

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874at-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP Pin#	PLCC Pin#	TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
							PORTB is a bidirectional I/O port. PORTB can be
							software programmed for internal weak pull-up on all
							inputs.
RB0/INT	33	36	8	9		TTL/ST ⁽¹⁾	
RB0					I/O		Digital I/O.
INT					I		External interrupt.
RB1	34	37	9	10	I/O	TTL	Digital I/O.
RB2	35	38	10	11	I/O	TTL	Digital I/O.
RB3/PGM	36	39	11	12		TTL	
RB3					I/O		Digital I/O.
PGM					I		Low-voltage ICSP programming enable pin.
RB4	37	41	14	14	I/O	TTL	Digital I/O.
RB5	38	42	15	15	I/O	TTL	Digital I/O.
RB6/PGC	39	43	16	16		TTL/ST ⁽²⁾	
RB6					I/O		Digital I/O.
PGC					I		In-circuit debugger and ICSP programming clock.
RB7/PGD	40	44	17	17		TTL/ST ⁽²⁾	
RB7					I/O		Digital I/O.
PGD					I/O		In-circuit debugger and ICSP programming data.
Legend: I = input O = output I/O = input/output P = power							

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)

Legend: I = input O = output — = Not used TTL = TTL input

ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

NOTES:

3.5 Reading Flash Program Memory

To read a program memory location, the user must write two bytes of the address to the EEADR and EEADRH registers, set the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). Once the read control bit is set, the program memory Flash controller will use the next two instruction cycles to read the data. This causes these two instructions immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle in the EEDATA and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDATA and EEDATH registers will hold this value until another read or until it is written to by the user (during a write operation).

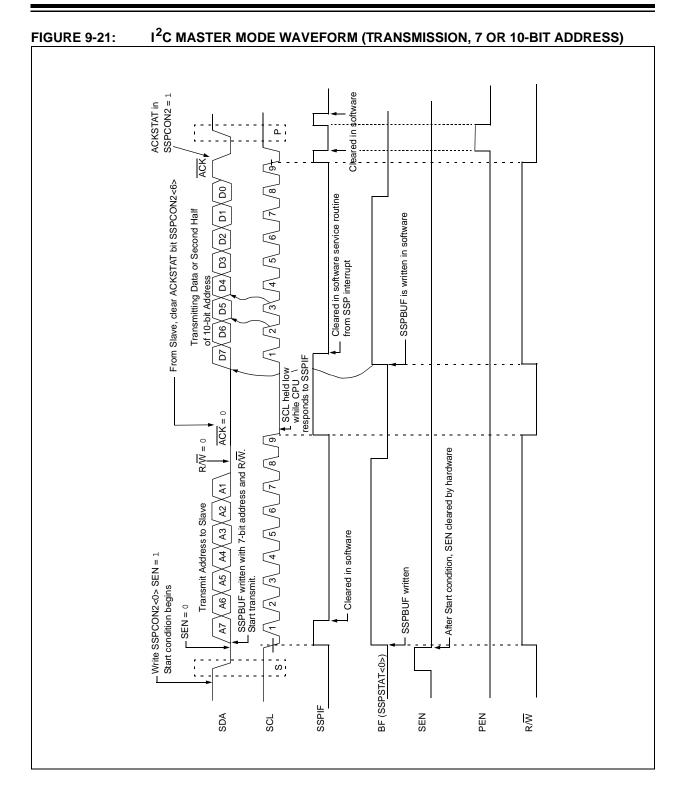
EXAMPLE 3-3:	FLASH PROGRAM READ

	BSF	STATUS, RP1	i	
	BCF	STATUS, RPO	; Bank 2	
	MOVLW	MS PROG EE ADDR	i	
	MOVWF	EEADRH	; MS Byte of Program Address to read	
	MOVLW	LS_PROG_EE_ADDR	i	
	MOVWF	EEADR	; LS Byte of Program Address to read	
	BSF	STATUS, RPO	; Bank 3	
	BSF	EECON1, EEPGD	; Point to PROGRAM memory	
	BSF	EECON1, RD	; EE Read	
Required Sequence ;				
luer	NOP			
Seq	NOP		; Any instructions here are ignored as program	
			; memory is read in second cycle after BSF EECON1,RD	
;				
	BCF	STATUS, RPO	; Bank 2	
	MOVF	EEDATA, W	; W = LS Byte of Program EEDATA	
	MOVWF	DATAL	;	
	MOVF	EEDATH, W	; W = MS Byte of Program EEDATA	
	MOVWF	DATAH	;	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
09h	PORTE	—	—	_	—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE D	Data Direct	tion bits	0000 -111	0000 -111
9Fh	ADCON1	ADFM	ADCS2	_	—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

