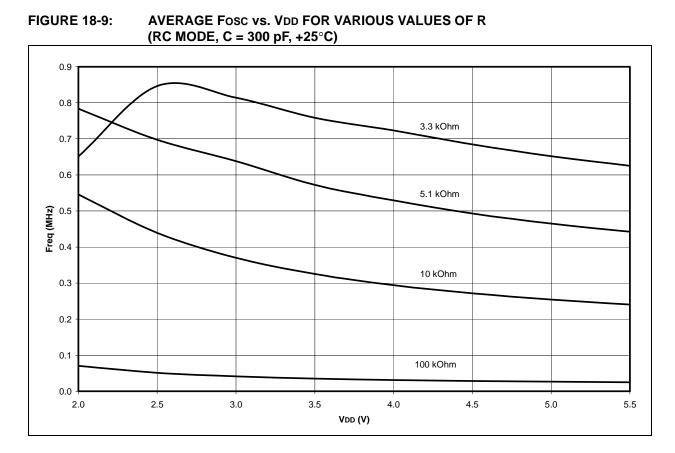
16.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC microcontrollers. The MPLAB ICD 2 utilizes the incircuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost effective in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, singlestepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

16.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify, and program PIC devices without a PC connection. It can also set code protection in this mode.

16.13 PICSTART Plus Development Programmer


The PICSTART Plus development programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PIC devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

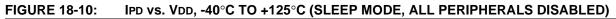
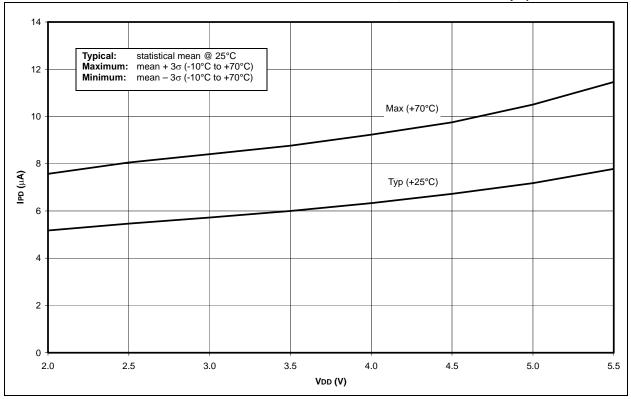
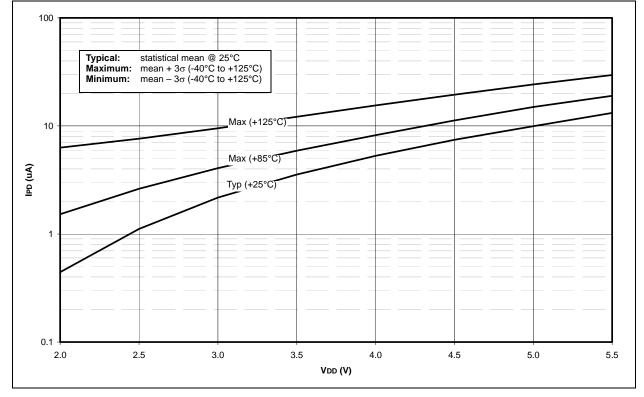

Param No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μs	
			400 kHz mode	0.6	_	μs	
			SSP Module	0.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μs	
			400 kHz mode	1.3	_	μs	
			SSP Module	0.5 TCY	_		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
	Time		400 kHz mode	20 + 0.1 Св	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	_	μs	Only relevant for Repeated Start
			400 kHz mode	0.6	_	μs	condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μs	After this period, the first clock
			400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100		ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	_	μs	
			400 kHz mode	0.6	_	μs	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	_	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free before
			400 kHz mode	1.3	_	μs	a new transmission can start
	Св	Bus Capacitive Loading	_	400	pF		

TABLE 17-11: I²C BUS DATA REQUIREMENTS

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode (400 kHz) I²C bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement that, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR MAX. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.