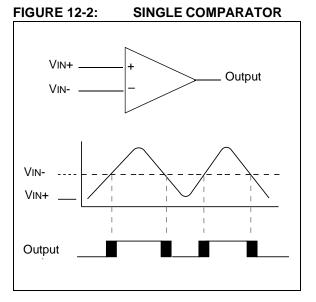

REGISTER 4-1: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
IBF	OBF	IBOV	PSPMODE	—	Bit 2	Bit 1	Bit 0
bit 7							bit 0

Parallel Slave Port Status/Control Bits:

bit 7	IBF: Input Buffer Full Stat	tus bit		
	1 = A word has been rece	eived and is waiting to	be read by the CPU	
	0 = No word has been re-	ceived		
bit 6	OBF : Output Buffer Full	Status bit		
	1 = The output buffer still	holds a previously wri	tten word	
	0 = The output buffer has	been read		
bit 5	IBOV: Input Buffer Overf	low Detect bit (in Micro	processor mode)	
	1 = A write occurred wh software)	en a previously input	word has not been re	ad (must be cleared in
	0 = No overflow occurred	b		
bit 4	PSPMODE: Parallel Slav	e Port Mode Select bit		
	1 = PORTD functions in F	Parallel Slave Port mo	de	
	0 = PORTD functions in g	general purpose I/O m	ode	
bit 3	Unimplemented: Read a	as '0'		
	PORTE Data Direction E	<u>Bits:</u>		
bit 2	Bit 2: Direction Control bi	it for pin RE2/ \overline{CS} /AN7		
	1 = Input			
	0 = Output			
bit 1	Bit 1: Direction Control bi	it for pin RE1/WR/AN6		
	1 = Input			
	0 = Output			
bit 0	Bit 0: Direction Control bi	it for pin RE0/RD/AN5		
	1 = Input			
	0 = Output			
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
	L			

REGISTER 9-3:	SSPSTAT:	MSSP STA	TUS REG	SISTER (I ²	C MODE)	(ADDRESS	6 94h)		
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
	SMP	CKE	D/A	Р	S	R/W	UA	BF	
	bit 7							bit 0	
bit 7	SMP: Slew	Rate Contro	l bit						
		or Slave mode							
		ate control dis					1 MHz)		
bit 6		ate control en		gn-speed n	100e (400 K	ΠΖ)			
bit 0		or Slave mode	<i>.</i>						
	1 = Enable	SMBus spec	ific inputs						
		e SMBus spe	cific inputs						
bit 5		Address bit							
	<u>In Master n</u> Reserved.	node:							
	In Slave me								
		es that the las	-						
bit 4	• = mulcate P: Stop bit	es that the las	si byte rece		Smilleu was	audiess			
511 4	•	es that a Stop	bit has be	en detected	last				
		t was not det							
	Note:	This bit is clo	eared on Re	eset and wh	nen SSPEN	is cleared.			
bit 3	S: Start bit								
		es that a Star t was not det		en detectec	llast				
	Note:	This bit is cl		eset and wh	nen SSPEN	is cleared			
bit 2	_	Write bit info							
511 2	In Slave me				y)				
	1 = Read								
	0 = Write								
	Note:	This bit hold only valid fro							
	In Master mode:								
	1 = Transmit is in progress 0 = Transmit is not in progress								
	Note: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is								
		in Idle mode							
bit 1	UA: Update	e Address (10	D-bit Slave i	mode only)					
		es that the us		•	address in	the SSPADE	D register		
		s does not ne	•	odated					
bit 0	BF: Buffer Full Status bit								
	In Transmit mode: 1 = Receive complete, SSPBUF is full								
	0 = Receive not complete, SSPBUF is empty								
	In Receive		aroog (dog	o not includ	$a + b = \overline{A C K}$	and Stop hits		o full	
	 1 = Data Transmit in progress (does not include the ACK and Stop bits), SSPBUF is full 0 = Data Transmit complete (does not include the ACK and Stop bits), SSPBUF is empty 								
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unir	nplemented	bit, read as '	0'	
	- n = Value		'1' = Bi			is cleared	x = Bit is u		



12.2 Comparator Operation

A single comparator is shown in Figure 12-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 12-2 represent the uncertainty due to input offsets and response time.

12.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 12-2).

12.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSS and VDD and can be applied to either pin of the comparator(s).

12.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 13.0 "Comparator Voltage Reference Module" contains a detailed description of the Comparator Voltage Reference module that provides this signal. The internal reference signal is used when comparators are in mode, CM<2:0> = 110 (Figure 12-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

12.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 17.0 "Electrical Characteristics").

12.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexors in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 12-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<4:5>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.
 - **3:** RA4 is an open collector I/O pin. When used as an output, a pull-up resistor is required.

bit 0

13.0 COMPARATOR VOLTAGE REFERENCE MODULE

The Comparator Voltage Reference Generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 13-1 lists the bit functions of the CVRCON register.

As shown in Figure 13-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC - VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user if a very highimpedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0
	bit 7							bit (
bit 7	CVREN: C	omparator V	oltage Refe	rence Enabl	e bit			
	1 = CVREF	circuit powe	ered on					

REGISTER 13-1: CVRCON CONTROL REGISTER (ADDRESS 9Dh)

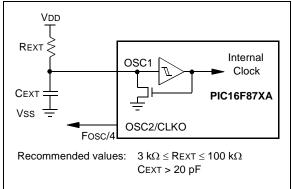
	CVREN. Comparator voltage Reference Enable bit
	1 = CVREF circuit powered on
	0 = CVREF circuit powered down
hit C	· · · · · · · · · · · · · · · · · · ·
bit 6	CVROE: Comparator VREF Output Enable bit
	1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin
	0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin
bit 5	CVRR: Comparator VREF Range Selection bit
	1 = 0 to 0.75 CVRSRC, with CVRSRC/24 step size
	0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
L:1. A	
bit 4	Unimplemented: Read as '0'
bit 3-0	CVR3:CVR0: Comparator VREF Value Selection bits $0 \le VR3:VR0 \le 15$
	When $CVRR = 1$:
	$\overline{\text{CVREF}} = (\text{VR} < 3:0 > / 24) \bullet (\text{CVRSRC})$
	When CVRR = 0:
	$\overline{\text{CVREF}} = 1/4 \bullet (\text{CVRSRC}) + (\text{VR3:VR0/ 32}) \bullet (\text{CVRSRC})$

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 14-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes following this table.

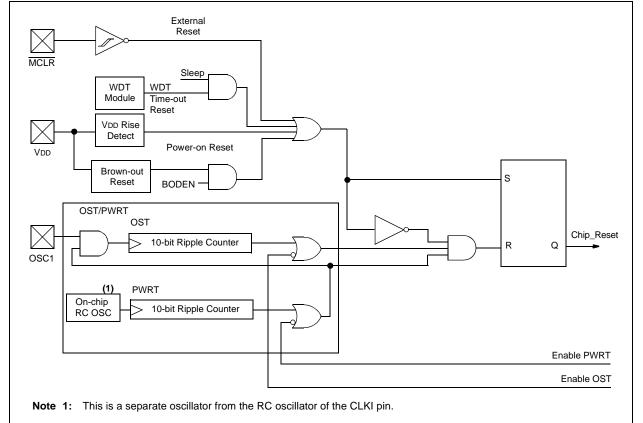

Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	± 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

- Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** *R*_s may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - When migrating from other PIC[®] devices, oscillator performance should be verified.

14.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-3 shows how the R/C combination is connected to the PIC16F87XA.

14.3 Reset


The PIC16F87XA differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset (during normal operation)
- WDT Wake-up (during Sleep)
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 14-4. These bits are used in software to determine the nature of the Reset. See Table 14-6 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 14-4.