100 Max (125°C) 10 Max (85°C) 1 IPD (NA) 0.1 0.01 Тур (25°С) Typical: statistical mean @ 25°C Maximum: mean + 3σ (-40°C to +125°C) Minimum: mean - 3σ (-40°C to +125°C) 0.001 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V)

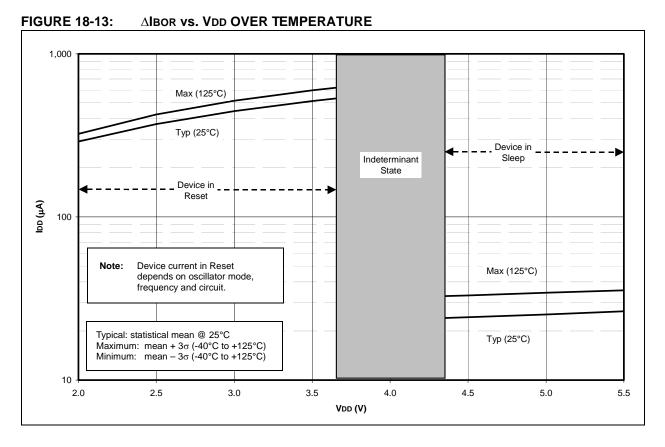
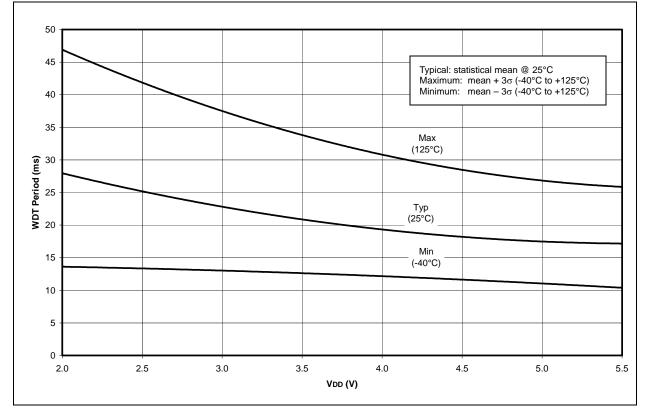
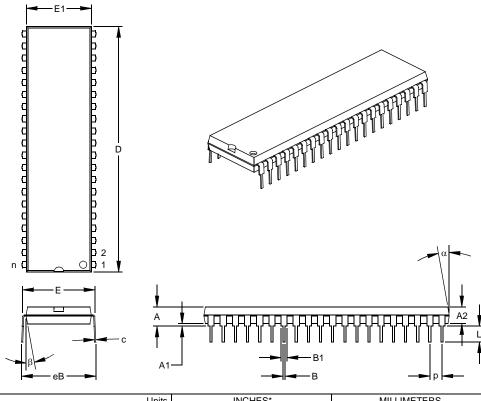

PIC16F87XA

FIGURE 18-11: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)





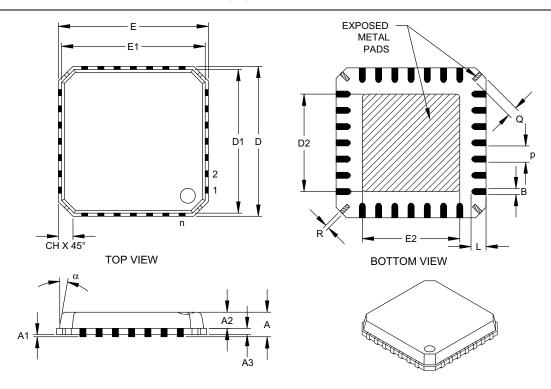
40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*		MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body, Punch Singulated (QFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α		.033	.039		0.85	1.00
Molded Package Thickness	A2		.026	.031		0.65	0.80
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3		.008 REF			0.20 REF	
Overall Width	E		.236 BSC			6.00 BSC	
Molded Package Width	E1		.226 BSC			5.75 BSC	
Exposed Pad Width	E2	.140	.146	.152	3.55	3.70	3.85
Overall Length	D		.236 BSC			6.00 BSC	
Molded Package Length	D1		.226 BSC			5.75 BSC	
Exposed Pad Length	D2	.140	.146	.152	3.55	3.70	3.85
Lead Width	В	.009	.011	.014	0.23	0.28	0.35
Lead Length	L	.020	.024	.030	0.50	0.60	0.75
Tie Bar Width	R	.005	.007	.010	0.13	0.17	0.23
Tie Bar Length	Q	.012	.016	.026	0.30	0.40	0.65
Chamfer	СН	.009	.017	.024	0.24	0.42	0.60
Mold Draft Angle Top	α			12°			12°