FIGURE 14-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

14.10 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit 0 is the Brown-out Reset Status bit, BOR. The BOR bit is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if it has been cleared, indicating that a BOR has occurred.

When the Brown-out Reset is disabled, the state of the $\overline{\text{BOR}}$ bit is unpredictable and is, therefore, not valid at any time.

Bit 1 is the Power-on Reset Status bit, $\overline{\text{POR}}$. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 14-3:	TIME-OUT IN VARIOUS SITUATIONS
-------------	--------------------------------

Oscillator Configuration	Power	-up	Brown-out	Wake-up from Sleep	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms		72 ms	_	

TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition			
0	x	1	1	Power-on Reset			
0	x	0	x	llegal, TO is set on POR			
0	x	x	0	llegal, PD is set on POR			
1	0	1	1	Brown-out Reset			
1	1	0	1	VDT Reset			
1	1	0	0	WDT Wake-up			
1	1	u	u	MCLR Reset during normal operation			
1	1	1	0	MCLR Reset during Sleep or Interrupt Wake-up from Sleep			

Legend: x = don't care, u = unchanged

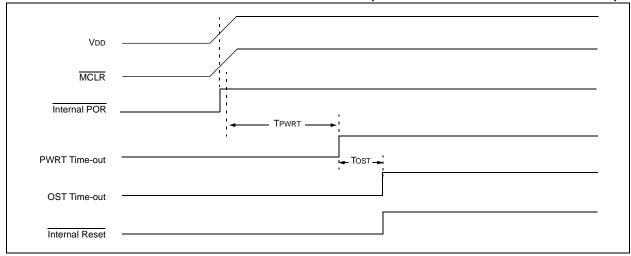
TABLE 14-5: RESET CONDITIONS FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register	
Power-on Reset	000h	0001 1xxx	0x	
MCLR Reset during normal operation	000h	000u uuuu	uu	
MCLR Reset during Sleep	000h	0001 0uuu	uu	
WDT Reset	000h	0000 luuu	uu	
WDT Wake-up	PC + 1	uuu0 Ouuu	uu	
Brown-out Reset	000h	0001 luuu	u0	
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu	

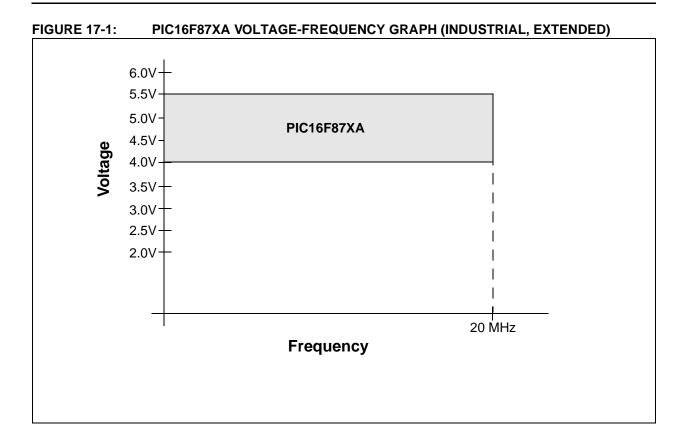
Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

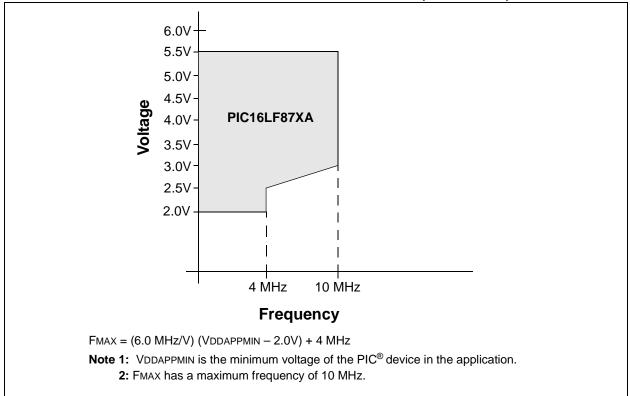
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)						IED)	
Register	Register Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt		
TRISD	73A	74A	76A	77A	1111 1111	1111 1111	uuuu uuuu
TRISE	73A	74A	76A	77A	0000 -111	0000 -111	uuuu -uuu
PIE1	73A	74A	76A	77A	r000 0000	r000 0000	ruuu uuuu
FICI	73A	74A	76A	77A	0000 0000	0000 0000	սսսս սսսս
PIE2	73A	74A	76A	77A	-0-0 00	-0-0 00	-u-u uu
PCON	73A	74A	76A	77A	dd	uu	uu
SSPCON2	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu
PR2	73A	74A	76A	77A	1111 1111	1111 1111	1111 1111
SSPADD	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	73A	74A	76A	77A	00 0000	00 0000	uu uuuu
TXSTA	73A	74A	76A	77A	0000 -010	0000 -010	uuuu -uuu
SPBRG	73A	74A	76A	77A	0000 0000	0000 0000	uuuu uuuu
CMCON	73A	974	76A	77A	0000 0111	0000 0111	uuuu uuuu
CVRCON	73A	74A	76A	77A	000- 0000	000- 0000	uuu- uuuu
ADRESL	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu
ADCON1	73A	74A	76A	77A	00 0000	00 0000	uu uuuu
EEDATA	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu
EEADR	73A	74A	76A	77A	XXXX XXXX	uuuu uuuu	uuuu uuuu
EEDATH	73A	74A	76A	77A	XXXX XXXX	սսսս սսսս	uuuu uuuu
EEADRH	73A	74A	76A	77A	xxxx xxxx	սսսս սսսս	uuuu uuuu
EECON1	73A	74A	76A	77A	x x000	u u000	u uuuu
EECON2	73A	74A	76A	77A			


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.

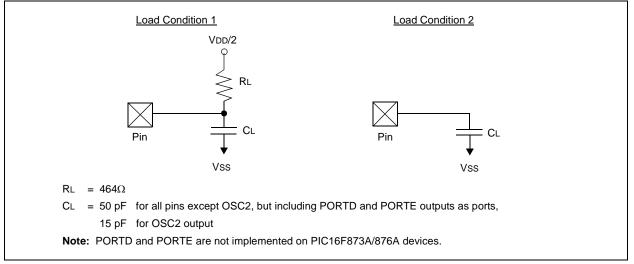
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

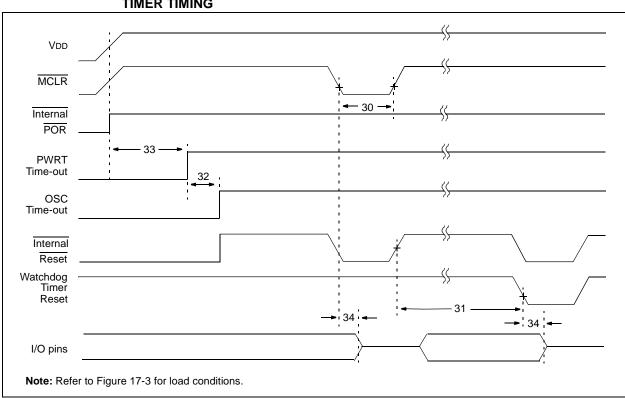

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-5 for Reset value for specific condition.


FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)

© 2001-2013 Microchip Technology Inc.




17.3 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)				
2. TppS		4. Ts	(I ² C specifications only)				
Т							
F	Frequency	Т	Time				
Lowerca	se letters (pp) and their meanings:						
рр							
CC	CCP1	OSC	OSC1				
ck	CLKO	rd	RD				
CS	CS	rw	RD or WR				
di	SDI	SC	SCK				
do	SDO	SS	SS				
dt	Data in	tO	TOCKI				
io	I/O port	t1	T1CKI				
mc	MCLR	wr	WR				
	se letters and their meanings:						
S							
F	Fall	Р	Period				
Н	High	R	Rise				
I	Invalid (High-impedance)	V	Valid				
L	Low	Z	High-impedance				
I ² C only							
AA	output access	High	High				
BUF	Bus free	Low	Low				
Tcc:st (I	TCC:ST (I ² C specifications only)						
CC							
HD	Hold	SU	Setup				
ST							
DAT	Data input hold	STO	Stop condition				
STA	Start condition						