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: mMO-220

Drawing No. C04-114

INDEX

Α

A/D	127
Acquisition Requirements	
ADCON0 Register	
ADCON1 Register	
ADIF Bit	
ADRESH Register	
ADRESL Register	
Analog Port Pins	
Associated Registers and Bits	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Interrupt	
Configuring the Module	
Conversion Clock	
Conversions	
Converter Characteristics	194
Effects of a Reset	
GO/DONE Bit	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep	
Result Registers	
Source Impedance	
A/D Conversion Requirements	
Absolute Maximum Ratings	
ACKSTAT	
ADCON0 Register	
ADCON1 Register	
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART.	
ADRESH Register	
ADRESL Register	
Analog-to-Digital Converter. See A/D.	
Application Notes	
AN552 (Implementing Wake-up	
on Key Stroke)	44
AN556 (Implementing a Table Read)	
Assembler	
MPASM Assembler	167
Asynchronous Reception	
Associated Registers	18, 120
Asynchronous Transmission	
Associated Registers	116
В	
-	10.00
Banking, Data Memory	
Baud Rate Generator	
Associated Registers	
BCLIF	

MSSP (SPI Mode)	
On-Chip Reset Circuit 1	47
PIC16F873A/PIC16F876A Architecture	. 6
PIC16F874A/PIC16F877A Architecture	. 7
PORTC	
Peripheral Output Override	
(RC2:0, RC7:5) Pins	46
Peripheral Output Override (RC4:3) Pins	46
PORTD (in I/O Port Mode)	
PORTD and PORTE (Parallel Slave Port)	
PORTE (In I/O Port Mode)	
RA3:RA0 Pins	
RA4/T0CKI Pin	
RA5 Pin	
RB3:RB0 Pins	
RB7:RB4 Pins	
RC Oscillator Mode	
Recommended MCLR Circuit	10
Simplified PWM Mode	
Timer0/WDT Prescaler	
Timero/WDT Prescaler	
Timer2	
USART Receive	
USART Transmit	
Watchdog Timer	55
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit 1	
Brown-out Reset (BOR) 143, 147, 148, 149, 1	
BOR Status (BOR Bit)	
Bus Collision During a Repeated Start Condition 1	
Bus Collision During a Start Condition 1	
Bus Collision During a Stop Condition 1	
Bus Collision Interrupt Flag bit, BCLIF	28
С	
-	
C Compilers	
MPLAB C17 1	
MPLAB C18 1	
MPLAB C30 1	
Capture/Compare/PWM (CCP)	63
Associated Registers	
Capture, Compare and Timer1	
PWM and Timer2	69
Capture Mode	65
CCP1IF	65
Prescaler	65
CCP Timer Resources	63
Compare	
Special Event Trigger Output of CCP1	66
Special Event Trigger Output of CCP2	
Compare Mode	
Software Interrupt Mode	
Special Event Trigger	

Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Compare Mode Operation	
Crystal/Ceramic Resonator Operation	
(HS, XT or LP Osc Configuration) .	
External Clock Input Operation	
(HS, XT or LP Osc Configuration).	

BF101

A/D129Analog Input Model130, 139Baud Rate Generator97Capture Mode Operation65

Block Diagrams