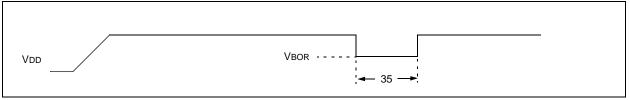

FIGURE 17-3: LOAD CONDITIONS

FIGURE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 17-7: BROWN-OUT RESET TIMING

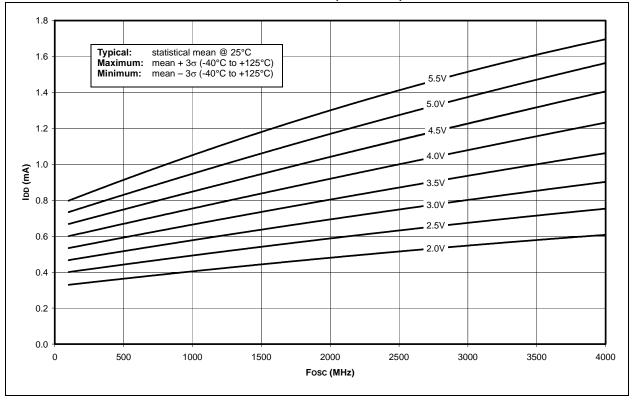
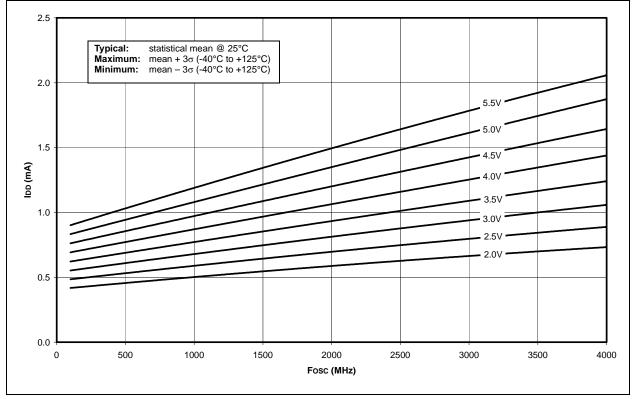
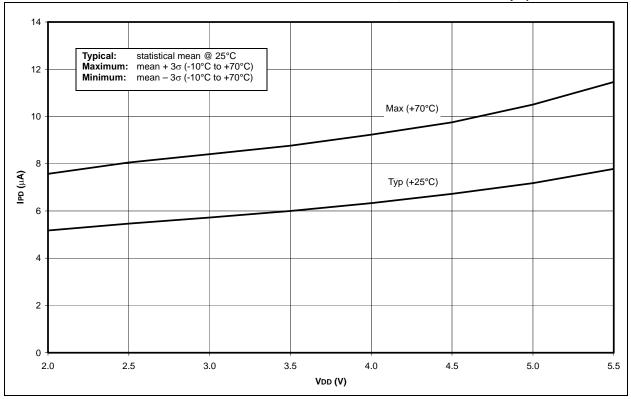


TABLE 17-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	_	-	μS	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (no prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	_	_	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	—	_	μS	$VDD \leq VBOR (D005)$


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



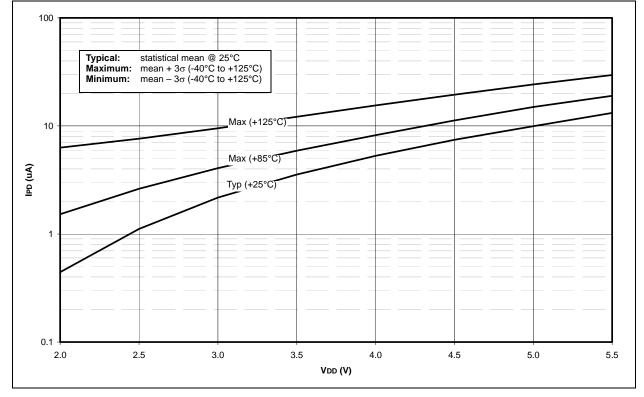


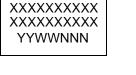
FIGURE 18-11: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)

28-Lead QFN


28-Lead SSOP

Example

Example


28-Lead SOIC

Example

28-Lead PDIP (Skinny DIP)

Example

44-Lead QFN

 \mathbf{N}

XXXXXXXXXXX

Package Marking Information (Cont'd)

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12